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Abstract: In this paper we study linear stochastic implicit difference equations (LSIDEs for short) 

of index-1. We give a definition of solution and introduce an index-1 concept for these equations. 

The mean square stability of LSIDEs is studied by using the method of solution evaluation. An 

example is given to illustrate the obtained results. 
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1. Introduction 

In this paper, we consider the linear time-varying stochastic implicit difference equation of the 

form 

                               ,n n n n+1A X (n+ 1) = B X (n)+ C X (n) ,     n                               (1.1) 

where , , ,d d

n n nA B C   the leading coefficient nA may be singular and  n is a standard one-

dimensional scalar random process. 

LSIDEs is generalization of linear stochastic difference equations, which have been well 

investigated in the literature, see [1-4]. They arise as mathematical models in various fields such as 

population dynamics, economics, electronic circuit systems or multibody mechanism systems with 

random noise (see, e.g. [5-8]. They can also be obtained from stochastic differential algebraic 

equations (SDAEs) by some discretization methods, see [9-12]. In comparison with linear stochastic 
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difference equations, LSIDEs present at least two major difficulties: the first lies in the fact that it is 

not possible to establish general existence and uniqueness results, due to their more complicate 

structure; the second one is that LSIDEs need to the consistence of initial conditions and random 

noise. 

The aim of this paper is to perform the investigation of LSIDEs. The most important qualitative 

properties of LSIDEs are solvability and stability. To study that, the index notion, which plays a key 

role in the qualitative theory of LSIDEs, should be taken into consideration in the unique solvability 

and the stability analysis, (see, [6,13, 14] ). Motivated by the index-1 concept for SDAEs in [10, 11], 

in this paper we will derive the index-1 concept for SIDEs. By using this index notion, we can 

establish the explicit expression of solution. After that, we shall establish the necessary conditions for 

the mean square stability of LSIDEs by using the method of solution evaluation. 

The paper is organized as follows. In Section 2, we summarize some preliminary results of matrix 

analysis. In Section 3, we study solvability and stability of solution of SIDEs of index-1. The last 

section gives some conclusions. 

2. Preliminaries  

Let 
1( , , ) d d d d d d

n n nA A B   

     be a triple of matrices. Suppose that 

1rank rank n nA A r   and let ( )d

nT GL such that 
ker|

nn AT   is an isomorphism between ker nA  

and 1ker nA  , put 1 0A A  . We can give such an operator nT  by the following way: let nQ  (resp. 

1nQ   ) be a projector onto ker nA  (resp. onto 1ker nA  ); find the non-singular matrices nV  and 1nV   

such that 
(0) 1

n n n nQ V Q V   and 
(0) 1

1 1 1 1n n n nQ V Q V 

     where 
(0) (0, I )n d rQ diag   and finally we obtain 

nT  by putting 
1

1n n nT V V 

 . 

Now, we introduce sub-spaces and matrices 

1

11 1

: { : },  ,

: ,  : ,

: ,  : .

d

n n n

n n n n n n n

n n n n nn n

S z B z imA n

G A B T Q P I Q

Q T Q G B P I Q

 

   

   

   

 

 

We have the following lemmas, see [15- 17]. 

Lemma 2.1. The following assertions are equivalent 

1) ker {0};n na S A     

)b The matrix n n n n nG A B T Q   is non-singular; 

1) kerd

n nc S A   . 

Lemma 2.2. Suppose that the matrix nG  is non-singular. Then, there hold the following relations: 

1) ,n n ni P G A   where n nP I Q  ; 

1) n n n n nii G B T Q Q  ; 
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1) niii Q   is the projector onto 1ker nA   along nS  ; 

1 1 1 1 1

1 1 1) ,  n n n n n n n n n n n n n n n niv PG B PG B P Q G B Q G B P T Q    

     ; 

1) n n nv T Q G
 does not depend on the choice of nT and .nQ  

Finally, let  , ,F   be a basic probability space, ,nF F n  , be a family of algebraic, 

  be an expectation,   :n n     be a sequence of mutually independent nF  adapted random 

variables and independent on ,  kF k n   satisfying 
20,  1n      for all n . 

3. Main results  

Let us consider the linear stochastic implicit difference equations (LSIDEs) 

                                   1(n 1) (n) (n) ,  ,n n n nA X B X C X n                                             (3.1) 

with the initial condition 1 0(0)X P X  where , , d d

n n nA B C   with rank nA r d   and 

  :n n    is a sequence of mutually independent nF   adapted random variables and 

independent on ,  kF k n  satisfying 
20,  1n     for all n . The homogeneous equation 

associated to (3.1) is 

                                               (n 1) (n),  .n nA X B X n  
 
                                                   (3.2) 

Definition 3.1. A stochastic process  (n)X  is said to be a solution of the SIDE (3.1) if with 

probability 1, (n)X  satisfies (3.1) for all n  and (n)X  is nF measurable. 

Now, we give an index-1 concept for LSIDEs. 

Definition 3.2. The LSIDE (3.1) called tractable with index-1 (or for short, of index-1) if  

( ) rank ni A r   constant; 

 1( ) ker 0 ;n nii A S   

     n niii im C im A  for all .n  

Remark 1. The conditions  i  and  ii  are used for the index-1 concept for implicit difference 

equations, see [15-17]. This natural restriction  iii  is the so-called condition that the noise sources do 

not appear in the constraints, or equivalently a requirement that the constraint part of solution process 

is not directly affected by random noise which is motivated by the index-1 concept for SDAEs (see, 

e.g. [10, 11]). 

By using the above notion, we solve the problem of existence and uniqueness of solution of (3.1) 

in the following theorem. 

Theorem 3.3. If equation (3.1) is of index-1, then for any n  and with the initial condition 

1 0(0) ,X P X  it admits a unique solution (n)X  which given by the formula 
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1(n) (n),nX P u                                                                  (3.3) 

where  nu  is a sequence of nF   adapted random variables defined by the equation 

     1 1

1 11 ,  .n n n n n n n nu n PG B u n PG C P u n n 

       

Proof.  Since 
1 1,  n n n n n n nG A P P G A P    and 

1 0.n n nQ G A   Therefore, multiplying both sides of 

equation (3.1) by
1

n nP G
 and 

1

n nQ G
 we get 

     

   

1 1

1

1 1

1

1 ,

0 .

n n n n n n n n

n n n n n n n

P X n P G B X n P G C X n

Q G B X n Q G C X n

 



 



    


  

 

Since equation (3.1) is of index-1,   n nim C im A  and hence 
1 0.n n nQ G C   Then the above equation 

is reduced to 

                              

     

 

1 1

1

1

1 ,

0 .

n n n n n n n n

n n n

P X n P G B X n P G C X n

Q G B X n

 





    




                                   (3.4) 

On the other hand, by item iv) of Lemma 2.2, we have 

1 1 1 1 1

1 1 1,  Q .n n n n n n n n n n n n n n n nPG B PG B P G B Q G B P T Q    

      

Therefore, (3.4) is equivalent to 

     

   

1 1

1 1

1 1

1 1

1 ,

0,

n n n n n n n n n

n n n n n n

P X n P G B P X n P G C X n

Q G B P T Q X n

 

 

 

 

    


 

 

or equivalently, 

                             

     

   

1 1

1 1

1

1 1

1 ,

.

n n n n n n n n n

n n n n n n

P X n P G B P X n P G C X n

Q X n T Q G B P X n

 

 



 

    




                               (3.5) 

Putting      1 1,  (n) Q ,n nu n P X n v X n    we imply that   1 (n)nv n Q u   and 

                         

         

         

1 1

1 1 1          = .

n n

n n n

X n P X n Q X n u n v n

u n Q u n I Q u n P u n

 

  

   

   
                                   (3.6) 

Therefore, equation (3.5) becomes 

                                        

     

   

1 1

1 1

1

1 ,

.

n n n n n n n n

n

u n P G B u n P G C P u n

v n Q u n

 

 



    


 

                           (3.7) 

The first equation of (3.7) is an explicit stochastic difference equation. For a given initial condition 

 0 ,u  this equation determines the unique solution  u n  which is nF   measurable. This implies 

that    1nv n Q u n   and    1nX n P u n  are so. Thus, with the consistent initial condition 
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  1 00X P X , equation (3.1) have a unique solution  X n  which is given by formulas (3.6), (3.7). 

The proof is complete.                                                                                                                 

Now, we study stability of the SIDE (3.1) of index-1. First, we introduce the following stability 

notion. 

Definition 3.4. The trivial solution of equation (3.1) is called: 

 Mean square stable if for any 0   and there exists a 0   such that 

 
2

,X n n     , if  
2

1 0 .P X    

 Asymptotically mean square stable if it is mean square stable and with  
2

1 0P X   the 

solution  X n of (3.1) satisfies  
2

lim 0.
n

X n


   

If the trivial solution of equation (3.1) is mean square stable (resp. asymptotically mean square 

stable) then we say equation (3.1) is mean square stable (resp. asymptotically mean square stable). 

Theorem 3.5.  Assume that 
1 0 1: sup .n nK P     Then if there exists a positive sequence  n  

with 2 0
: nn

K



     such that 

22
1 1

1 1 ,  0,n n n n n n n nP G B P G C P n 

      

then equation (3.1) is mean square stable. If there exists a positive sequence  n  with 
0 nn




  

such that 

22
1 1

1 1 ,  0,n n n n n n n nP G B P G C P n 

      

then equation (3.1) is asymptotically mean square stable. 

Proof.  We have 

     

       

       

 

22 1 1

1

1 1 1 1

1 1

1 1 1 1

1

1

1

                ,

                , 2 ,

                      

n n n n n n n

n n n n n n n n n n n n n n

n n n n n n n n n n n n n

n n n n

u n P G B u n P G C X n

P G B u n P G C X n P G B u n P G C X n

P G B u n P G B u n P G B u n P G C X n

P G C X n

 



   

 

   





   

    

  

   

     

 

1

1 1

2
1 1 1

1

2
1 2

1

,

                 = 2 ,

                      .

n n n n

n n n n n n n n n n

n n n n

P G C X n

P G B u n P G B u n P G C X n

P G C X n



 

  









 

 

 

Since 1n  is independent on ,nF it follows that 

        1 1 1 1

1 1, , 0.n n n n n n n n n n n n n nP G B u n P G C X n P G B u n P G C X n   

        
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    

   

2 2
1 2 1 2

1 1

22
1 1

1                                        = .

n n n n n n n n

n n n n n n n

P G C X n P G C X n

P G C X n P G C P n

 

 

 



    

  

 

Therefore, 

     

   

222 1 1

1

22 21 1

1

1

                   .

n n n n n n n

n n n n n n n

u n P G B u n P G C P u n

P G B P G C P u n

 



 



    

  
 

If 
22

1 1

1 1n n n n n n n nP G B P G C P 

    then 

       
2 2 2

1 1 ,  0.n

nu n u n e u n n


          

By induction, we get  

     
1

0 2
2 2 2

0 0 .
n

kk K
u n e u e u




      

This implies that      2
22 22

1 1 0 .K

nX n P u n K e u      Therefore, by the definition, 

equation (3.1) is mean square stable. Similarly, if 
22

1 1

1 1n n n n n n n nP G B P G C P 

    then we get 

   

1

0
2 22

1 0 .

n

k

kX n K e u





 
    

Since  
2

0
,  lim 0nn n

X n


 
      and hence equation (3.1) is asymptotically mean square 

stable. The theorem is proved.                                                                                                                                                                                                                                        

Now consider the LSIDE with constant coefficient 

                                   
      11 ,  ,nAX n BX n CX n n                                               (3.8) 

where , , d dA B C   and   :n n    is a sequence of mutually independent nF  adapted 

random variables and independent on ,kF k n  satisfying 
20, 1n n     for all n . Note that 

the pair  ,A B  of index-1 can be transformed to Weierstraβ-Kronecker canonical form, i.e., there 

exist nonsingular matrices , d dW U   such that 

                                 

1 1
00

,  B=W ,
00 0

r

n r

JI
A W U U

I

 



  
   

   
                                             (3.9) 

where ,  r n rI I   are identity matrices of indicated size, 
r rJ   (see, e.g. [13,18]). Then, we have 

1 1
0 00

,  Q ,
00 0

r

n n n n

n r

I
P P P U U Q Q U U

I

 



  
        

   
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1
0

.
0

r

n r

I
G A BQ W U

I





 
    

 
 

Corollary 3.6.  Assume that equation (3.8) has index-1. Then, if 
2 2

1 1 1PG B PG CP    then 

equation (3.1) is mean square stable. If 
2 2

1 1 1PG B PG CP    then equation (3.8) is 

asymptotically mean square stable. 

Example 3.7.  Consider the LSIDE with constant coefficient (3.8) with 

1 1 1
2 0 1

,  B= ,  .21
1 0 2

0 02

A C

   
               

   

 

Then, it is easy to see that 
1 0 2 1

,  
0 0 1 2

P G
   

    
   

 and we obtain  

2 2
1 1 5

1.
6

PG B PG CP     

Thus, this equation is asymptotically mean square stable. 

4. Conclusion  

In this paper, we have investigated linear stochastic implicit difference equations (LSIDEs). The 

index-1 concept for these equations has been derived. After that we have established the explicit 

expression of solution. Finally, characterizations of the mean square stability for LSIDEs are given by 

the method of solution evaluation. 
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