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Abstract: The functional integral method can be used in quantum mechanics to find the scattering 

amplitude for particles in the external field. We obtained the potential scattering amplitude from 

the complete Green function in the corresponding external field through solving the Schrodinger 

equation, after being separated from the poles on the mass shell, which takes the form of an 

eikonal (Glauber) representation in the high energy region and the small scattering angles. 

Considering specific external potentials such as the Yukawa or Gaussian potential, we found the 

corresponding differential scattering cross-sections.  

Keywords: Eikonal scattering theory, effective theory of quantum gravity, quasi-potential equation 
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1. Introduction* 

In this work, the complete Green function [1, 2] and the Yukawa or Gaussian potential [3] have 

been used for further study. The eikonal approximation for the potential scattering amplitude [4] can 

be applied when solving the Schrodinger equation or when expanding the perturbation theory series of 

the scattering amplitude in the Born approximation [5]. These two approaches give us the basis for 

applying the eikonal approximation in quantum field theory, at a region where the concept of 

potential cannot be used. 
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In this work we would like to introduce a new method, the functional integral method to find the 

Green function of a particle from the Schrodinger equation in the external field. The eikonal 

approximation here is equivalent to the straight line approximation [6-13], which is used to compute 

the functional integrals as it occurs. The advantage of this approach is that, it can be extended to 

compute the leading term and the first-order correction term in the asymptotic scattering amplitude at 

Planck energies and the first-order correction in quantum linear gravity theory [14-18] and effective 

quantum gravity theory [19]. 

The content of the work is presented as follows: In Section 2, we briefly introduce how to 

represent the Green function of the particle in the external field in the form of functional integral from 

Schrodinger's equation and how to separate the poles from the Green function of the particle in the 

mass shell, to find the potential scattering amplitude. The method of calculating the functional integral 

by using the straight line approximation and consideration of the asymptotic shape of the potential 

scattering amplitude at high energy region and small scattering angle is presented in Section 3. The 

conditions of the potential, energy of the particle and the scattering angles for which this 

approximation can be used are discussed in this section. In Section 4, we consider the differential 

scattering cross-section given specific external potentials such as Yukawa and Gauss potentials. The 

concluding section is devoted to the resulting systems and discusses the possibility of extending this 

approach to more complex problems in subsequent studies. Here the atomic unit system 1c  

and metric Feynman are used. 

2. Two-particle Quasi-potential Equation in an Operator Form  

The amplitude of the particle scattering in the external field can be found through solving 

Schrodinger equation. First, we solve the integral equation corresponding to Schrodienger equation to 

find the Green function of the particle in the external field [5-14].  
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Here E  in Eq. (1) was replaced by E i  to obtain the Green function which contains divergent 

expressions when r  .  

Applying the Feynman, Fock representation to the inverse operator representation in an 

exponential form, one can write the solution of Eq. (1) in operator form as follows: 
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where    xp i    is the momentum operator.  

The exponential term in Eq. (2), which contains non-commuting operators 2

 , and  ,V r   

is considered as T  exponent, where the ordering subscript has the meaning of the proper 

time divided by mass m. All operators in Eq. (2) are assumed to be commuting functions that 

depend on the parameters . In the power of exponential, there is a second derivative differential 
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derivative    2 2 2

xp     . However, the transition from T  exponent to ordinary operator 

expression (“disentangling” the differentiation operators in the argument of the exponent function by 

terminology of Feynman) cannot be performed without the series expansion with respect to an external 

field  ,V r  . But one can lower the power of the operator  2p   in Eq. (2) by using the following 

formal transformation that contains an integral function of three dimensions [18]. 
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"Rearrange” the operator expression. Then the Green function for Schrodinger equation in the external 

potential field, can be written as  
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Equation (4) can be changed into Feynman integral (path integral) by changing the variables   

into 
t

 and v
 
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 into    , we have received:  
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Set 
't 
,
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, we have: 
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Now we will take the integral of the trajectory  x t , where  x t is determined by equation 
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The Jacobian of this transformation does not depend on derivative of the new functional variable 
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Substitute this equation in to equation (5), the Green function  , 'G r r  has the form:        
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with the conditions 
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The integral of the functional in Eq. (7) is the Feynman integration of the particle's orbits  x t in 

the exponential, whose power is the classical effect of the particle in the external field    V x t . 

3. Scattering Amplitude in the Eikonal Approximation 

 The scattering amplitude of the particle scattering in the external field is calculated by the 

following formula which is related to Green function   
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where 
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In above formula, the Green function is used in Eq. (4), because the delta function here takes into 

account boundary conditions (8) on particle orbit. To get the scattering amplitude, we need to separate 

from the difference  0  G G two poles 

1
2 '2

2

k
E i

m




 
  

 

and   

1
2 2

2

k
E i

m




 
  

 

so that they can 

eliminate the terms 
2 '2 2 2

2 2

k k
E i E i

m m
 

  
     

  

in Eq. (9). To do this, one can perform the 

following steps: i) To convert to momentum representation; and ii) Then to perform functional 

transformation.  
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Finally, one can find the Green function of the particle in the external field in the momentum 

representation.  
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If in Eq. (10), we set V = 0;    3 2
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Note that, above formula coincides with the Green function of Schrodinger's equation for free 

particles. So we remove from the total Green function of the particle in external field 0'| |k G k  , the 

contribution of the Green function of the free particles 0'| |k G k does not contribute to the scattering 

amplitude, and use the formula 
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the result for 0'| |  k G G k  we get: 
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Continuing to change variables: 
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Since the argument in the expression of potential V is integral according to  with  runs from

0    

when    then    'k k k         (before scattering)   

when    then    ' 'k k k          (after scattering). We have: 

   
22

,
k

r x d
m m





       
 

           
2

2
2 2 2

12
2 2

k k k k
m m

                 
 

After a series of complex transformations, we obtained: 
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Next, we change the order of integrating according to a and b and also assume that
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Then the scattering amplitude take the form:  
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          (14) 

The functional integral in Eq. (14) is performed according to the orbits: 
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When scattering in the high energy region, we can assume that the main contribution to the 

functional integral (14) is the straight path determined by initial and final momentum of the Particle: 

     
'

,
p p

x t t t t
m m
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that mean the contribute of the functional variables     in the argument of potential in Eq. (14) is 

can be negligible. 

Set   0   in Eq. (14) and if we called , 'k k  respectively are the unit vectors in the direction 

of the momentums initial and the final of the particle, also set  2 / ,k m v     we have 
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     In this approximation for the scattering amplitude we get the expression 

below: 
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We consider k  towards the Oz axis and the small scattering angle then 'k k q k    or 

q Oz , q called q
,  Since there in no component  of z then   'i k k x iqb   ( b includes x, y).  
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              (16) 

Equation (16) is the Glauber representation or also called the eikonal representation for scattering 

amplitude:  

   
( )

2', .exp . 1 .
2

i
V x dz

vk
f k k d x iqb e

i





 
  

  
 

  

4. Scattering Differential Cross Section for Specific Potential  

Using the eikonal representation for the scattering amplitude obtained in the previous section, 

we can find the differential scattering cross section for the scattering processes in specific external 

potential such as Yukawa potential and Gaussian potential.  

4.1. Yukawa Potential 

The Yukawa potential has the form 
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  rg
V r e
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                                                       (17) 

where g is the constant with the same dimensional as energy,   is also a constant.  

We use equations (16) and (17) to calculate the scattering phase [14]: 
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Substituting the Yukawa potential in equation (17) into the above scattering phase, we have  
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  is the MacDonal of zero-th order (Modified Bessel function). 

Plugging the expression of the scattering phase (18) into the expression of the scattering 

amplitude, we obtain 
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When b   then  0 0K b   , so the expression for the scattering amplitude becomes:  
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From the amplitude of scattering (20) just found, we go to calculate the differential scattering 

cross-section. The result is:
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And the total scattering cross-section is also derived  
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4.2. Gauss Potential  

The Gauss potential has the form 
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Where g is the constant with energy dimensional, α is a real positive number. Similarly with 

Yukawa potential, we obtain the scattering phase:  

                      
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b V b z dz e dz i e

v v v

  
 



 

 

 


                   (24) 

From there we infer the scattering amplitude of the particle in the Gauss field as follow : 
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The differential scattering cross-section and the total scattering cross-section are respectively:   
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                               (27) 

The expressions for differential and total scatter cross sections that were found here can be used to 

analyze present experimental data. 

5. Conclusion 

In this work we studied the problem of particle scattering in the external field in quantum 

mechanics by the functional integral method in straight line approximation, which is equivalent to the 

optical eikonal approximation. Glauber representation for the scattering amplitude of the external fast 

particles with small scattering angles was found through solving the Schrodinger equation by 

functional integral method. Scattering cross-sections of particles over specific external fields such as 

Yukawa and Gaussian potentials were obtained. This approach can be used extensively to study 

scattering problems for quantum gravitational field theory. 
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Appendix A. The Scattering Amplitude in Born Approximation 

The Lippman Schwinger equation [8] 
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The perturbation expansion solution of this equation will give us the scattering amplitude 
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Series (A.1) gives us a simple interpretation by the graphs (see Figure 1). The line connecting the 

vertices corresponds to the propagation function 
0G  (the factor 2 2 1

2

2
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m
k p i    appears in the 

momentum representation), and the wave line - is the Fourier image of potential ( )V p . 

 
Figure 1. Graphical representation of the Born series for potential scattering. 

We consider the (n+1)th term of this serie. Independent momentum variables can be impulses

( 1, 2,..., )ik i n  as shown in Figure1. The contribution of this term to the scattering amplitude is 

equal to 
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      
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1 1
2 2

2 2

1 1

... ' ' ...
l n

i i

i i l

k k k i k k k i 

 

  

      
           
         

   

                                          
1

2
2... ' ' nk k k i



   
  

 

l is any integer that satisfies the condition 0 l n  . 

Equation (A.2) does not depend on which potential to be chosen in Figure 1. Therefore, we 

average by the position of potential separated in the middle of the rest after summing (A.2) follow l 

from 0 to n and divide by (n + 1) 

           
2

( 1)

2 2
11

4 2
( ', ) ( )

n n n
n

i i i l

ii

m m
f k k dk V k V q k D





  
     

   
                     (A.3) 

with 0

1

1

n

l l

l

D D
n 





  

We will use the eikonal approximation to compute the propagator functions of scattered particles 

0G . We assume that the main contribution to the integral (A.2) is the integration taken on small 

momentum compared to initial and end momentums the particles.  

So to linearize the propagator functions 
0G  according to 

ik  we do the following substitution 

      

1
2 1

2

1 1

2
m m

i i

i i

p p k i p k i 




 

    
         
     

                (A.4) 

where p k  or 'k . 

The eq. (A.3) in this case has the form 

                

2
( 1)

2 2
0 1

1

( )4 2 1
( ', )

1
2

n l
n i i

l
l i

r

r

V k dkm m
f k k

n
k k i








 



 
   

   
 


 

                 
11

( )

2 '

n n
j j

in
ij l

s

s j

V k dk
V q k

k k i  



 
  

 




             (A.5) 

Note that without averaging against l in (A.2), using in this equation the approximations (A.4) will 

result in results that depend on the l specific values. In other words, it depends on the arrangement of 

the momentum shown in Figure 1. 
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Clearly, the expressions  

1

1

( )

2

l
i i

l
i

r

r

V k dk

k k i



 




;

1

( )

2 '

n
j j

n
j l

s

s j

V k dk

k k i 








 does not depend on the ordering 

possibilities for (1 )ik i l   and ( 1 )jk l j n   impulses. This arrangement may therefore be 

substituted for the following sum 

         

1

( )1

!
2

l
i lnepcet

r

r

V k
k

l
k k i



 



    và  

( )1

( 1)!
2 '

j

j nnepcet

s

s j

V k
k

n
k k i









                (A.6) 

Substitute eq. (A.6) into eq. (A.5) and use identity in [26]. 

            
1 1 2 1 2 1 2

1 1 1 1
...

' ' ' ' ' ... ' . ...nepcet
n nC C C C C C C C C


   
  

here  1 2' , ' ,..., 'nC C C  – is any arrangement of sequence  1 2, ,..., nC C C , so we have  
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( 1)

2 2
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4 2 1 1
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1 !( )!
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n
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m m
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n l n l

 
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
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11 1
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2 2 '
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i i i i
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 
  

    
               (A.7) 

Since 1

3
1

1
( )

(2 )

n

i

i

i q k rn

i

i

V q k e V r dr




 
  
 
 



 
  

 
   then eq. (A.7) can be expressed in form 

                

2
( 1)

2 3

4 1
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(2 ) 1

n iqrm dr
f k k e V r

n




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0

1
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!( )!

n l n l

j

l

U r k U r k
l n l





       
              (A.8) 

where 

                              
2

2 ( )
( , )

2

irpm dpV p e
U r k

kp i


 
                                                          (A.9) 

Summing up according to l in eq. (A.8) can now be easily done 

                

2
( 1)

2 3

4 1
( ', ) ( ) ( , ) ( ')

( 1)! (2 )

n
n iqr

j

m dr
f k k e V r U r k U r k

n





          

The total scattering amplitude is obtained with the following expression 

          

( , , ')

( 1)

2 ( , , ')
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1
( ', ) ( ', ) ( )
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i r k k

n iqr

r k k
n
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f k k f k k dre V r

i






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

 
                     (A.10) 
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with   ( , , ') ( , ) ( ')jr k k i U r k U r k                                         (A.11) 

Using eq. (A.9) to transfer eikonal phase in eq.(A.11) into   

                   1
( ) ( ) ' ( )r d V r k k

v
           

                                           (A.12) 

where 'k  and k  are unit vectors directed towards the initial and end momentums of the 

particle, respectively. 

Now, we can write eq.(A.10) in the form 

  
1

2

0

( ', ) ( )
2

iqrm
f k k dre V r d



     exp ( ) ' ( )
i

d V r k k
v


     





          
   (A.13) 

The only difference (A.13) with Shiv's formula [] for the large angle scattering amplitude is that 

the integral according to d , it absent in (17). In the case of small angle scattering, it is easy to 

change. formula (A.13) to the eikonal form (16). To do that just put eikonal phase in eq. (A.12) 'k k  

and q k . The z-axis is normally oriented in the k . After integrating according to dz in eq. (A.13) 

we obtained 

                     
2( ', ) exp ( ) 1

2

iq Bk i
f k k d B e V r dz

i 
 









   
    

   
   

Appendix B: Green Function of the Complete Schrodinger Equation and Scattering 

Amplitude [19] 

Together with the Green function of the free Schrodinger equation we can consider the complete 

Schrodinger's equation. 

                   
(3)

0 0(E H (E) (r, r') ) (r, r'H ) (r r')i V GiG                     

(B.1) 

The total Green function will contain all information about the quantum system. Thanks to this 

function we can find the energy spectrum of the system, the wave function, the scattering amplitude. 

This relation can be established using operator notation. 

Thanks to equations (5) and (B.3) 
0G G  can be expressed in the following form 

     

1 1

0 0 0 0

1

0 0 0 0 0 0 0 0 0

(E H (E H

(G G ) G (

)

G G )

)G G V i i G VG

G V G VG G VG G

 



         

     
 

                    (B.2) 

Left and right multiply equation (B.4) by 1

0G  , we get 

                     
1 1 1 1

0 0 0 0 0 0(G G )G (G G )GG V VG G        

From here, the quantity 1 1

0 0 0(G G )GG  
 
only satisfies the equation, as well as the scattering 

operator t (equation (B.2)), thus 

1 1

0 0 0(G G )Gt G      

The scattering amplitude in this case is determined by 
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              (B.3) 

here 
2 2 2 2'

.
2 2

k k
E

m m
   

This is possible, if we use the Green function of the free Schrodinger equation 0 ( , ')G r r , which 

satisfies the equation below. 
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              (B.4) 

The 0 ( , ')G r r  function has the following form /6/ 
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