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Abstract: In this work the results of the study on a generalization of the XY model with an 

additional q-fold nematic-like term through Monte Carlo simulations in two dimensions (2D) have 

been presented. While the conventional 2D XY model has only integer vortexes, the generalized 

2D XY model has both integer and non-integer 1/q vortexes, making the phase diagram of the 

generalized 2D XY model is much richer than that of the conventional 2D XY model. Here, we 

located the phase transition between the disordered phase (P), the quasi-long-range order phase 

(F), and the nematic phase (N) for the case of q = 3. We provided the numerical evidence to clarify 

the N−F phase transition of either the first-ordered or second-ordered phase transition. The results 

showed that the N−F phase transition is the second-ordered, not the first-order phase transition. 
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1. Introduction* 

The generalized 2D XY model is a generalization of the conventional 2D XY model by adding a 

nematic-like terms. While the standard 2D XY model exhibits only one Kosterlitz Thouless (KT) 

phase transition between the disordered and quasi-long-range ordered phases, the generalized 2D XY 

model has a rich phase diagram depending on the relative strength of magnetic and nematic 

interaction. Some cases of the generalized XY model have been proposed in the interdisciplinary 
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applications for modeling of DNA packing [1] and the structural phases of cyanide polymers [2]. The 

phase transition of the generalized 2D XY model has been studied by both the theoretical and 

simulated methods for a long time [3-8]. 

The Hamilton of the generalized 2D XY model is defined 

                                   
                                  (1) 

where 0 ≤ θi ≤ 2π and q is a positive integer (q = 2, 3, 4, ...), J = 1 is the exchange interaction 

constant. The contribution of magnetic interactions, cos(θi−θj) and q-fold nematic interactions, cos(qθi 

−qθj) in Hamiltonian is controlled by ∆ (0 ≤ ∆ ≤ 1). 

For ∆ = 1, one recovers the usual XY model with the KT phase transition. For ∆ = 0, this model is 

isomorphic to the XY model (by changing variables in the Hamilton, 3θi → θi) with 1/3 KT phase 

transition. For 0 < ∆ < 1, this model describes the competition between KT transition (pairs of integer 

spin vortices with period 2π) and 1/3 KT transition (pair of non-integer spin vortices with period 2π/3) 

causing three phases. There is a paramagnetic phase (P), a nematic phase (N) and a quasi-long-range 

ferromagnetic phase (F). While the P−N and P−F transition lines are the KT phase transition [4, 7–9], 

the N−F line remains controversial. Romano et al. claimed that it is a first-ordered phase transition 

through mean-field theory [3]. On the other hand, Canova et al. suggested a second-ordered phase 

transition via Monte Carlo simulation [4, 7]. However, their works have not considered yet direct 

evidence of a first-ordered phase transition, i.e. the temperature dependence of the energy at the phase 

transition temperature. 

In this work, to further clarify the N−F phase transition is either the first-ordered or the second-

ordered, we performed a Monte Carlo simulation for the generalized 2D XY model with q = 3. Several 

physical quantities, including a magnetic Binder parameter g1, a nematic Binder parameter g3, a 

temperature derivative of Binder parameter dg1/dT, a temperature derivative of nematic Binder 

parameter dg3/dT, an energy E and an energy distribution function P(E) are calculated. We will 

reconstruct the phase diagram of the 2D generalized 2D XY model with q = 3 via the Binder 

parameters and focus on analyzing the N−F phase transition line. 

2. Methods 

We use Monte Carlo simulation method for the generalized XY model with q = 3 on a square 

lattice of linear size L. The periodic boundary conditions have applied for both axis x and y. We use a 

combination of three algorithms, including the Metropolis algorithm, the Wolff algorithm [10] and the 

general over-relaxation algorithm [11] to take the system to thermal equilibrium. Equilibrium 

condition is checked by specific heat calculated through energy fluctuations and temperature 

difference of energy. Simulation parameters for the systems: The system sizes L = 16, 32, 64 and 128. 

The total number of Monte Carlo steps NMC = 6×106 (where the former half for taking the system to 

equilibrium, the last half for calculating the physical quantities). 

In this work, we calculate several physical quantities as follows. The total energy is defined [12] 
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The magnetic Binder parameter (g1) and the nematic Binder parameter (g3) are defined [12] 
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with n = 1, 3 and <> denotes thermal average, whereas m1 is the magnetic magnetization and m3 is 

the nematic magnetization) 
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The temperature derivative of magnetic Binder parameter (dg1/dT ) [13] and nematic Binder 

parameter (dg3/dT) are: 
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2. Simulation Results 

2.1. Phase Diagram 

The ∆−T phase diagram of the generalized XY model at q = 3 is presented in Figure 1. The phase 

diagram contains three phases, including the disordered phase (P), the quasi long-range-order phase 

(F) and the nematic phase (N). The green points are 1/3 KT transition temperature, calculated from the 

nematic Binder parameter (dg3/dT). The pink points are second-ordered transition temperature as 

measured by the magnetic Binder parameter dg1/dT. The blue points are KT transition temperature 

obtained from the magnetic Binder parameter dg1/dT. 

For ∆ = 0, this model is isomorphic to the XY model with phase transition temperatures T1/3KT ≈ 

0.893. For ∆ = 1.0, this model recovers the usual XY model with TKT ≈ 0.893. Here, for simplicity, the 

unit of temperature is considered in the scalar value without J/kB. Thus, to estimate the temperature in 

Kelvin scalar for materials, TKT can be calculated from TKT ≈ 0.893J/kB (kB = 1,38.10−23J.K−1). For 

example, AgCN has the exchange interaction coupling J = 3.71 kJ.mol−1 [1], the phase transition 

temperature TKT is found to be of 370 K. 

 

 

Figure 1. ∆ − T phase diagram of the generalized 2D XY model with q = 3. 

In the small ∆ region (0 < ∆ < 0.4), Figure 2 presents the temperature dependence of the magnetic 

Binder parameter (g3) and its temperature derivative (dg3/dT) for L=16, 32, 64, 128 at ∆ = 0.2. By 

increasing size L, the magnetic Binder parameter curves increase up to 1 in the low-temperature 

region, approaching 0 in the high temperature region, and intersect at a temperature (upper inset of 
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Figure 2a). This behaviour suggests that the phase transition from N phase to F phase is a second-

ordered. The temperature derivative of magnetic Binder parameter dg1/dT has a negative dip at nearly 

Tc. The dip temperature gradually shifts toward Tc by a power law function as L → ∞. Tc(L) is a linear 

function of 1/L (in the inset of Figure 2b), supporting this phase transition is second-ordered. 

 

 
 

Figure 2. Temperature dependence of the magnetic Binder parameter (a) and the temperature derivative  

of magnetic Binder parameter (b) in the case ∆ = 0.2. 

In order to estimate the phase transition temperature, we extrapolate the dip temperature Tc(L) of 

dg/dT to the thermodynamic limit based on finite-size scaling (FSS) theory. In the case ∆ = 0.2, we use 

the fitting function in Eq. (6) to obtain the phase transition temperature Tc ≈ 0.2932. This result  

is consistent with the previous group that calculated Tc from the susceptibility [7] and the correlation 

length [14]. 
1/

C CT ( L ) T ( ) b.L− =  +                      (6) 

Figure 3 presents the temperature dependence of the nematic Binder parameter g3 and the 

derivative of the nematic Binder parameter dg3/dT at ∆ = 0.2 for different lattice sizes. The g3 curves 

tend to merge in the low-temperature region, and decreases to 0 in the high temperature region (Figure 

3a). This behaviour of g3 suggests that the phase transition from P phase to N phase is 1/3KT [15]. 

dg3/dT exhibits a negative dip that deepens with increasing system sizes L. The dip temperature 

gradually shifts towards T1/3KT as a logarithmic function. 

For ∆ = 0.2, in contrast to calculation of Tc from the magnetic Binder parameter, it is not easy to 

calculate precisely the 1/3 KT phase transition temperatures from g3, so we use the temperature 

derivative of the nematic Binder parameter, dg3/dT , to determine the phase transition temperature. 

 

  

Figure 3. Temperature dependence of the nematic Binder parameter (a) and the temperature derivative of the 

nematic Binder parameter (b) in the case ∆ = 0.2. 
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We calculate the phase transition temperatures based on Eq. (7) [16], we plot the dip temperature 

T1/3KT(L) as a function of l−2 (where l = ln(bL)) and determine the fit parameter b = 1.672 and the phase 

transition temperatures T1/3KT ≈ 0.712 (inset of Figure 3(b)). This result is consistent with the previous 

results who calculated Tc from the susceptibility [7] and from the correlation length [14]. 
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In the large ∆ region (0.40 < ∆ ≤ 1.0), there is no nematic phase. In case ∆ = 0.7, the Binder 

parameter curves tend to merge in low-temperature region and decreases towards 0 in the high-

temperature region (Figure 4(b)). This behavior of g suggests P−F phase transition is a KT phase 

transition. In a similar way as ∆ = 0.2, the phase transition temperatures TKT ≈ 0.734 are calculated 

from the dg1/dT (inset of Figure 4b). 

 

 
 

Figure 4. Temperature dependence of the magnetic Binder parameter (a) and the temperature derivative  

of the magnetic Binder parameter (b) in the case ∆ = 0.7. 

2.2. N − F Phase Transition Line 

 

Figure. 5. Temperature dependence of the energy in the case ∆ = 0.2. The inset presents the distribution 

function of energy at a temperature near Tc. 
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This section clarifies that the N−F phase transition (Figure 1) is either a first-ordered phase 

transition or a second-ordered phase transition. In the N−F line, typical case ∆ = 0.2 in the inset of 

(Figure 2), the magnetic Binder parameter also exhibits a negative dip which deepens for L increasing 

from 16 to 64 a signal of first-ordered phase transition) [17] and does not deepen for L rising from 64 

to 128 (a signal of none first-ordered transition). One more, the temperature dependence of energy also 

seems to has a jump near Tc ≈ 0.2932 (a signal of discrete energy) [18] in Figure 5. 

In order to distinguished that jump of energy is discrete or continuous, we calculate the 

distribution function of the energy P(E) at several temperatures nearly Tc for different ∆ along with the 

N−F line. In the case of ∆ = 0.2, the distribution function of energy P(E) at T = 0.2932 is shown in the 

inset of Figure 5. P(E) appears only one peak. In similar way, we also calculate P(E) for many 

different temperatures around Tc, including T = 0.2920; 0.2922; 0.2924; 0.2926; 0.2928; 0.2930; 

0.2932; 0.2934; 0.2936; 0.2938; 0.2940; 0.2942; 0.2944; 0.2946; 0.2948; 0.2950. P(E) also exhibits 

only one peak as in the case of T = Tc = 0.2932, suggesting that the N−F phase transition is not a first-

ordered. Overall, the behavior of g, dg/dT, and E suggests that the N−F phase transition is a second-

ordered. This result is consistent with the previous simulation results [7, 14] and different from the 

theoretical results of Romano et al. [3] who analyzed the N−F phase transition by using the mean-field 

theory. 

3. Conclusion 

In this work, we have studied the behaviors of the magnetic and nematic Binder parameter gn, its 

temperature derivative dgn/dT, the energy, and its distribution function in the two-dimensional 

generalized XY model at q = 3. We have reconstructed the phase diagram of this model via the 

temperature derivative of the magnetic and nematic Binder parameters. We also provided numerical 

evidence to confirm that the N−F phase transition is the second-ordered, but not the first-order phase 

transition. 
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