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Abstract: The one-loop contribution axion-photon-photon coupling is presented in the framework 

of the 3-3-1 model, in which the loop diagrams are finite. The decay of axion into two photons is 

demonstrated. This study shows that it is easy to fulfill dark matter candidate conditions for the 

axion in the model. 
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1. Introduction* 

At present, an axion is a very attractive issue in Particle Physics [1-6]. The axion is a CP-odd scalar 

field which arises in the solution of the strong-CP problem. It is interesting to note that nowadays the 

axion is widely considered as a candidate of dark matter (DM) [7]. The dark matter candidate only exists 

in some beyond the standard model scenarios. Among the SM extensions, the models based on the 

( ) ( ) ( )3 3 1
C L X

SU SU U   gauge symmetries (called 3-3-1 models, for short) [8-15] have several very 

interesting features, some of them being the natural explanation of the number of SM fermion families, 

the electric charge quantization, self-interating dark matter [16] and the solution of the strong CP 

problem from the PQ symmetry [17], which are automatically fulfilled in the 3-3-1 models. In one of 
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the 3-3-1 models, there exist both interesting features, namely the axion dark matter candidate and 

inflaton for Early Universe [18, 19]. 

It is well known that the axion plays an important role in explanation of the XENON1T experiment 

[20]. Moreover, the couplings of the axion with other particles such as gauge bosons, fermions play a 

pivotal role in colidder search [21]. 

Our paper is organized as follows: in Section II, we present brief review of the model. Section III is 

devoted to necessary axion coupling. In Section IV, we present one-loop vertex for axion-photon-photon 

couplings. The decay width of the axion into two photons is presented in Section V. Finally, we state 

our conclusions in Section VI. 

2. Brief Review of the Model 

The model under consideration is based on ( ) ( ) ( )3 3 1
C L X

SU SU U  symmetry and has the 

following fermion content: 

   

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

3 3 3

, , ~ 1,3, 1 3 , ~ 1, 1, 1 , ~ 1,1,0 ,

, , ~ 3,3,1 3 , , , ~ 3, 3,0 ,

, ~ 3,1,2 3 , , ~ 3,1, 1 3 ,

T
c

aL a a R aR aRa L

T T

L aLL L

aR R aR R

l l N

Q u d U Q d u D

u U d D

  



  = − −

= = −

−
  (1) 

where 1,2 = and 1,2,3a =  are family indices. The U and D are exotic quarks with ordinary electric 

charges, whereas aRN are right-handed neutrinos. 

The scalar sector of the model is composed of three ( )3
L

SU  scalar triplets and one ( )3
L

SU  singlet. 

They have the following transformations under the ( ) ( ) ( )3 3 1
C L X

SU SU U   symmetry: 

   

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0 0

1 2 3 1 2 3

0

1 2 3

, , ~ 1,3, 1 3 , ~ , , ~ 1,3, 1 3 ,

, , ~ 1,3,2 3 , ~ 1,1,0 .

T T

T

       

    

− −

+ +

= − −

=
   (2) 

In order to keep intact the physics results, the Lagrangian of the model must  be invariant by the 

discrete symmetries 11 2Z Z  which are summarised in Table 1. Here, we have used a notation 

2
11 , 0, 1,..., 5.
k

i

k e k


  =     

Table 1. 11 2Z Z  charge assignments of the particle content of the model. Here 1,2 = and 1,2,3a = . 

 
LQ

 
3LQ  aRu  

aRd  
RU  

RD
 

aL  
aRl  

aRN          

11Z  1

4 −  1 5  
2  

3  
4  

1  
3  1

5
−  1

5
−  1

3
−  1

2 −  1

1
−  

2Z  1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 

Assuming fermions of opposite chiralities have opposite PQ charges and 1d DX X= = , we 

summarise PQ charges of fermions in Table 2. 
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Table 2. PQ charges  of  fermions in the model. 

 aLu  
aLd  

LU  
LD  

aL  
al  

aRl  
aL  aR  

aRN  

PQX  -1 1 1 1 1 1 1 1 -1 1 

  

To generate masses for gauge bosons and fermions, the scalar fields should acquire vacuum 

expectation values (VEVs). These fields can be expanded around the minimum as follows: 

( )

( )

( )

( )

1 1 1 1

3 3 3 3

1 1

2 2

, ,

1 1

2 2

R i I v R i I

v R i I R i I

    

    

   − −

   
+ + +   

   
   = =
   
   + + +
   
        (3) 

  

( ) ( )

1

3

1 1
, .

2 2
v R i I v R i I     



 



+

+

 
 
 = + + = + +
 
 
 
                   (4) 

Note that since   carries non-zero PQ charge (as shown below), it has to be complex as shown in (4). 

The VEV v  is responsible for the first stage of gauge symmetry breaking, whereas ,v v   trigger the second 

stage of electroweak symmetry breaking providing a natural solution to the strong-CP problem.  

The VEV v  is responsible for PQ symmetry breaking resulting in existence of invisible axion due 

to very high scale around 10 1110 10−  GeV. Then ( ) ( )3 1
L X

SU U  breaks into the SM group by v  and 

two others ,v v   are needed for the usual ( )1
Q

U  symmetry. Hence, 

   
, .v v v v                       (5) 

The constraint conditions of such VEVs were analyzed in Ref. [18].  

From an analysis of the scalar potential, we find that the physical CP odd neutral scalar mass 

eigenstates are: 

   

3

3 3 4 3 4 3 4

1
3 3 4 4 3 3 4 5

4 4 4

cos sin cos cos sin sin sin sin cos

sin cos cos cos sin cos sin cos cos
,

0 sin cos cos sin sin

0 sin 0 cos

Z

Z

I G

I A

GI

aI

  

 

 

 

        

        

    

 


  − −  
    − −    =    
            (6) 

where the mixing angles in the CP odd scalar sector take the form: 
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3

4
2 2

tan , tan ,

tan , tan tan .

v v

v v

v v

v v v

 

 

 

  

 

  

= =

= 
+

       (7) 

The mixing angles in the CP odd scalar sector depend on the ratio of v  to ,v v   and v . 

The following Yukawa couplings are given by [22] 

   
( ) ( )

* *

1 3 3 2 3 3 4

*

5 3 6

. .,

Y a

L R L R a L aR L aR

a

a L aR L aR ab aL bR

D C

aL bR N aR bRabab

L y Q U y Q D y Q u y Q d

y Q d y Q u g l

y N y N N H c

 

  







   

   

  

− = + + +

+ + +

+ + +
    (8) 

where , 1,2  = and , 1,2,3a b =  are family indices and, for simplicity, we have used Einstein notation 

for repeated indices. 

3. Axion Couplings 

The Lagrangian describes the interactions of axions or ALPs to SM particles as follows: 

   

2 2

5

1 1
,

2 2 8 4

aa as
a aff

a

ga
L a a m a G G F F g a f f

f

  

  





=   + + + +

  (9) 

where af  and affg  are  the effective axion decay constant and coupling constatnt  of axion with 

fermions, respectively. affg  for QCD axion can be written as 

   

1.92 ,
2

aff

a

E
g

f N





 
= − 

         (10) 

where E and N are the mixed anomaly coefficients of the PQ symmetry with EM and QCD 

respectively, the number 1.92 is contribution from QCD. 

The couplings affg  are model dependent, and their bounds are determined from other processes in 

Early Universe. Fortunately, these coulings are explicitly defined in the model under considereation. 

Indeed, substitution of (6) to (8) yields the necessary couplings 

   

( ) ( )( )3 4 5 5

3 4 5

sin sin cos a
2

2
sin cos cos . .

U D

aff

t

i
L h U U h D D

m
i a t t H c

v

   





    

   

 − −

− +

   (11) 

4. One-Loop Contribution Axion-photon-photon Coupling 

Using these interactions, we can calculate one-loop diagrams of axion-photon-photon couplings as 

in Figure 1. 
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Figure 1. Feynman diagrams for axion-photon-photon couplings. Here, all momenta are incoming. 

Contribution from diagram 1(a) is 

   
( )

( )4
1( ) 2

4

1

Tr

2

a

aff

Sd k
e g

D
 = −  ,         (12) 

where   

   1 5 1 2 1( ) ( ) ( ),S k q q m k q m k m     = + + + + + +         (13) 

   
( ) ( ) ( )

2 22 2 2 2

1 1 2 1 .D k q q m k q m k m   = + + − + − −
         (14) 

Similarly, for diagram 1(b) 

   
( )

( )4
2( ) 2

4

2

Tr

2

b

aff

Sd k
e g

D
 = −  ,        (15) 

where   

   2 5 1 2 2( ) ( ) ( ),S k q q m k q m k m     = + + + + + +         

   
( ) ( ) ( )

2 22 2 2 2

2 1 2 2 .D k q q m k q m k m   = + + − + − −
         (16) 

The integrals in (12) and (15) are logarithmically divergent. The presence of 5 , which is determined 

only in four dimension, prevents from using dimensional regularization. To solve this difficulty, we 

should use the following trick: Any combination S of Dirac matrices can be expanded as the following 

combinations [23]: 

   
( ) ( ) ( ) ( ) ( )5 5 5 5

1
Tr Tr Tr Tr 2Tr .

4
S S I S S S S 

             = + + + + 
  (17) 

Keeping in mind that the expression like S is under trace, so only the first term in (17) is survived. 

Therefore, 

   ( )1 1

1
Tr .

4
S S I=          (18) 
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Let us deal with the first term 

   

( )1 5 1 2 1

5 1 2 1 1 2 1

1 2 1 1 2 1

2 1

[ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( ) ]

4 [ ( ) ( ) ( ) ( ) ]

4 [ ( )

Tr S Tr k q q m k q m k m

mTr k q q k q k q q k k q k

im k q q k q k q q k k q k

im q k q

 

     

     

  

 

 

  

      

  

 

  = + + + + + +  

     = + + + + + + + +     

= − + + + + + + + +

= − + + 1 2 1

2 1

( ) ]

4 .

q q k q k

im q q

   



 







+ +

=
 (19) 

So in n dimension, we obtain    

   
( ) ( )1 2 1 2 1Tr Tr .S im q q I imn q q   

  = =
      (20) 

For 2S , we have to make the following replacements:    and 1 2q q . Hence,    

   
( ) ( )2 1 2 1 2Tr Tr .S im q q I imn q q   

  = = −
      (21) 

Finally, we get one loop correction in $n$ dimension 

   

( ) ( )

( ) ( )
2

2 1 1 2

1 2

1 1
.

2 2

n n
a btotal

aff n n

d k d k
ie g mn q q q q

D D

   


 

 
 =  +  = − − 

  
 

  (22) 

It is emphasized that the intergals in (22) are finite. For further details on these integrals, the reader 

is referred to Ref. [24]. 

4. Decay of Axion into Two Photons 

Firstly, assuming that the one-loop correction provides a leading contribution, we consider the axion 

decay into two photons. 

   
( ) ( ) ( )1 1 2 2, , ,a p q q   → +

       (23) 

where p  is momentum of the axion and ( ), 1,2i iq i =  are momenta and polarization vectors of 

outgoing photons, respectively. 

Using (22), we have amplitude, in which the loop in the inside contains all fermions of the model 

   

( ) ( ) ( )2

2 1 1 1 2 2 1 1 2 24 , , ,f aff

f

M a i e m g q q G q q G q la q la     

    → = − − 
  (24) 

where we have replaced n by 4 and denoted 
( )

4

4

1
, 1,2.

2
i

i

d k
G i

D
= =  Making summation over 

polarizations of the photons, we get 

   

( ) ( ) ( )
22 4 2 2 * * * *

1 2 1 1 2 2 1 2 2 132 . .f aff

f

M a e m g q q G G G G G G G G→ = + + +
   (25) 
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Then decay width is given by 

   

( )
( )

( )
2

2 2 2 3 * * * *

1 1 2 2 1 2 2 14 ,
32

em f aff a

fa

M a
a m g m G G G G G G G G

m


 



→
 → = = + + +

  (26) 

where am  is the axion mass. 

To evaluate the above decay width, let us take the case of top quark. It is worth mentioning that 

coupling of axion with fermion is proportional to mass of the latter. Replacing coupling constant affg  

following from (10), we get the branching ration in the model under consideration 

   

( ) ( )

( )
( )

4
2 2 2 2 3 * * * *

3 4 1 1 2 2 1 2 2 12

43
2 4 * * * *

1 1 2 2 1 2 2 12 2 2 2

4 cos cos sin

8 .

t
em a

a
em t

m
a m G G G G G G G G

v

vm
m G G G G G G G G

v v v v







   

    



 → = + + +

+ + +
+

  (27) 

It is worth mentioning that VEVs ,v v   are in the ectroweak scale, v  in TeV scale, while v  is in 

1010  GeV scale. So, decay width in (27) is very small, and this helps it to be DM candidate [25]. 

The contributions from exotic quarks are quite similar, and it will be published elsewhere. 

5. Conclusion 

In this paper, we have considered the decay of the axion to two photons in the framework of the 

special 3-3-1 model. The one-loop contribution axion-photon-photon couplings are presented and 

showed to be finite.  The decay of axion into two photons is demonstrated. Since the mass of axion is 

evaluated to be around 3 keV, the above considered process is unique. Associated with factor 
21 v , the 

decay rate is very small, leading to the fact that the axion is a candidate for dark matter. 
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