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Abstract: The single-orbital Anderson impurity model using graphene as the host material is 

considered for the case where the impurity is placed on top of a carbon atom of the graphene lattice. 

This is an excellent setup for the  pseudogap impurity model, where there exists a quantum 

phase transition from the free local moment phase to the Kondo screening phase. In this work, the 

scaling behavior of the spin-spin correlator at quantum critical points is numerically investigated. It 

shows signatures of the logarithmic correction to scaling to the lowest temperature in use. 

Furthermore, the result suggests that the scaling dimension might vanish as , thus the widely-

accepted scaling behavior for  might be destroyed at , signifying that  is the upper 

critical dimension for the class of pseudogap impurity problem. 
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1. Introduction 

The field of quantum phase transition and quantum critical points [1] is an active topic in modern 

condensed matter physics. It possesses a variety of challenging problems, especially in strongly 
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correlated systems. The reason is that it requires extreme conditions, in particular , in order to 

observe the transition, and the quantum fluctuations, which control the phase transition, are not easily 

treated when due to correlated effects. The pioneering works of Hertz [2] and Millis [3] are the 

foundation of the conventional theory for quantum critical points. It is based on the Landau-Ginzburg 

paradigm for phase transitions, where the order parameter strongly fluctuates at long wavelength and 

dominates the physics at criticality. Furthermore, the system exhibits only Fermi liquid behavior in all 

phases. The Hertz-Millis theory has successfully explained the magnetic phase transitions in itinerant 

fermion systems and is considered as the foundation for quantum critical phenomena. 

However, there are classes of materials, including heavy fermion metals and unconventional 

superconductors [4-6], which exhibit non Fermi liquid behaviors at criticality and cannot be described 

using the conventional theory. Going beyond the Landau-Ginzburg paradigm, Senthil et al [7] have 

proposed the concept “deconfined quantum critical points” where the quasiparticles representing the 

order parameter fluctuations exhibit fractional quantum numbers, thus being “deconfined” at criticality. 

Another approach for heavy fermion metals from Si et al [8] and Paschen et al [9] suggest that the phase 

transition between the antiferromagnetic and the paramagnetic phases, which is due to the competition 

between the Kondo scale and the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction in these 

systems [10], can be explained in terms of local quantum phase transitions at each site of the lattice. In 

these heavy fermion systems, the valence  electrons are rather localized and form a large local moment 

at each site, in resemblance to a Kondo impurity spin, which can be destroyed by tuning internal 

parameters, resulting in a local quantum critical point. This is the Kondo destruction phenomenon [8, 

11, 12], which can be a leading factor to control the global quantum phase transition in heavy fermion 

systems. 

Normally, there is no such quantum critical point in the standard Kondo impurity model [13]. 

However, the environments around each site in many heavy fermion systems resemble to a host material 

where the density of states (DOS) vanishes at the Fermi level following a power law of frequency 

. This problem can be simplified and described by a pseudogap Kondo model or (more 

generally) Anderson impurity model, which has been investigated intensively since the 1990s [14, 15, 

16]. In this model, the Kondo screening effect does not always exist even at the symmetric case (one 

electron in average in the impurity). Depending on , the phase transition from the free local moment 

phase to the Kondo screening phase can be observed by changing the Kondo coupling ( ) or by 

further valence mixing in addition to large Kondo coupling ( ) [16]. Therefore, to understand 

the physics of heavy fermion systems, one can in turns study the local quantum critical points in the 

corresponding pseudogap model, which thus leads to the resurgence of the research in pseudogap Kondo 

model in the 2010s [11, 12, 17-19]. 

Motivated by these studies, in this work, we focus on a case of the pseudogap Anderson model 

where the DOS of the host material is linear around the Fermi level (  case). This is a special case. 

In the theoretical aspect,  is the “upper critical dimension” in analogy to the concept in critical 

field theory [20, 21]. At this critical dimension, logarithmic corrections exist in many kinds of scaling 

[22] and above it the problem can be treated by an appropriate perturbative approach. In the experimental 

aspect,  case can be used to depict -wave superconductors or heavy fermion systems, and recently 

the emergence of graphene [23] with its linear dispersion relation around the charge neutral point [24] 

makes this 2D material a prominent candidate for the realization of the  pseudogap model [17]. In 

this work, we focus on the physics of an impurity on graphene at the quantum critical point. In particular, 

we investigate the scaling functions of several physical observations by numerical simulations, 

calculating the corresponding critical exponents and comparing with previous studies for . We 

also discuss the effect of the logarithmic correction to scaling that affects our results. We expect to gain 
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more insights into the quantum critical phenomena that might occur in heavy fermion systems as well 

as in graphene lattice. 

2. Formalism 

We construct the Anderson impurity model [25] for the problem in which the impurity is a single-

orbital one with at most two electrons for both spin up and spin down. The host material is assumed to 

be a honeycomb lattice, with only nearest neighbor hopping, which is already enough to simulate the 

low-energy band structure of graphene. Impurity electrons are allowed to hybridize only between the 

impurity and the nearest lattice sites. In general, the position of the impurity plays an important role in 

this hybridization, thus affecting the local physics of the impurity. However, in this work, we assume 

that the impurity position is on top of a site in the honeycomb lattice, which results in the hybridization 

function only different from the DOS of the graphene lattice by a prefactor [26]. The use of graphene as 

the host material is two-fold. First, it allows for direct testing the possibility to realize the pseudogap 

Kondo physics on graphene. Second, our previous work [26] showed that for impurity on top of a carbon 

of the graphene lattice, the results are rather similar to those of the conventional pseudogap impurity 

model [16] at , thus the results presented in this work can be also applied to  case. 

 

 

 

Figure 1. (a) Illustration of a single-orbital impurity placed on top of a carbon atom of the graphene lattice. 

Electrons hop between the impurity and the site underneath with a hopping amplitude . On graphene, 

conduction electrons hop between nearest neighbor sites with an amplitude . Different colors of lattice sites 

mark different sublattices. (b) The density of states (DOS) of graphene lattice when there is only the nearest 

neighbor hopping . The dashed line exhibits the low-energy linear behavior of the DOS. 
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Following the above description, the Hamiltonian of this model is composed of three parts [26] 

which can be constructed in real space. The kinetic Hamiltonian of the host is written in the tight-binding 

form with only the nearest neighbor hopping : 

                                                                                                       (1) 

The local Hamiltonian of the impurity expresses the Anderson impurity model: 

                                                                                     (2) 

Lastly, the hybridization part is also constructed using the tight-binding approach where the nearest 

neighbor hybridization is  (assuming the impurity is placed on top of a site belonging to sublattice  

of graphene lattice): 

                                                                                                (3) 

In these expressions,  ( ) are the creation and annihilation operators of the graphene 

lattice (impurity), respectively.  is the impurity occupancy operator for spin : . The 

notation  are graphene sublattice indices ( ),  is the spin index. The impurity 

Hamiltonian has two parameters: the impurity energy level  and the Hubbard interaction strength . 

In this model, there are 5 parameters in total:  and  together with the temperature . However, 

 is normally used as basic energy scale and is kept fixed, and  is treated as the “system size” for 

finite-size scaling analysis [11, 12]. Thus there are only 3 parameters left (  and ) for varying. 

Throughout this work, we employ the hybridization expansion continuous-time Quantum Monte 

Carlo method (CT-HYB) [27-29] to treat the model, which is implemented in the TRIQS package [30, 

31]. CT-HYB is a nonzero-temperature method which can solve the model numerically exactly and has 

been proved to work rather well with pseudogap Anderson impurity models [11, 12, 26]. Compared 

with the numerical renormalization group (NRG) method [32], the disadvantages of the CT-HYB is that 

it is unable to go to low-temperature regime and is computationally demanding. However, the 

advantages is that the setup to solve the pseudogap model with CT-HYB is rather straightforward and 

measuring dynamical quantities are feasible, thus allowing for the scaling analysis, which is the main 

focus of our work. 

Normally, dynamical quantities can be represented by correlation functions. Given an operator of a 

physical observable , the corresponding correlation function in imaginary time is:  

                                                                                                     (4) 

where  is the time-order operator and  is the imaginary time. This function tells how  at the 

times  and 0 are related to each other. By analytical continuation to real frequency, it results in the 

spectral function of excitations related to the physical observable , implying how  is changed by 

external field that is coupled to . In this work, we focus on the scaling behavior of the spin-spin 

correlator in the impurity. The form of this correlator is: 

                                                                                                      (5) 

where  is the  component of the spin-1/2 operator ( ). The right expression in 

Formula (5) is averaged by Monte Carlo measurements. To avoid artificial spin polarization in the 

simulation, especially at low temperature, global update by swapping operators of spin up and down is 

enabled in the simulation. A typical simulation is carried out with at least  Monte Carlo 

measurements, where there are 200 Monte Carlo updates between two consecutive measurements, in 
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order to measure 30 -points of the correlator . Finer calculation is carried out with similar number 

of Monte Carlo measurements but with 500 -points of the correlator. 

The impurity spin susceptibility, which explicitly tells how the impurity local moment resists to the 

external magnetic field, is obtained from the spin-spin correlation function: 

                                                                                                            (6) 

The spin-spin correlation function and the spin susceptibility (as well as other quantities such as 

charge susceptibility and charge correlation function, etc.) are important when studying critical 

phenomena. At criticality, such correlation functions at different temperatures usually collapse when 

rescaling the imaginary time appropriately, while the susceptibilities can be written as power laws of 

temperature. In particular, for the spin operator, the spin-spin correlation function is scaled as [37, 42]: 

                                                                                             (7) 

while the spin susceptibility depends on the temperature as [18, 42]: 

                                                                                                                         (8) 

 and  are so-called critical exponents for this impurity problem. Furthermore,  plays a similar 

role as the dimension in the classical field theory, it is named the scaling dimension. In similarity to 

classical field theory, there are hyperscaling relations involving the dimension and critical exponents, in 

this case it is the relation between  and  [42]: 

                                                                                                                         (9) 

3. Results 

As described in Section 2, we consider the scenario of an impurity placed on top of a carbon atom 

in the graphene lattice (the  site) [see Fig. 1(a)]. At this position, the hybridization function [29, 3], 

which describes the dynamics of electrons hopping between the impurity and the host material, is only 

different from the DOS of graphene by a prefactor  [26]. As the DOS of graphene is linear in 

frequency around the Fermi level [24] [see Fig. 1(b)], the impurity is aware of this linear relation directly 

from the hybridization function, thus making this scenario a perfect one to study the  pseudogap 

Kondo physics. 

The first step for studying critical behavior of a system is to search for the critical points. For non-

zero temperature method such as CT-HYB, the method of choice is to consider the inverse temperature 

 as the “size” of the system and carry out Binder analysis [34] to extrapolate the critical point at 

 [11, 12]. We have applied this method successfully in our previous work to construct the full 

phase diagram of this model [26]. In this work, we extract the values of several critical points on the 

phase boundary from Ref. 26 for studying further the scaling behavior and critical exponents. 

At criticality, boundary conformal field theory states that finite-temperature correlation functions in 

imaginary time follow a scaling form [35, 36, 37] 

                                                                                                   (10) 

In the long time regime ( ), the scaling function becomes: 
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                                                                                   (11) 

where  is the scaling dimension,  is a constant prefactor and  is the imaginary time running 

from 0 to . If , the transformation from imaginary time to frequency in Eq. (11) does not 

converge. But more often, , Eq. (11) can be transformed into the Matsubara frequency form 

               (12) 

where  is the beta function and  with an integer  is the Matsubara frequency 

for bosons. The real frequency correlation function is obtained by analytic continuation (replacing  

by ), thus the result from Ref. 37 is reproduced 

                                           (13) 

which exhibits the  scaling form, as observed in the magnetic susceptibility of several heavy 

fermion systems [38, 39, 40, 41]. The experimental data for  scaling form provides crucial evidence 

for the non-Fermi liquid behavior in these materials, distinguishing it from the conventional Hertz-Millis 

theory. From the theoretical aspect, this scaling form is observed in pseudogap impurity models at  

[11, 12, 42], leading to the statement by Si and coworkers [8, 9, 43] that QCPs occur in heavy fermion 

metals are likely due to the local QCPs at each site of the lattice. 

 
Figure 2. (a) The dependence of the spin-spin correlator on  at six different QCPs plotted in the 

logarithmic scale. Each curve of  is composed of data of 7 different temperatures (using the same color) 

ranging from  to . The solid line for each case is the linear fit at small .  

(b) The critical exponent  in Eq. (10) plotted with respect to . (c) The prefactor  in Eq. (10) vs. . 



 D. T. Hung et al. / VNU Journal of Science: Mathematics – Physics, Vol. 38, No. 2 (2022) 43-54 49 

We investigate this scaling behavior for the  pseudogap impurity model by measuring the spin-

spin correlator . Figure 2(a) shows six different cases of  where 

 and . For each case, when plotting  vs. , 

data points of all temperatures in use (  runs from  to ) collapse into a single curve for 

nearly two decades, confirming the scaling form in Eq. (10). This results are rather well understood 

since  scaling is ubiquitous for systems with conformal invariance [35]. However, to 

ensure the  scaling, one needs to show that  exhibits the scaling form in Eq. (11) with 

. For that reason, we conduct linear fit for the curves in Fig. 2(a) for large  (the fitting range is 

), which exhibits the scaling form as in Eq. (11) at large . The prefactor 

 extracted from the linear fit as plotted in Fig. 2(c) is directly proportional to , which is 

understandable as larger correlation means the local moment is more rigid to rotate, thus the spin-spin 

correlation is increased with respect to . At small , the local moment gets even more 

localized, the  values are 50% larger than that at . 

However, the critical exponent  is unexpected. First, we notice that  for and 

 for , which are much smaller than those at small  (  at  [12] and 

0.16 at  [11]). Second, more importantly, the values of the critical exponent  for six different 

cases of  are not the same. The value of  at  is about 40% larger than that of  

which is beyond the error bar. It is a crucial issue because the scaling form is universal and thus  

should be the same even for different  or . One reason for this difference is that the temperature in 

use for CT-HYB simulations is not low enough, thus  still contains large curvature that causes 

fitting error for the critical exponent. But a more important reason is that the logarithmic correction to 

scaling at  [22] may appear in the scaling form in Eq. (11) for the whole range of temperature, 

which may affect the scaling form at different magnitude depending on how strong the correlation is. 

 

Figure 3. The spin-spin correlator vs.  at the critical point at ,  with a 

fine grid of 500 -points for each temperature. The inverse temperature is . 

We focus more on this logarithmic correction to scaling. The signature of this correction in Fig. 2(a) 

is the curvature from the straight line at small  (i.e. large ), which we believe does not 

disappear for nonzero temperatures. Normally, for , the scaling form in Eq. (11) approaches the 
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power-law behavior (or linear behavior in the logarithmic scale) rather quickly before the bending of 

the curve at  (or ) [11, 12, 37]. But the scaling form at  does not behave in this way, 

it tends to rise above the fitting line at low , showing opposite curvature as compared with  cases. 

To understand further, we plot in Figure 3 the calculation at a specific critical point (  and 

) using a much finer  grid with 500 points (10 times denser) while maintaining the number 

of Monte Carlo measurements unchanged or even larger than those producing Fig. 2. With such a finer 

grid, Fig. 3 shows the bending at  axis value , similar to those for  cases [11, 12, 37]. 

Moreover, this figure shows that there is curvature at smaller  ( ), and tends to exist 

even at lower temperatures. (In Fig. 3, the lowest-temperature curve ( ) still exhibits curvature 

at its lowest  value.) Thus we believe that Fig. 3 provides certain evidence that there is logarithmic 

correction to scaling which may ruin the scaling behavior. 

Consequently, it poses a problem that the scaling dimension  may not be calculated correctly, and 

furthermore, the scaling form in Eq. (11) may not exist in the case . It means that the susceptibility 

(and other dynamical quantities) may not have the  scaling form that is well observed for other 

cases at . We recall that the  case is considered as the “upper critical dimension” [20, 21]. 

At , logarithmic correction to scaling exists [22], below , the system exhibits nontrivial fixed 

points and well-defined scaling behavior (such as  scaling), while above , such scaling 

behavior is violated and the problem can be treated with perturbative corrections. Therefore, it is not 

surprising for odd characteristics in the scaling analysis of  case. As the logarithmic correction to 

scaling exists in the problem, one thus hardly achieves the scaling as in Eq. (11) regardless of how low 

the temperature is. 

 

Figure 4. The spin-spin correlator vs.  at criticality for several values of  at fixed . 

To gain further insights into this issue, we plot in Figure 4 the scaling form of  at different  

values. The reason is that the correlation strength depends much more on  than , one can then easily 

see how well the scaling form exhibits at finite temperatures when the correlation strength largely 

changes. Normally, the correlation strength increases significantly at small  (assuming other 

parameters are unchanged), which means the smaller , the lower temperature required to observe the 

power-law behavior of , which applies to  cases. Therefore, for , the scaling dimension 

 can be obtained more easily at larger , while for small , it requires lower temperature so that the 

system asymptotically approaches the universal scaling form. However, the case  behaves in an 

opposite way. Fig. 4 shows that at large , the linear fit is improved as  decreases. It is known that 
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when there is no hybridization between the impurity and the host material ( ), there is no such a 

scaling as in Eq. (10), thus . At a fixed temperature, as  decreases,  obtained from the linear 

fitting also decreases. If  is nonzero (as for  cases), for each , there is a corresponding 

temperature scale , below which the linear fit gives correct value of . This  decreases 

exponentially with respect to , thus at , the fitting at small  does not work well. However, at 

, the goodness of fit turns out to be better for small , which only happens if . Thus this 

unusual characteristic of the scaling at  suggests that the scaling dimension  should vanish. 

 

Figure 5. (a) The scaling dimension  as a function of  calculated in two ways: (1) extracted directly from the 

spin-spin correlator  (red circle), (2) derived using the hyperscaling relation . (b) Critical 

exponents for charge and spin local susceptibilities as a function of . 

We further check our statement by estimating the critical exponent  of the impurity spin 

susceptibility  as introduced in Sec. 2. At low temperatures, the impurity spin susceptibility has an 

asymptotic power law of temperature [42] 

                                                                                                                           (14) 

Because of the hyperscaling relation , we can derive  from  to check our results 

above. Figure 5 shows  and  as functions of .  values obtained in two ways coincide at 

, while at , there are clear differences between the two ways of calculations. Thus Fig. 5 is 

another evidence that  may reach its asymptotic behavior at higher  when  is smaller. 

Considering previous works in this topic, attempts to calculate the critical charge or spin exponent 

 have been conducted for a wide range of  [18, 42]. Their results show that  both approach unity 

as , specifically,  [18] and  [42] for . It is therefore consistent with 

our result that  tends to go towards unity (or  might vanish) at . Thus if  indeed vanishes, we 

can describe the evolution of the scaling behavior as  decreases to zero. At high temperature, by fitting 

the scaling curve,  is significantly nonzero ( ,  for , respectively). However, 

due to the logarithmic correction to scaling, there is always convex curvature in the scaling curve  

at any temperature. As  decreases, the fitting line becomes closer to the horizontal line, which means 

as , . It means the scaling behavior at  is destroyed, which is a crucial signature for 

the “upper critical dimension” at . 
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4. Conclusion 

In this work, we have conducted rigorous numerical calculations to investigate the scaling behavior 

of the spin-spin correlator  for the  pseudogap Anderson impurity model, of which the host 

material is a honeycomb lattice, simulating graphene. We calculated the spin-spin correlators at critical 

points, which are highly demanding numerical simulations with the CT-HYB method. We observed the 

scaling form  as predicted by the boundary conformal field theory. We considered 

this scaling function as a power law of  and estimated the exponent  of this power law, 

which is the scaling dimension of the model. We justified our estimation by showing that the 

hyperscaling relation for  and the critical exponent of the spin susceptibility is satisfied. We also 

investigated carefully the scaling behavior of the spin-spin correlator and showed that there might exist 

convex curvature in the scaling form at large  region even at low temperature, which is attributed to 

the logarithmic correction to scaling that exists specifically in the  case. Moreover, we observed 

that  goes to the asymptotic scaling form faster when the correlation strength is larger, in opposite 

way as in  cases, and based on this behavior concluded that the scaling dimension  vanishes for 

the  pseudogap impurity model. 

Our study contains several important findings. First, our scaling analysis shows certain convex 

curvature even at the lowest temperature, which is different from previous works, implying the 

logarithmic correction to scaling that occurs only in the  case. More importantly, our statement 

that , which may be unable to calculate at finite temperature, approaches 0 as . It means that at 

criticality, the impurity local moment behaves as if it were a completely free moment, without any 

hybridization with the host material. Vanishing  also signifies the fact that  is indeed an upper 

critical dimension. For , there is a well-defined scaling form of dynamical quantities. At , 

the scaling dimension vanishes, implying scaling behavior is destroyed at . 

We propose further direction in this research topic. A prospective future direction could be using 

the numerical renormalization group (NRG) method, which is capable of accessing extremely low-

temperature regime. Although there are difficulties in calculating dynamical quantities in NRG, one can 

instead calculate the critical exponent of the susceptibility and employ the hyperscaling relation to derive 

the scaling dimension , providing a potential approach to assess our statement in this work. From the 

experimental aspect, one can suggest that graphene could be an interesting material to examine the 

pseudogap model at critical dimension. If one can pin down the impurity on top of a carbon atom, 

measurements of frequency-dependent susceptibility or impurity spectral function may show interesting 

scaling behavior that only exists at critical dimension. 
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