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Abstract: In this work, the temperature dependence of the anharmonic X-ray absorption fine 

structure (XAFS) and thermodynamic properties of the crystalline silicon (c-Si) have been 

investigated. The thermodynamic parameters are derived from the influence of the absorbing and 

backscattering atoms of all their nearest neighbors in the crystalline lattice with thermal vibrations. 

The Debye-Waller factor and thermal expansion coefficient in the anharmonic XAFS of c-Si were 

calculated in explicit forms using the anharmonic correlated Debye (ACD) model. This calculation 

model is developed from the many-body perturbation approach and correlated Debye model using 

the anharmonic effective potential. The numerical results of c-Si in temperature ranging from 0 to 

1500 K are in good agreement with those obtained by the other theoretical procedures and 

experiments at several temperatures. The analytical results showed that the ACD model is useful in 

analyzing the experimental XAFS data on c-Si. 

Keywords: XAFS Debye-Waller factor; thermal expansion coefficient; crystalline silicon; 

anharmonic correlated Debye model. 

1. Introduction 

In recent years, X-ray absorption fine structure (XAFS) has been developed into a powerful 

technique, and it is widely used to determine many structural parameters and dynamic properties of 

materials [1-4]. However, the position of atoms is not stationary, and the interatomic distance always 

changes due to thermal vibrations [5, 6]. These thermal vibrations are sensitive to XAFS oscillation, so 

________ 
* Corresponding author. 
   E-mail address: tongsytien@yahoo.com 

 https//doi.org/10.25073/2588-1124/vnumap.4723 



T. S. Tien / VNU Journal of Science: Mathematics – Physics, Vol. 38, No. 4 (2022) 25-35 26 

they cause thermal disorder and anharmonic effects on crystal vibrations and will smear out the XAFS 

oscillations [6, 7]. The K-edge XAFS oscillation includes a non-Gaussian disorder for a given 

scattering path is expressed in terms of a canonical average of all distance-dependent factors by 

[8-10]:   
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where k  is the photoelectron wavenumber,  F k  is the atomic backscattering amplitude, 2

0 ( )S k  is an 

amplitude reduction factor, N  is the coordination number,  k  is the net phase shift, the angular 

bracket  is the thermal average,   is the electron mean free path, and r  depends on the 

temperature T and is the instantaneous distance between the backscattering and absorbing atoms. 

In order to analyze the anharmonic XAFS signals caused by these thermal disorders, Bunker 

proposed a cumulant expansion approach to represent the anharmonic XAFS oscillation via the 

moments of the radial distribution (RD) function [11, 12]. In this approach, the anharmonic XAFS 

cumulants can be obtained by expanding a canonical average of 2e ikr  over many paths in the powers 

of k  in a Taylor series [11, 13]: 
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where 
 n

  are n th-order cumulants, 
0r  is the equilibrium distance between the backscattering and 

absorbing atoms, and  ,T r  is RD function.     

In investigations of the anharmonic XAFS signals, the thermal expansion (TE) coefficient  T  

[14, 15] and XAFS Debye-Waller (DW) factor  W ,T k  [16, 17] are two important parameters. It is 

because they can characterize the anharmonic XAFS thermodynamic properties and are determined as 

follows [18, 19]: 

                                                 T    1
dr rdT d T rdT ,                                                (3) 

                                                        22W , exp 2T k k T  ,                                                   (4) 

where the first XAFS cumulant  (1) T  can describe thermal lattice vibrations in the crystal lattice 

and significantly influences the anharmonic XAFS phase shift, and the second XAFS cumulant 

 (2) T  is the parallel mean-square relative displacement (MSRD) and can describe the anharmonic 

XAFS amplitude reduction. 

Nowadays, crystalline silicon (c-Si) has been the most important semiconductor in the electronics 

and technology sectors, such as solar cells, transistors, high-power lasers, semiconductors, rectifiers, 

portland cement, fire bricks, waterproofing systems, molding compounds, ferrosilicons, and other 

solid-state devices, etc. [20-23]. The anharmonic XAFS cumulants of c-Si have also been investigated 

using the general anharmonic correlated Einstein (GACE) model [24], classical anharmonic correlated 

Einstein (CACE) model [25], and experiments [26]. Still, the TE coefficient and XAFS DF factor have 

not been fully calculated and analyzed yet in these works. 

https://www.britannica.com/technology/technology
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Recently, an anharmonic correlated Debye (ACD) model was efficiently used to investigate the 

anharmonic XAFS oscillation of many materials [27-30]. The advantage of this model is that using it 

one can calculate all first four cumulants, even in low-temperatures (LT) region of crystals that have 

low symmetry and isotropy with multiple acoustic phonons [29, 30]. Still, it has not yet been used to 

analyze the anharmonic XAFS oscillation of c-Si. Therefore, the calculation and analysis of the 

anharmonic XAFS thermodynamic properties of c-Si based on extending the ACD model will be a 

necessary addition to experimental data analysis in the advanced XAFS technique.  

2. Formalism 

Normally, Morse potential can validly affect the pair interaction (PI) potential of the crystals [31, 

32]. If this potential is expanded up to the third order around its minimum position, it can be written as 

                                                      2 2 2 3 3( ) e 2x xx D e D D x D x               (5) 

where D and   are the dissociation energy and width of the potential, respectively. 

To determine the thermodynamic parameters of a system, it is necessary to specify its anharmonic 

effective (AE) potential and force constants [33, 34]. One considers a monatomic system with an AE 

potential (ignoring the constant contribution) that is extended up to the third-order [13, 29]: 
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where 
0k  is the effective force constant, k3 is the local force constant giving asymmetry of potential 

due to the inclusion of anharmonicity, and these local force constants are considered in the 

temperature-independent. 

In the relative vibrations of absorbing (A) and backscattering (B) atoms, including the effect of 

correlation and taking into account only the nearest-neighbor interactions, the AE potential in the 

GACE model [35, 36] is given by: 
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where  /A B A BM M M M    is the reduced mass of the absorber and backscatter with masses MA 

and MB, respectively, R̂  is a unit vector, ( )V x  is a pair interaction potential of absorbing and 

backscattering atoms,  ˆ ˆ
i AB ijV xR R  express the contribution of nearest-neighbor atoms to ( )V x , the 

sum i is the over absorbers ( i A ) and backscatters ( i B ), the sum j is over the nearest neighbors. 

The structural model of c-Si is illustrated in Figure 1. It can be seen that atoms are arranged with 

eight atoms in a diamond cubic unit cell. In this structure, all atoms are similar each to other, and each 

atom is bonded covalently with four other surrounding atoms in the first shell [15, 37]. 

Using the Morse potential in Eq. (5) to calculate the AE potential according to Eq. (7) and ignoring 

the overall constant, one can obtain: 
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Figure 1. The structural model of c-Si. 

Comparing Eq. (6) with Eq. (8), we deduce the local force constants 
0k , k3, and k4 as follows: 

                                                                  2 3

0 3

7 35
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The ACD model [27-30] is derived from the dualism of an elementary particle in quantum theory 

and is perfected based on the correlated Debye model [38] using the AE potential [35] and the many-

body perturbation approach [39]. In this model, the atomic vibrations can be quantized and treated as a 

system consisting of many phonons, in which each atomic vibration corresponds to a wave that has a 

frequency  q  and is described via the dispersion relation [27, 28]:   
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where q is the phonon wavenumber in the first Brillouin (FB) zone, a is the lattice constant. 

In this model, the correlated Debye frequency 
D  and temperature 

D  of c-Si characterize the 

atomic thermal vibrations in the crystal lattice [29-30]. They can be obtained using the effective force 

constant 
0k  from Eq. (9) as follows: 
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where 
D  can be treated using the formula 

D Dcq  , kB is the Boltzmann constant and is the 

reduced Planck constant. 

Usually, the analysis of the temperature-dependent XAFS spectra using the cumulants is expressed 

in terms of the power moments of the RD function. The first and second XAFS cumulants are given 

by [8, 10, 40, 41] 
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where, 
0x r r   is the deviation distance between the backscattering and absorbing atoms, the first 

XAFS cumulant relates to the centroid of real RD function, and the second XAFS cumulant 

characterizes the variance of real RD function. 

The general expressions of the anharmonic XAFS cumulants in the ACD model were calculated in 

the temperature dependence by Hung et al., [27]. Still, these obtained expressions are not optimized 

yet because they depend on the lattice constant a [30]. Therefore, we have extended the previous ACD 

model to calculate the temperature-dependent TE coefficient and XAFS DW factor of c-Si. After 

substituting the expressions of local force constants 
0k and 

3k  of c-Si in Eq. (9) into these general 

expressions [27] and converting from variable q  to variable p  in the formula / 2p qa , we obtain 

the temperature-dependent first and second XAFS cumulants in the form as: 
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Substituting these cumulants into the Eqs. (3) and (4) to calculate the temperature-dependent TE 

coefficient and XAFS DW factor of c-Si, we obtain the following results: 
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Using the approximations   exp 0Bp k T  , we calculate the TE coefficient and XAFS DW 

factor of c-Si in the LT limit ( 0T  ) from Eqs. (17) and (18). The obtained results are 

                                                                    T
25

14

B

D

k T

r D



 
,                                                         (19) 

                                                    
2

7
W

1
, exp

4 2 k
T k

Dm

  
 
  
 .                                                (20) 

Using the approximation     exp 1B Bp k T p k T    , we calculate the TE coefficient 

and XAFS DW factor of c-Si in the high-temperature (HT) limit ( T  ) from Eqs. (17) and (18). 

The obtained results are 
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Thus, an extended ACD model has been perfected to efficiently calculate the temperature 

dependence of TE coefficient and XAFS DF factor of c-Si. The obtained expressions using this model 

can satisfy all their fundamental properties in the temperature dependence. These expressions have 

also been optimized to not depend on the lattice constant as in the previous ACD model. 

3. Result and Discussion 

In this section, the obtained expressions using the ACD model in Sec. 2 are applied to the 

numerical calculations of c-Si. In these calculations, we use the atomic mass 28.09m  u [42] and 

Morse potential parameters D  1.83 eV,   1.56  Å-1, and 
0 2.34r  Å [43] to calculate the local 

force constants, the correlated Debye frequency and temperature, the wavenumber-dependent 

frequency, the position-dependent AE potential, the temperature-dependent first and second XAFS 

cumulants and TE coefficient, and the wavenumber-dependent XAFS DF factor. Our obtained 

numerical results are compared with those obtained using the GACE [24], CACE [25] models, a 

fitting method [44], and experiments [26, 45]. From these obtained comparisons, we analyze and 

discuss the development and effectiveness of the ACD model in investigating anharmonic XAFS 

thermodynamic properties of c-Si. The following is the presentation of our numerical results: 

Using Eq. (9), (11), and (12) in the ACD model, we calculate the local force constants 
0 10.39k  

eVÅ-2, 
3 6.75k  eVÅ-3, and 

4 6.35k  eVÅ-4, the correlated Debye frequency 141.19 10D  Hz, and 

the correlated Debye temperature 910.05D  K. 

 

Figure 2. The wavenumber-dependent frequency (a) and  The position-dependent AE potential  

of c-Si obtained from the ACD and GACE [24] models and a fitting method [44] (b). 

The wavenumber dependence of the frequency of c-Si in the FB zone is calculated by Eq. (10) and 

is represented in  Figure 2a. It can be shown that our obtained frequency using the ACD is a 
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symmetric function of a linear chain of q, and its maximum value is 
D  at the bounds of the FB zone 

with /q a  . Also, the position dependence of the AE potential of c-Si in the position range from - 

0.4 to 0.4 Å is represented in  Figure 2b. Herein, our obtained result using the ACD model is 

calculated by Eq. (8), while those obtained using the GACE model [24] do not take into account the 

fourth anharmonic term in this equation. In comparison with the obtained result from a reactive 

empirical bond-order potential of c-Si by fitting its bond-order terms [44], it can be seen that our result 

is better agreement with those obtained using the GACE model [24], especially at positions far from 

the minimum position. Moreover, the obtained result using the CACE model [25] is similar to our 

result because in this model Eq. (8) is also used for calculations. 

The temperature dependence of the first XAFS cumulant (1) ( )T  and the second XAFS cumulant 
2 ( )T  of c-Si in a range from 0 to 1500 K is presented in Fig. 3. 

 

Figure 3. The temperature-dependent (a) first and (b) second XAFS cumulants of c-Si obtained using the ACD, 

GACE [24], and CACE [25] models and experiment [26]. 

Herein, our obtained results using the ACD model are calculated by Eqs. (15) and (16), and the 

experimental values at 80 K, 300 K, and 500 K are measured at the Synchrotron Radiation Center by 

Benfatto et al. It can be seen that our results are in good agreement with those obtained using the 

GACE [24] and CACE (only at the high temperatures) [25] models and experiment [26]. For example, 

the obtained results using the ACD model, GACE model [24], CACE model [25], and experiment [26] 

at T  300 K are  1 36.54 10  Å and 
2 33.36 10  Å2,  1 36.67 10   Å and  

2 33.43 10   Å2, 
 1 34.88 10   Å and 

2 32.50 10  Å2, and 
2 33.40 10  Å2, respectively. Moreover, it can be 

seen that the obtained results using the CACE model [25] approach zero as the temperature 

approaches zero, so this model can not work well in the LT region. It is because the CACE model [25] 

cannot calculate quantum effects using classical statistical theory. Meanwhile, the ACD and GACE 

[24] models both show quantum effect contributions, but the obtained results using the GACE model 

[24] in the LT region are slightly greater. It can be explained because the GACE model [24] uses only 

one effective frequency to describe the atomic thermal vibrations, as seen in  Figure 3. 
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Figure 4. (a) The temperature-dependent TE coefficient and (b) the wavenumber-dependent XAFS DW factor 

at 500 K of c-Si obtained using the ACD, GACE [24], CACE [25] models and experiments [26, 45]. 

The temperature dependence of the TE coefficient of c-Si in a temperature range from 0 to 1500 K 

is shown in  Figure 4a. Our obtained result using the ACD model is calculated by Eq. (17), while the 

experimental values are measured in a high-temperature furnace by Okada & Tokumaru [26]. It can be 

seen that our result agrees with those obtained using the GACE [24] and CACE (only in the HT 

region) [25] models and experiments [45]. For example, the obtained results using the ACD model, 

GACE model [24], CACE model [25], and experiment [45] at T = 546 K, are 𝛼 = 3.98 × 10−6𝐾−1, 

𝛼 = 3.96 × 10−6𝐾−1, 𝛼 = 4.46 × 10−6𝐾−1, and 𝛼 = 3.74 × 10−6𝐾−1respectively. 

Herein, the obtained results using the GACE and CACE models are calculated by Eq. (3), with the 

temperature-dependent first XAFS cumulant determined in [24] and [25], respectively. Moreover, our 

result is not destroyed as those obtained using the GACE in the LT limit and fits perfectly with Eq. 

(19), which indicates that the ACD model can fully describe quantum effects. Also, our results 

increase with increasing temperature T and approach those obtained using the CACE model [25] in the 

HT limit, which fits perfectly with Eq. (21) and shows that the ACD model can efficiently describe the 

anharmonic effects. Meanwhile, the obtained result using the CACE model [25] is constant because 

the temperature-dependent first XAFS cumulant is a linear function in this model, as seen in Eq. (21) 

and  Figure 4a. 

The wavenumber dependence of the XAFS DW factor of c-Si at 500 K and in a range from 0 to 20 

Å is represented in  Figure 4b. Our obtained result using the ACD model is calculated by Eq. (18), 

while the obtained results using the experiment are calculated by Eq. (4) with the experimental value 

of the second XAFS cumulant. It can be seen that our result agrees with those obtained using the 

GACE model [24] and experiment [26], and our result is more experimentally agree than those 

obtained using the CACE model [25] because this model only works well at high temperatures. For 

example, the obtained results using the ACD model, GACE model [24], and CACE model [25], and 

experiment [26] at T  300 K with k 10 Å-1 and 20 Å-1, are W 0.52 and 0.07, W 0.50 and 0.06, 

W 0.61 and 0.14, and W 0.51 and 0.06, respectively, while the corresponding results at T  500 K 

are W 0.40 and 0.03, W 0.38 and 0.02, W 0.43 and 0.04, and W 0.39 and 0.02, respectively. 

Herein, the obtained results using the GACE and CACE model are calculated by Eq. (4), with the 

temperature-dependent second XAFS cumulant determined in [24, 25].  Moreover, It can be seen that 

the values of the XAFS DW factor decrease with increasing temperature and decrease with fast-

increasing wavenumber k. It is because the XAFS DW factor is an inverse function of the wavenumber k 
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and second XAFS cumulant 
   2

T , in which this cumulant increases with increasing temperature, as 

seen in Eq. (4) and  Figure 3b. 

Thus, the calculated results of the anharmonic TE coefficient and XAFS DW factor using the 

present ACD model satisfied all of their fundamental properties. The TE coefficient increases with 

increasing temperature and the XAFS DW factor decreases with increasing temperature. It means that 

the crystalline lattice expands strongly, and the XAFS amplitude decreases more strongly at higher 

temperatures. These results can also describe the influence of anharmonic effects at high temperatures 

and the influence of quantum effects at low temperatures. 

4. Conclusion 

In this work, we have performed the expansion and development of an efficient model to calculate 

and analyze the anharmonic XAFS thermodynamic properties of c-Si. The calculated results of the 

anharmonic TE coefficient and XAFS DW factor using the ACD model satisfied all of their 

fundamental properties in the temperature dependence. The TE coefficient increases with increasing 

temperature, and the XAFS DW factor decreases with increasing temperature. It means that the 

crystalline lattice expands strongly, and the XAFS amplitude decreases more strongly at higher 

temperatures. These results can also describe the influence of anharmonic effects at high temperatures 

and the influence of quantum effects at low temperatures on the XAFS thermodynamic properties. 

A good agreement of our numerical results of c-Si with those obtained using the GACE model, 

CACE model, and experiments at various temperatures showed the effectiveness of the present model 

in investigating the anharmonic XAFS thermodynamic properties. This model can be applied to 

calculate and analyze the anharmonic TE coefficient and XAFS DW factor of other crystals from 

above absolute zero temperature to just before the melting point. 
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