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Abstract: Shear wave imaging (SWI) is a rapid and convenient method of collecting images of 

tissues in the region of interest. SWI is based on the mechanical properties of soft tissues named 

the complex shear modulus (CSM). The complex shear modulus consisting of the elasticity and 

the viscosity, is useful for diagnosing pathological tissue conditions. Previous studies have not 

fully exploited the estimation of CSM in the medium containing Gaussian noise and the shear 

wave's reflection phenomenon. In this study, we focused on the model of shear wave propagation 

in the 2D environment by the time domain finite difference method (FDTD), taking into account 

the effect of Gaussian noise and reflected shear wave. We then reduced the noise of the measured 

particle velocity using a designed least mean square filter. Finally, for direct estimation of CSM, 

Helmholtz algebraic inverse transformation algorithm was used. Reflected waves significantly 

affect the estimation of CSM, especially the tissue's viscosity, which is demonstrated by numerical 

simulation results. 
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1. Introduction  

Many scientific studies have shown that 70-80% of liver cancers develop based on cirrhosis, so 

cirrhosis risk factors are also considered risk factors for HCC. According to medical experts, the 

diagnosis of cirrhosis is one of the important criteria in deciding on treatment, monitoring disease 

progression, and prognosis. In diagnosing cirrhosis, liver biopsy is considered the gold standard. 

However, the biopsy is an invasive method that causes pain and complications such as bleeding, 

infection, …  In addition, the accuracy of the biopsy sample is also an issue that can lead to deviation 

in the assessment of cirrhosis. With the development of science and technology, shear wave ultrasound 

can help doctors diagnose liver fibrosis and the tumor's hardness. 

Shear wave ultrasound is a new technique in imaging ultrasound, helping determine the organ's 

elasticity, damage. This technique is performed as a routine ultrasound on the ultrasonic machine 

featuring shear wave ultrasound. This ultrasound method enhances the specificity of the diagnosis and 

helps narrow the biopsy indication without missing lesions. The authors in [1] have mentioned the 

shear wave elastic imaging (SWEI) technique used in medical diagnosis. Subsequently, the deform 

wave propagation velocity is related to the elasticity and viscosity of the medium [2] given by the 

equations of Chen et al. Methods for quantifying tissue elasticity and viscosity through distortion wave 

velocity measurements were proposed shortly thereafter. The authors also used the filter MLEF 

(Maximum Likelihood Ensemble Filter) to estimate the CSM parameter for a homogeneous 

environment based on the Kelvin-Voigt model [3]. Research on CSM (Complex Shear Modulus) 

estimation and shear wave ultrasound imaging to date is still attracting significant interest from 

different research groups [4-12]. However, the shear wave ultrasonic imaging process is always 

influenced by Gaussian noise, and the reflection phenomenon reduces the estimated image quality. 

Therefore, in this paper, we study the problem of estimating two-dimensional complex shear modulus 

(2D-CSM) in the medium containing Gaussian noise, and the reflection phenomenon of shear waves 

appears. Quantitative information about the tissue's elasticity and viscosity to help the doctors make a 

more accurate diagnosis is the intended outcome of the paper. 

2.  Methodology  

 

Figure 1. Excitation and shear wave measurement system. 

A needle is vibrated at a specified frequency along the Z-axis in the elastic ultrasonic imaging 

system, which then propagates across the X-Y plane (Figure 1). Such particle velocities can be 

collected using Doppler ultrasound [3]. 
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Therefore, assuming no absorbing medium, the propagation of shear wave sliding along the radial 

axis, the FDTD method is used. The particle velocity vector 𝑉𝑧 in the direction of propagation of the 

x-wave in the Cartesian coordinate system and the compressed tensor 𝜎𝑧𝑥 have the relationship 

expressed by equations (1) and (2) [7]: 

 𝜌𝜕𝑡𝑣𝑧 = 𝜕𝑥𝜎𝑧𝑥,  (1) 

 𝜕𝑡𝜎𝑧𝑥 = (𝜇 + 𝜂𝜕𝑡)𝜕𝑥𝑣𝑧, (2) 

where 𝜕𝑡  and 𝜕𝑥 respectively are separate derivative operators of 𝜕/𝜕𝑡 and 𝜕/𝜕𝑥 applied for the value 

to the right of the symbol; 𝜌, 𝜇 and 𝜂 are denoting represented tissue density, elasticity, and viscosity, 

respectively. The Kelvin-Voigt model represents complex strain modulus CSM 𝐺(𝑥, 𝜔); this quantity 

depends on angular frequency 𝜔 as follows: 

 𝐺(𝑥, 𝜔) = 𝜇(𝑥) − 𝑖𝜔𝜂(𝑥),  (3) 

where μ is the elasticity and viscosity η is to be estimated. The following symbols are used to discrete 

equations (1) and (2): 

 𝑣𝑧(𝑥, 𝑡) = 𝑣𝑧(𝑖Δ𝑥, 𝑛Δ𝑡) = 𝑣𝑧
𝑛|𝑖   (4) 

 𝜎𝑧𝑥(𝑥, 𝑡) = 𝜎𝑧𝑥(𝑖Δ𝑥, 𝑛Δ𝑡) = 𝜎𝑧𝑥
𝑛 |𝑖   (5) 

The sampling period, the step-time space step-index are represented as Δ𝑡, 𝑖, and 𝑛, respectively. 

Using the FDTD method, (1) and (2) are described as follows: 
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(7) 

where 𝑣𝑧(𝑛) represents the particle velocity signal affected by the Gaussian noise transmitted into the 

tissue, represented as 𝑧(𝑛). At the same time, they form the noise signal 𝑣𝑧(𝑛) described by: 

 𝑣(𝑛) = 𝑣𝑧(𝑛) + 𝑧(𝑛)     (8) 

The Least Mean Square (LMS) filter's input signal is the noisy signal 𝑣(𝑛) aiming to extract the 

desired signal estimate 𝑣𝑧(𝑛). The signal is filtered 𝑣𝑧(𝑛) or the bandpass filter output, sampled and 

formed a vector with N samples: 

 𝑣(𝑛) = [𝑣𝑧(0), 𝑣𝑧(1), …  𝑣𝑧(𝑁 − 1)], (9) 

and the filter coefficients are expressed as follows: 

 𝜔(𝑛) = [𝜔(0), 𝜔(1), …   𝜔(𝐿)],     (10) 

where 𝐿 denotes the order of the filter. The 𝜔(𝑛) is called weighting. 
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After reducing the noise from the obtained particle velocity, the AHI algorithm [8] was used to 

compute the CSM. For small volumes, it is assumed that the viscous elastic property of tissue is 

isotropic. We combine (1) and (2) to obtain: 

 𝜌
𝜕2𝑣𝑧

𝜕𝑡2 = 𝐺′(𝑥, 𝑡)∇2𝑣𝑧, (11) 

where 𝐺′(𝑥, 𝑡) is CSM in the time domain, and ∇2𝑣𝑧 is the Laplace operator of 𝑣𝑧 defined as 

 ∇2𝑣𝑧 =
𝜕2𝑣𝑧

𝜕𝑥2 .  

To solve (11), the AHI algorithm is applied, which then became the Helmholtz equation: 

 
(

𝐺(𝑥, 𝜔)

𝜌
∇2 + 𝜔2)  𝑉𝑧(𝑥, 𝜔)|𝜔=𝜔0

= 0, (12) 

where 𝐺(𝑥, 𝜔) is CSM in the frequency domain and defined in (3), 𝑉𝑧(𝑥, 𝜔) is the time Fourier 

transform of the particle velocity 𝑣𝑧(𝑥, 𝑡), 𝑉𝑧(𝑥, 𝜔) = 𝐹𝑡{𝑣𝑧(𝑥, 𝑡)}, and 𝜔0 is the angular frequency 

𝜔0 = 2𝜋𝑓0. From (12) we can see that the CSM can be directly estimated as follows: 
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−𝜌𝜔0
2𝑉𝑧(𝑥, 𝜔0)

∇2𝑉𝑧(𝑥, 𝜔0)
} 

𝜂(𝑥) = ℑ {
−𝜌𝜔0

2𝑉𝑧(𝑥, 𝜔0)

∇2𝑉𝑧(𝑥, 𝜔0)
}, 

(13) 

where 𝑉𝑧(𝑥, 𝜔0) at the specified angular frequency 𝜔0 is calculated by the Fourier transform; 

∇2𝑉𝑧(𝑥, 𝜔0) calculated using discrete Laplace function (The MathWorks) 𝑑𝑒𝑙2(𝑉𝑧(𝑥, 𝜔0)) returns the 

discrete approximation of the Laplace differential operator applied to 𝑉𝑧(𝑥, 𝜔0). Algorithm 1 

summarizes the proposed algorithm for 2D-CSM estimation. 

Algorithm 1: Estimates 2D-CSM 

Step 1. Establish a simulation scenario 

Step 2. Select stimulation frequency of  𝑓0 = 200𝐻𝑧. 

Step 3. Create shear wave propagation into the tissue. 

Step 4. Use Doppler ultrasound to measure particle velocity at location space 120×120 

Step 5. Extract the variance of noise and feed it into an LMS filter. 

Step 6. Use the LMS filter to improve SNR. 

Step 7. Use the Fast Fourier transform (FFT) to calculate the filtering signal. 

Step 8. Estimate each CSM in the space locations using (13). 

Step 9. Synthesize estimation data 𝜇 and 𝜂 to create the 2D-CSM image. 

The human body is a heterogeneous environment consisting of many organs and organizations 

with different structures. When the shear wave reaches two media interfaces with different acoustic 

impedance, one part will go in the original direction and continue to the next medium; the other part 

will be reflected. The reflectance more or less depends on the impedance difference between the two 

media and is characterized by a quantity called the reflectivity R, calculated using Equation (14). 

 𝑅 = (𝑍2 − 𝑍1)2/(𝑍2 + 𝑍1)2 (14) 

Z2 and Z1, the acoustic impedances of the environment, create the surface of separation 
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3. Results and Discussion  

Establishing simulation scenario: 2D environment with size 120 × 120 mm, containing a circular 

tumor in the position (40 mm, 40 mm), tumor radius 15 mm (bio soft tissue area). µ1 = 6000 Pa and η1 

= 1.2 Pa.s are the elasticity and viscosity of the medium, while µ2 = 8900 Pa and η2 = 2.7 Pa.s are the 

elasticity and viscosity of the tumor, respectively.  f = 200 Hz, ρ = 1000 kg/m3 correspond to the 

needle's vibration frequency and the medium's mass density, the amplitude of vibrating needle 5 mm. 

The shear wave's particle velocity is estimated over the entire 2D medium plane at the positions 1 mm 

evenly spaced in both the X and Y axes. The biological soft tissue region is simulated, as shown in 

Figure 2. When shear waves meet the tumor's surface, suppose on the transmission line, a reflected 

shear wave will be generated. The incident and the reflected waves meet and change the particle's 

velocity, so the ultrasonic doppler measures this velocity change. Because the particle-wave velocity is 

the basis for estimating the CSM tissue's elasticity and viscosity according to Equation (13), a change 

in the particle-wave velocity affects the CSM estimate's accuracy. 

 

                                                  (a) 

 

(b) 

Figure 2. Image of elastic (a) and ideal viscous (b).  

                                                                            
(a)                                             (a)                                                                                      (b) 

Figure 3. The velocity of particle wave (a) and reflected wave (b) in space. 

The graph of particle velocity of shear waves is shown in Figure 3a. We see shear waves whose 

amplitude decreases with distance. Considering line 40 (the horizontal line passing through the tumor), 

the reflection phenomenon occurs at position x = 25. The graph of the reflected wave velocity is 
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depicted in Figure 3b. As a result, we measure the particle-wave velocity when there is no reflection 

and with reflection, as shown in Figures 4a and 4b.  

 

                                                     (a) 

 

                                                   (b) 

Figure 4. Wave-particle velocity without (a) and with (b) reflection. 

 

                                                      (a)                                                              (b) 

 

                                                  (c)                                                        (d) 

Figure 5. Estimation of elasticity with (a) and without (b) reflection,  

viscosity with (c) and without (d) reflection.          
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Table 1 presents the normalization error of CSM estimation with and without reflection. The 

quality of the reconstruction was degraded due to the effect of the reflection. 

Table 1. Normalization error of CSM estimation with and without reflection 

Normalization error Without reflection With reflection 

𝜖𝜇 0.0430 0.0754 

𝜖𝜂 0.1412 0.2695 

4. Conclusion  

Two important parameters (elasticity and viscosity) in shear-wave ultrasound imaging were 

estimated to examine the tissue structure. The wave propagation is modeled using the FDTD method. 

An LMS filter is used to reduce the measurement noise. The algebraic Helmholtz inversion algorithm 

is used to estimate CSM directly. The 2D shear-wave images are reconstructed in the environment 

considering both the Gaussian noise and shear waves' reflection. The CSM estimation results were 

expressed in 2D images and quantitatively evaluated by normalization error when considering and not 

considering the effect of shear wave reflection. The results need to be verified by experimental data 

before being applied in biomedical imaging practice.     
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