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Abstract: The theory of differential equations has been widely known and developed in recent 

years. One of the issues that many authors give their undivided attention to is the stability boundary 

of nonlinear dynamical systems. In this work, we first review several properties of equilibrium points 

on the stability boundary. We next extend the characteristics of the stability boundary for a fairly 

large class of nonlinear dynamical systems. These characteristics are the key to completely 

determine the stability boundary of nonlinear dynamical systems. 
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1. Introduction* 

It is well-known that many nonlinear physical and engineering systems are designed to be operated 

at an equilibrium state [1-4]. In other words, the authors are constructed to be operated at an equilibrium 

point and are described by a nonlinear dynamical system. The most important requirement for successful 

operation of these systems is to maintain the stability of this equilibrium state. It is desired to have the 

robust stability of the equilibrium point with respect to small perturbation. More precisely, the system 

state returns the equilibrium point under small perturbations. Therefore, the theory of stability continues 

to play an important role in continuous dynamical systems. In this work, we will give several properties 

of equilibrium points on the stability boundary. Then we extend to a comprehensive theory of stability 

region for continuous dynamical systems. The characterizations presented here will be considered as a basis 

for approximating the stability boundary of continuous dynamical systems. 
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The remaining of this paper is organized as follows: Section 2 presents some  basic definitions about 

dynamical systems. Main results about the characterizations of the stability boundary are given in 

Section 3, while Section 4 discusses several examples to illustrate the theoretical result. The last section 

concludes main work in this paper. 

2. Preliminaries 

Throughout this paper, we always consider the following (autonomous) nonlinear system  

 ( ),x f x  (1) 

where nx  is a vector of state variables. It is natural to assume that the function : n nf   satisfies 

some sufficient conditions for the existence and uniqueness of  solution to (1). We now give some 

necessary definitions before exploring the main results in Section 3. The solution curve of (1) starting 

from 
0

x  at 0t   is called the  trajectory starting from 
0

x  and is denoted by 
0

( , ).x   The point ˆ nx  is 

said to be an equilibrium point of (1) if ˆ( ) 0,f x   i.e. the equilibrium point is a particular type of solution 

that does not change in time. Therefore, equilibrium points are degenerated trajectories that do not move 

[5]. The set of all equilibrium points of (1) will be denoted by { : ( ) 0}.nE x f x    Another important 

type of trajectory is a closed orbit. A trajectory   is a closed orbit if   is not an equilibrium point and 

for any ,x   there exists 0T   such that ( , ) .T x x   A set nM   is called a positively (negatively) 

invariant set of (1) if every trajectory of (1) starting in M  remains in M  for all .t  The union and 

intersection of invariant sets are also invariant. A set nM   is called a positive (negative) invariant 

set of (1) if every trajectory of (1) starting  in M  remain in M  for all 0t   ( 0t  ), respectively. 

A point p  is said to be in the w -limit set  of x  if corresponding to each 0   and 0,T   there is 

a t T  such that | ( , ) | .t x p    A point p  is said to be in the  -limit set of x  if corresponding to 

each 0   and 0,T   there is a t T  such that | ( , ) | .t x p    In other word, p  is said to be in the 

w -limit set ( -limit set) of x  if  there exists a sequence { }
i

t   such that ( , )t x p   as 
i

t    

(
i

t  ). 

Definition 1. An equilibrium point x̂  of the nonlinear dynamical system (1) is hyperbolic if the 

corresponding Jacobian matrix ˆ( )Df x  has no eigenvalues with zero real part. Otherwise, it is a non-

hyperbolic equilibrium point. Furthermore, a hyperbolic equilibrium point is of type- k  if k  eigenvalues 

of the Jacobian matrix ˆ( )Df x  have positive real part and n k  have negative real part. Specially, if ˆ( )Df x  

has exactly one eigenvalue with a positive real part, we call it a type-one equilibrium point. 

Type one equilibrium points play an important role in the characterization of  stability boundary and 

quasi-stability boundary. From the above definition, we also see that if all of the eigenvalues of ˆ( )Df x  

have negative real part, x̂  is called a stable equilibrium point. Furthermore, we say that x̂  is a source 

point if x̂  is of type- .n  i.e. .k n  Therefore, we  assume that x̂  is a hyperbolic equilibrium point and 
nU   is a neighborhood of x̂  in most of the results of this paper. We now define the local stable and 

unstable manifolds as follows  

 
ˆ ˆ( ) : { : ( , )  as },

ˆ ˆ( ) : { : ( , )  as }.

s

loc

u

loc

W x x U t x x t

W x x U t x x t





   

   
 

Note that ˆ( )s

loc
W x  and ˆ( )u

loc
W x  are positive and  negative invariant sets, respectively. Figure 1 

illustrates these local manifolds. 
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Figure 1. The local stable and unstable manifolds of an equilibrium point. 

Remark 2 ([2]). 

i) The equilibrium point x̂  is the w -limit set of every point in ˆ( )sW x  and it is the  -limit set of 

every point in ˆ( ).uW x  For a hyperbolic equilibrium point, the dimension  of ˆ( )sW x  equals to the number 

of eigenvalues of ˆ( )Df x  with negative real part. The sum of the dimension of ˆ( )sW x  and that of ˆ( )uW x  

equals to the dimension of the state space; 

ii) The existence and uniqueness of the solutions ensures that ˆ( )sW x  and ˆ( )uW x  can intersect with 

each other but not intersect themselves; 

iii) Stable and unstable manifolds are invariant sets. Every trajectory in the stable manifold ˆ( )sW x  

converges to x̂  as time goes to positive infinity, while every trajectory in the unstable manifold ˆ( )uW x  

converges to x̂  as time goes to negative infinity.  

In the rest of this section, we will deal with transversality and the stability region of a nonlinear 

dynamical systems. The idea of transversality is fundamental in the study of dynamical systems, and it 

was introduced by Palis, 1969; Palis and de Melo, 1981 and Smale, 1967, [2]. Before starting, we recall 

some relevant concepts. Let M  be a smooth manifold with or without boundary. An immersed 

submanifold of M  is a subset A M  endowed with a topology (not necessarily the subspace topology) 

with respect to which A  is a topological manifold (without boundary), and a smooth structure with 

respect to which the inclusion map A M  is a smooth immersion, [6]. For any two injectively 

immersed manifolds A  and B  in ,M  we say that they satisfy the transversality condition if  one of the 

following two assertions hold true. 

i) At every point of intersection ,x A B   the tangent spaces of A  and B  span the tangent space 

of M  at ,x  that is; 

 ( ) ( ) ( ), .
x x x

T A T B T M x A B     

ii) They do not intersect at all. 

One of the most important characterizations of a hyperbolic point x̂  is that its stable and unstable 

manifolds intersect transversely at ˆ.x  This transverse intersection is important because it persists under 

perturbation of the vector field.  

For an asymptotically stable equilibrium point ˆ,x  there exists 0   such that for any 
0

x  satisfies 

0
ˆx x  ‖ ‖  then 

0
ˆ( , )t x x   as .t   If   is arbitrary large then x̂  is called a global stable 

equilibrium point. However, many stable equilibrium points x̂  are not globally stable. From now on, 
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we denote the stable equilibrium point by .
s

x  The definition of the stability region of a stable equilibrium 

point 
s

x  is considered as follows.  

Definition 2. The stability region of a stable equilibrium point 
s

x  for the nonlinear autonomous 

dynamical system  (1), denoted ( ),
s

A x  is defined as follows 

 ( ) : { : lim ( , ) }.n

s st
A x x t x x


    (2) 

Clearly, the stability region can be expressed as ( ) { : ( ) },n

s s
A x x w x x    where ( )w x  is the w

-limit set of .x  The stability  boundary of 
s

x  is the boundary of the stability region ( )
s

A x  and is denoted 

by ( ).
s

A x  In fact, the stability region of a stable equilibrium point is the stable manifold. According to 

the topological properties of the stable manifold of 
s

x  in [4] and [7], the stability region ( )
s

A x  is an 

open, invariant set that is diffeomorphic to .n  In other words, every trajectory starting in stability 

region lies entirely in it. Since the boundary of an invariant set is also invariant and the boundary of an 

open set is a closed set, we can conclude that the stability boundary ( )
s

A x  is a closed invariant set of 

dimension less than .n  If ( )
s

A x  is not dense in n  then ( )
s

A x  is of dimension 1.n  Their 

characterizations will be discussed in the next section.  

3. Characterizations of Stability Boundary 

We now derive several dynamical and topological properties of a stability boundary. We first begin 

from a local characterization then extend to a global characterization of stability boundary. We know 

that a critical element of the vector field f  is either a closed orbit (limit cycle) or an equilibrium point, 

and the characterizations of a critical element on the stability boundary closely resemble the 

characterizations of a equilibrium point on the stability boundary. However, we will focus on the results 

about equilibrium points on the stability boundary, which are further sharpened by imposing additional 

conditions on the nonlinear dynamical systems. Hence, throughout this section we always assume that 

x̂  be a hyperbolic equilibrium point of (1) and U  is a neighborhood of x̂  in ˆ( ),sW x  where boundary 

U is transversal to the vector field .f  We call U a fundamental domain of ˆ( ).sW x  Moreover, in order 

not to be trivial, we always consider 
s

x as a local stable equilibrium point.  

A complete characterization for an equilibrium point lying on the stability boundary of the general 

nonlinear dynamical system (1) is given in next theorem.  

Theorem 4 ([8]). Consider a general nonlinear continuous dynamical system (1). Let ( )
s

A x be the 

stability region of an asymptotically stable equilibrium point .
s

x  Let ˆ
s

x x  be a hyperbolic equilibrium 

point. Then 

i) If ˆ ˆ{ ( ) } ( )u

s
W x x A x    then ˆ ( ).

s
x A x  Conversely, if ( )

s
x A x then 

ˆ ˆ{ ( ) } ( ) .u

s
W x x A x    

ii) Suppose that x̂  is not a source (i.e. ˆ ˆ{ ( ) }sW x x  ) then ˆ ( )
s

x A x if and only if 

ˆ ˆ{ ( ) } ( ) .s

s
W x x A x    

iii) Suppose that ˆ ,x A  then x̂  is a source if and only if ˆ ˆ{ ( ) } ( ) .s

s
W x x A x    

Proof. 

i) If ˆ( ) ( )u

s
y W x A x   then ˆlim ( , ) .

t
t y x


   But since ( )

s
A x  is invariant, we have  

 ( , ) ( ) for all .
s

t y A x t     
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This follows that  

 ˆ ( ).
s

x A x  

However, x̂  can not be in the stability region, we imply that ˆ ( ).
s

x A x  

In order to prove the rest of this part, we assume that ˆ ( ).
s

x A x  Let ˆ ˆ{ ( ) }uG W x x  be a 

fundamental domain of ˆ( ),uW x  i.e., G  is a compact set such that  

 ˆ ˆ( , ) { ( ) }.u

t

t G W x x


   

Let G

be the  -neighborhood of G  in .n  The set G


 is a fundamental neighborhood associated 

with ˆ( ).uW x  It follows that for 0,t   ( , )t G


  contains a set of the form ˆ{ ( )},sU W x  where U  is a 

neighborhood of ˆ.x  Therefore, we have ( ) .
s

U A x   from ˆ ( ).
s

x A x  Indeed, from 

ˆ( ) ( ) ,s

s
W x A x   we have  

 ˆ{ ( )} ( ) ,s

s
U W x A x    

or  

 
0

( , ) ( ) ,
s

t

t G A x





   

since ˆ{ ( )} ( , ), 0.sU W x t G t


    It also means that ( , ) ( )
s

t G A x


    for some 0.t   On the 

other hand, stability region is  invariant under the flow so we obtain  

 ( ) .
s

G A x

   

Since G  is a compact set and   is arbitrary, it follows that G  contain at least one element of ( ).
s

A x  

Hence, ˆ ˆ{ ( ) } ( )u

s
W x x A x    and part (a) is proved. 

ii) The proof of this part is similar to part a). From the assumption that x̂  is not a source, we have 

ˆ ˆ{ ( ) } .sW x x   Firstly, we suppose that ˆ ˆ{ ( ) } ( ) .s

s
W x x A x    Then there exists 

ˆ ˆ{ ( ) } ( )s

s
y W x x A x     such that  

 ˆlim ( , ) .
t

t y x


  

Since ( )
s

A x  is also an invariant set, we get  

 ( , ) ( ) for all .
s

t y A x t    

Hence, x̂  is on the stability region. 

Conversely, we assume that ˆ ( ).
s

x A x  Let ˆ ˆ{ ( ) }sH W x x   be a fundamental domain of ˆ( ).sW x  

It is preserved since ˆ ˆ{ ( ) } .sW x x   It means that H  is a compact set such that  

 ˆ ˆ( , ) { ( ) }.s

t

t H W x x


   

Let H

 be the  -neighborhood of H  in .n  The set H


 is a fundamental neighborhood associated 

with ˆ( ).sW x  It follows that for 0,t   ( , )t H


  contains a set of the form ˆ{ ( )},uU W x  where U  is a 

neighborhood of ˆ.x  Therefore, we have ( )
s

U A x   from ˆ ( ).
s

x A x  Indeed, from 

ˆ( ) ( ) ,u

s
W x A x   we have  

 
0

( , ) ( ) ,
s

t

t H A x





   

Since ˆ{ ( )} ( , ),  0.uU W x t H t


    It also means that ( , ) ( )
s

t H A x


    for some 0.t   On 

the other hand, stability boundary is also invariant under the flow so we imply  

 ( ) .
s

H A x

   
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Since H  is a compact set and   is arbitrary, this follows that H contain at least one point of ( ).
s

A x  

Hence, ˆ ˆ{ ( ) } ( )s

s
W x x A x    and part (b) is proved. 

iii) We now suppose that x̂  is a source. This follows that ˆ ˆ{ ( ) } .sW x x   Obviously,  

 ˆ ˆ{ ( ) } ( ) ( ) .s

s s
W x x A x A x     

Conversely, if ˆ ˆ{ ( ) } ( )s

s
W x x A x    we suppose contradiction that x̂  is not a source. Since 

ˆ ( ),
s

x A x  according to part (b) we obtain ˆ ˆ{ ( ) } ( ) ,s

s
W x x A x    contradiction. Thus, x̂  must be 

source.  

 
Up to now, we have assumed only that all the equilibrium points are hyperbolic. This is a generic 

property for nonlinear dynamical systems. Besides, another  property is also generic: the intersection of 

the stable and unstable manifolds of the equilibrium points  satisfy the transversality condition, [2], [7] 

and [8]. In the below of this section, we will present the theorem which characterizes an equilibrium 

point which is on the stability boundary in term of both its stable and unstable manifolds. Furthermore, 

this theorem is used to check numerical computation whether or not an equilibrium point belongs a 

stability boundary. Before starting, we make the following assumptions concerning the vector field. 

(A1) All the equilibrium points on the stability boundary are hyperbolic. 

(A2) The stable and unstable manifolds of equilibrium points on the stability boundary satisfy the 

transverality condition. 

 (A3) Every trajectory on the stability boundary approaches one of the equilibrium points as .t   

The following lemmas are used in the proof of the next theorem. 

Lemma 5 ([2]). Let 
i

x  and 
j

x  be hyperbolic critical elements of the nonlinear dynamical system 

(1). Assume that the intersection of the stable and unstable manifolds of ,  
i j

x x  satisfies the transversality 

condition and { ( ) } { ( ) } .u s

i i j j
W x x W x x     Then dim ( ) dim ( ),u u

i j
W x W x  where the equality 

sign is true only when
i

x   is an equilibrium point and 
j

x  is a closed orbit. 

Lemma 6 ([2]). Let ̂  be a hyperbolic critical element of the nonlinear dynamical system (1) with 

ˆdim ( ) .uW m   If ̂  is an equilibrium point, let D  be an m -disk in ˆ( ).uW   If ̂  is a closed orbit, let 

D  be an ( 1)m  -disk in ˆ( ) ,uW S   where S  is a cross section at ˆ.p   Let N  be an m -disk (if ̂  is 

an equilibrium point) or ( 1)m  -disk (if ̂  is a closed orbit) having a point of transversal intersection 

with ˆ( ).sW   Then D  is contained in the closure of the set
0

( , ).
t

t N


 

Theorem 7 ([8]). Let ( )
s

A x  be the stability region of an asymptotically stable equilibrium point 
s

x  

of the nonlinear dynamical system (1) and x̂  be an equilibrium point. If assumptions (A1)-(A3) are 

satisfied, then 

i) ˆ ( )
s

x A x  if and only if ˆ( ) ( ) ,u

s
W x A x   

ii) ˆ ( )
s

x A x  if and only if ˆ( ) ( ).s

s
W x A x  

Proof. 

i) Let 
u

n  denote the type of equilibrium point x  i.e the dimension of its unstable manifold. From 

assumption (A1), it follows that ( ) 1
u

n x   for all equilibrium points ( ).
s

x A x  Let x̂  be an equilibrium 

point on ( )
s

A x  and ˆ( ) .
u

n x h  By Theorem 4, there exists a point ˆ ˆ{ ( ) } ( ).u

s
y W x x A x    If ( ),

s
y A x  

the proof is completed. Therefore, we only need to prove for case ( ).
s

y A x  From assumption (A3), 
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there exists an equilibrium point ˆ ( )
s

z A x  such that ˆ ˆ{ ( ) }.sy W z z   Let ˆ( ) .
u

n z m  Then v  and 

ˆ( )sW z  meet transversely at .y  By Lemma 5, we have .h m  

Now, let us consider two cases 

a) If 1h   then m  must be zero (i.e. ẑ  must be a stable equilibrium point), which is a contradiction 

to the fact that no stable equilibrium point exists on the stability boundary. Consequently, 

ˆ( ) ( ) .u

s
W x A x   

b) If 1,h   without loss of generally, we assume inductively that ˆ( ) ( ) .u

s
W z A x   Since ˆ( )uW x  

and ˆ( )sW z  intersect transversely at ,y  ˆ( )uW x  contains a m -disk N  centered at ,y  transverse to 

ˆ( ).sW z  Using Lemma 6 with ˆ ˆ,z   we have ( , ) ( )
s

t N A x    for some 0.t   Since ( )
s

A x  is 

invariant, it follows that ( )
s

N A x   This means that ˆ( ) ( ) .u

s
W x A x   

From the above arguments and Theorem 4, the first part of Theorem 7 is followed. 

ii) If ˆ( ) ( ),s

s
W x A x  we infer that ˆ ( )

s
x A x  because x̂  belongs to ˆ( ).sW x  We now suppose that 

ˆ ( ).
s

x A x  Let ˆ( ) ( )u

s
D W x A x   be an m -disk where ˆdim ( ).um W x  The set D  is well-define and 

non-empty because ˆ( ) ( ) .u

s
W x A x   Let ˆ( ).sy W x  For any 0,   let N  be an m -disk transversal 

to ˆ( )sW x  at ,y  contained in the  -neighborhood of .y  By using Lemma 6 with ˆ ˆ,x   there exists  a 

0t   such that ( , )t N  is so close to D  and ( , )t N  contains a point ( ).
s

p A x  Then ( , ) .t N N    As 

in the first part, ( )
s

N A x   because ( )
s

A x  is invariant. Let 0,   ( )
s

y A x  is inferred. Thus, 

ˆ( ) ( ).s

s
W x A x  Because ˆ( )sW x  is disjoint from ,A  it implies that ˆ( ) ( ).s

s
W x A x

 
 

Note that the transversality condition is essential in Theorem 7. Now, we will give a counterexample 

which is considered in [2] and [8]. 

Example 1. In Figure 2, the intersection of the unstable manifold of 
1

x  and the stable manifold of 

2
x  is a part of the manifold whose tangent space has a dimension of one. Hence, the transversality 

condition does not hold. By Theorem 4, the unstable manifold of 
s

x intersects with the stability boundary 

of .
s

x  Of course, it is not the entire stability region. Nevertheless, a part of the stable manifold of 
1

x is 

not in the stability region, which contradicts to Theorem 7. 

 

Figure 2. The intersection between the unstable manifold of 1
x

 and the stable manifold  

of 2
x

 does not satisfy the transversality condition. 
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In the rest of this section, we always suppose that the stability boundary is non empty. We now 

extend the characterizations of the stability boundary for  a fairly large class of the nonlinear dynamical 

system (1) in the main theorem as follows.   

Theorem 8 ([8]). For a nonlinear autonomous dynamical system (1) which satisfies assumptions 

(A1)-(A3), let ,  1,2,
i

x i   be the equilibrium points on the stability boundary ( )
s

A x  of the 

asymptotically stable point .
s

x   Then 

      i) ( )
i s

x A x  if and only if ( ) ( ) ,u

i s
W x A x   

ii) ( ) ( ),  1,2,s

s i
i

A x W x i    

Proof. 

i) This is the first part in Theorem 7. 

ii) Assume that ,  1,2,
i

x i   be the equilibrium points on the stability boundary ( ).
s

A x  By 

Theorem 7, ( ) ( )s

i s
W x A x  for all .i  Consequently,  

 ( ) ( ).s

i s
i

W x A x   

Alternatively, every trajectory on the stability boundary approaches one of the equilibrium points as 

t   so ( ) ( ).s

s i
A x W x   Hence, combining the above arguments, the proof is finished.  

 
Using the above theorem, we can determine the stability boundary of an asymptotically stable 

equilibrium point of the nonlinear autonomous dynamical system (1) by an algorithm in [9]. It is 

convenient for low dimensional systems by finding the stable and unstable manifolds  of an equilibrium 

point. The next theorem will discuss about the number of equilibrium points on the stability boundary. 

We say that manifold S  is a smooth manifold if S  is a topological manifold and there exists a smooth 

structure on ,S  [6]. By using smooth structure on ,n  we define that nS   is a smooth manifold of 

dimension s  if for each point ,p S  there exists a neighborhood U S  of p  and a homeomorphism 

:h U V  where V  is an open subset in s  such that the inverse homeomorphism 1 :h V U   is an 

immersion of class 1.C  

Now, we indicate some concerned concepts in the theory of manifold. It is convenient to show the 

following theorem. Let M  and N  be oriented manifolds without boundary and :f M N  be a smooth 

map. Furthermore, M  is compact and N  is connected. Let x M  be a regular point of ,f  so that 

( )
:

x x f x
df T M T N  is a linear isomorphism between oriented vector spaces. Define the sign of ,df  to 

be 1  or 1  according as ,df  preserves or reverses orientation. For any regular value y N  define 
1deg( ; ) sign , ( ).

x
f y df x f y   Then the degree of f  is an integer deg( ; )f y  which does not depend 

on the choice of the regular value .y N  Next, we consider  an open set mU   and a smooth vector 

field : mv U  with an isolated zero at the point .z U  The function ( ) ( )/ ( )v x v x v x ‖ ‖  maps a small 

sphere centered at z  into the unit sphere. The degree of this mapping is called the index of v  at the zero 

,z  [10]. According [7],  the Euler characteristic of M  is the sum of indices of zeros of a vector field on 

.M  

Theorem 9 ([8]). Let ( )
s

A x  be the stability region of a stable equilibrium point
s

x of nonlinear 

dynamical system (1). If the stability boundary ( )
s

A x  of a stable equilibrium point is a smooth compact 

manifold and all the equilibrium points on ( )
s

A x  are hyperbolic then the number of equilibrium points 

on ( )
s

A x  is even. 
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Proof. By the Poincaré - Hopf theorem [10], the sum of the indices of equilibrium points that lie on 

the smooth, compact stability boundary ( )
s

A x  is even. Therefore, the Euler characteristic of the 

boundary of a compact manifold is even, [7]. Since the index of f  at a hyperbolic equilibrium point is 

either 1  or 1,  [10] and all the equilibrium points on ( )
s

A x  are hyperbolic, we can conclude that the 

number of equilibrium points on ( )
s

A x  is even. 

 
Remark 10. If there are at least two stable equilibrium points, then the stability boundary are non-

empty. Moreover, the dimension of each stability boundary is 1n  in this case. 

Note that conditions (A1) is a generic property of 1C  dynamical systems. Assumptions (A2) is also 

a generic property. Alternatively, they are not easy to check. Assumption (A3) is not a generic property 

and for higher dimensional systems no general methods for verifying this assumption are known until 

now, according to [2] and [5]. 

By expanding the results on the structure of the equilibrium point on the stability boundary, we have 

below theorem. It presents a necessary condition for the existence of certain types of equilibrium points 

on a bounded stability boundary. 

Theorem 11 ([8]). Assume that the nonlinear dynamical system (1) containing two or more stable 

equilibrium points. If the system satisfies assumptions (A1)-(A3) then the stability boundary ( )
s

A x  of 

the stable equilibrium point
s

x  must contain at least one type-one equilibrium point. Furthermore, if the 

stability region ( )
s

A x  is bounded then ( )
s

A x   must contain at least one type-one equilibrium point and 

one source. 

Proof. Since there are at least two stable equilibrium points, it implies that the dimension of ( )
s

A x  

is 1.n  By Theorem 8, ( ) ( ),s

s j
A x W x   where ( ),

j s
x A x  this follows that at least one of the 

j
x  

must be a type-one equilibrium point. Hence, the dimension of ( )s

j
W x  is 1.n  Suppose that 

1
x  is a 

type-one equilibrium point on ( ).
s

A x  Repeating the same argument, if 
1

( )A x  is non-empty then the 

dimension of 
1

( )sW x  is less than 2n  because the dimension of 
1

( )sW x  is less than or equal to 1n  

and 
1

x  is a type-one equilibrium point. Once again, by using Theorem 8, we have 
1

( ) ( ),s

j
A x W x   

where 
1

( ).s

j
x W x  In order for ( )s

j
W x  to have dimension ,n k  at least one of 

j
x  must be a type-

k  equilibrium point.  Since the stability region is bounded as assumption, we will obtain a type- n  

equilibrium point by repeating this scheme. Hence, there exists a source on ( ).
s

A x   

 

Proposition 12. For the nonlinear autonomous dynamical system (1) which satisfies assumptions 

(A1)-(A3), let 
s

x  be a stable equilibrium point of (1). Furthermore, assume that  the stability region 

( )
s

A x  is not dense in .n  Then there is at least one type-one equilibrium point on the stability boundary 

( ).
s

A x  

Proof. The dimension of the stability boundary ( )
s

A x  is 1n  derived from the stability region 

( )
s

A x  is not dense in .n  Since the dimension of the stability boundary of ( )
s

A x  is 1n  and 

( ) ( ),s

s i
A x W x   where 

i
x  is the equilibrium points on ( ),

s
A x  then there exists 

0
( )

i s
x A x  such 

that 
0

dim ( ) 1.s

i
W x n   Hence, 

0i
x  is a type-one equilibrium point on the stability boundary ( ).

s
A x

 
 
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Remark 13. Assume that 
s

x  is a stable equilibrium point of the nonlinear autonomous dynamical 

system which satisfies assumptions (A1)-(A3). 

i) If all other equilibrium points are type- n  hyperbolic points (sources), then the stability boundary 

( )
s

A x  of 
s

x  has zero measure; 

ii) If system (1) is a planar system and the stability region ( )
s

A x  is bounded then there always exists 

a source point between two type-one equilibrium points which are consecutive on the stability boundary. 

Furthermore, the number of source point is equal to the number of type-one equilibrium point on the 

stability boundary in this case. 

Corollary 14 ([2]). Consider the nonlinear autonomous dynamical system (1) with a stable 

equilibrium point 
s

x  whose stability boundary is nonempty. If assumptions (A1)-(A3) are satisfied and 

if ( )
s

A x  contains no source then the stability region ( )
s

A x  is unbounded. 

4. Example 

In this section, we will present two examples for illustrating the above results. The first example is 

considered in [2, 8, 11, 12] while the second is introduced [2, 3, 8, 9, 13, 14]. Throughout these examples, 

we always assume the transversality condition (A2) holds. 

Example 2. Consider a planar system as the following  

 
1 1 1 2

2 2 1 2

2

.

x x x x

x x x x

  

  
 (3) 

By solving 
1 2

( , ) ,f x x  0  where 
1 2 1 1 2 2 1 2

( , ) ( 2 , ) ,Tf x x x x x x x x     we obtain two equilibrium 

points: (0,0) and (1,2)  Moreover, we have the following Jacobian matrix  

 
2 1

2 1

2
.

1

x x
J

x x

  
  

  
 

Therefore, (0,0) is a stable equilibrium point and (1,2) is a type-one equilibrium point. It means that 

assumption (A1) holds. 

Next, we check assumption (A3). Consider the function  

 2 2

1 2 1 1 2 2
( , ) 2 .V x x x x x x    

The derivative of 
1 2

( , )V x x  along the trajectory of system (3) is  

 
1 2 1 2

1 2

1 2 1 2
.   

( , )

2(       )(2   )

V V
V x x x x

x x

x x x x

 
 
 

   

 

Therefore, 
1 2

( , ) 0V x x   for 2

1 2
( , ) :Cx x B B     

where 2

1 2 1 2 1 2
: {( , ) : 2 0 and 0}.B x x x x x x       Let B  be as follows 

1 2 3
,:B B B B    where 

  1 1 2 1 2
: ,  :   1, ,  2B x x x x    

2 1 2 1 2
: {( , ) : 1, 2}B x x x x    and 

3 1 2 1 2
: {( , ) : 1, 2}.B x x x x    Using the 

monotony of functions 
1
( )x t  and 

2
( ),x t  we see that both 

1
| ( ) |

i
x t  and 

2
| ( ) |

i
x t  are strictly decreasing in 

1
.B  Hence, 

1
B  is inside the stability region. Consequently, (0,0)A  can not belong to 

1
B  Similarly, we 

can see that 
1 2
, 0x x   in 

3
.B  It follows that every trajectory in 

3
B  is unbounded. By checking the vector 
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field in 
2
,B  we see that every trajectory in 

2
B  will either enter into 

1
B  or 

3
B  or converge to (1,2).  Thus, 

assumption (A3) holds. 

In Figure 3, we can see that the stability boundary of the stable equilibrium point (0,0)  is the bold 

red line. The stability region of the stable equilibrium point (0,0)  is the one to the left and below the 

bold red line. On the other hand, the bold red line and the bold blue line are the stable and unstable 

manifolds of the equilibrium point of type-one (1,2),  respectively. It is easy to see that there is a part of 

unstable manifold of (1,2)  that lies in the stability region of (0,0)  and the stable manifold of (1,2)  is 

the stability boundary of (0,0).  This is consistent with the conclusions of Theorem 7 and Theorem 8 

since system (3) satisfies assumptions (A1)-(A3). Furthermore, system (3) shows that  the conclusions 

in Theorem 11 and Proposition 12 are completely consistent. 

 

Figure 3. The phase portrait and the stability boundary of the system (3). 

In the following, we will consider an example whose the stability region is bounded. Furthermore, 

we assume that assumption (A3) holds. 

Example 3. Consider an example as the follows  

 
1 1 1 2

2 2 2 1

sin 0.5sin( ) 0.01

0.5sin 0.5sin( ) 0.05.

x x x x

x x x x

    

    
 (4) 

Although there are many stable equilibrium points, we only focus on the stable equilibrium point 

closest to the origin. Solving 
1 2

( , ) ,f x x  0  we obtain (0.02801,0.06403)  as a stable equilibrium point. 

Besides, we also obtain other equilibrium points, all of which are hyperbolic equilibrium points and are 

on the stability boundary of (0.02801,0.06403).  Among them, there are six type-one hyperbolic points 

and six sources as shown in Table 1. 

Table 1. All unstable equilibrium points on the stability boundary 

Type 
1

x  
2

x  Type 
1

x  
2

x  

1 0.0467 3.1149 2 2.6081 4.2548 

1 0.0467 -3.1683 2 3.5972 1.5753 

1 3.0407 3.2232 2 -2.6860 1.5753 

1 3.2458 0.3341 2 2.6081 -2.0284 

1 -3.0374 0.3341 2 -3.6751 -2.0284 

1 -3.2425 -3.0600 2 -2.6860 -4.7097 
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Figure 4. The stability boundary of the stable equilibrium point 0.02801, . ( 0.06 03)4  

In Figure 4, the stability boundary is the bold red line and all equilibrium points in Table 1 are 

defined on the stability region. Furthermore, the stability boundary is the union of the stable manifolds 

of equilibrium point of type one. Figure 4 also shows that conclusions in Theorem 8, Proposition 12, 

Remark 13 and Corollary 14 are consistent since the stability boundary is bounded with six  type-one 

equilibrium points and six source points. 

5. Conclusion 

In this work, we indicated several main characteristics of the stability boundary of a stable 

equilibrium point which are based on hyperbolic equilibrium points for a (autonomous) nonlinear 

dynamical system. Besides, we have also presented remarkable properties for predicting the stability 

boundary and the stability region of a stable equilibrium point. Our results can be extended to the critical 

points instead of hyperbolic equilibrium points and be applied for finding the stability region of 

nonlinear dynamical systems.   
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