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Abstract: Searching for the origin of the dark matter and the dark energy is among the problems 

that the modern physics, including the general theory of relativity, is facing to. Various theories or 

models have been proposed to solve these problems without satisfactory success yet. In this work, 

a new model based on the scalar-tensor theory with Lagrangian LG = ϕR − 2γϕη is suggested to 

solve some aspects of the above-mentioned problems. In this model the dark matter is interpreted 

as geometric background of the space-time. 
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1. Introduction 

The general theory of relativity (GR) based on the Einstein equation [1, 2], 

 ,                    (1) 

has been shown to be a good theory in explaining different phenomena of the ordinary matter such as 

that of stellar objects including our Sun system. This equation can be derived from the Hilbert-Einstein 

action built on the Lagrangian 

                                                   LGR = R.                                                             (2) 

________ 
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The GR, however, fails to explain the Universe at large spacetime scales. Two major issues are 

called dark matter (DM) [3-7] and dark energy (DE) [8-11], which account for about 27% and 68% of 

the matter-energy content of the Universe, respectively. These terminologies, “dark matter” and “dark 

energy” respectively, were coined for “missing mass” and “missing energy” in explaining unexpected 

observations of unusual rotations of the disks of galaxies or galaxy clusters and the accelerated 

expansion of the Universe [12-15]. At early days of the GR, Einstein also stumbled upon the question 

if the Universe was static or not. He introduced the so-called cosmological constant [2], denoted 

usually as Λ, in order to “keep” the Universe static as he believed. Later, after knowing theoretical 

works by Friedmann [16] and Lemaˆıtre [17], especially, after the observation of the Universe’s 

extension by Hubble [18], he rejected the idea of a static Universe and said that the introduction of the 

cosmological constant was a big mistake. The subsequent development of cosmology, however, 

revived the idea of the cosmological constant expected by some people to unravel the riddle of the 

Universe’s accelerated expansion. However, the cosmological constant is also treated as (or related to) 

the vacuum energy which according to the quantum field theory is too big (about 120 orders of 

magnitude bigger) in comparison with the value necessary for examinationof the Universe’s observed 

accelerated expansion [19, 20]. It is the largest discrepancy ever between theory and 

experiment/observation in physics and that is the so-called cosmological constant problem for solving 

of which no way has found until now. Another difficulty of the GR is the DM problem [6, 7]. The 

discrepancy between the observed and the theoretically-expected rotation curves of a spiral galaxy, 

such as Messier 33 (see Figure 1), cannot be explained within the GR. The observed rotation speed 

becomes distance-independent (or weakly dependent of the distance, at least) after an increasing part, 

unlike the theoretical one increasing and then decreasing with distance from the galaxy center. Both 

the DM and the DE can be considered in the point of view of particle physics or that of the GR (based 

on the very geometry of the spacetime). In general, the GR with or without the cosmological constant 

is unable to describe consecutive stages of the Universe’s evolution, namely, the inflationary- and the 

radiation eras and the era of dark energy (including the present time). So far, the results obtained in the 

two approaches have not always been compatible with each other. Here, we will follow the scalar-

tensor approach combining the advantages of particle physics and the GR to propose a modified model 

of gravitation with the hope to overcome some of the difficulties of the GR and particle physics. 

 

Figure 1. The discrepancy between the observed and the theoretically-expected rotation curves of Messier 33  

(a spiral galaxy) can be explained by assuming the presence of a huge “invisible mass”.  

(Source: Mario De Leo, Wikipedia). 
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There have been a number of modified theories of gravitation proposed but the so-called f(R)-

theory of gravitation (or just f(R)-theory or f(R)-gravitation for short) [13-15] may be one of the 

simplest modifications of the GR. The f(R)-theory may help us in explaining different stages of the 

cosmological evolution (see, for example, [21]). The scalar-tensor itself is also a modified 

gravitational theory. It is clear that there is a bridge (conformal transformation) between the scalar-

tensor theory and the f(R) theory [13]. Based on the cosmological principles we assume that the 

distribution of DM (dominating the Universe’s matter content) at large scale is homogeneous  

and isotropic. Here, as in [21], the isotropy allows us to work in a geometry with a spherically 

symmetric metric. 

2. Dark Matter as Spacetime Geometric Background 

As the dark matter, overwhelming the ordinary matter in the Universe, is not involved in any 

interaction other than the gravitational one with the ordinary matter, the former can be treated as a 

spacetime geometric background which according to the cosmological principles can be assumed to be 

homogeneous and isotropic. This background naturally adopts a geometry with a spherically 

symmetric metric [1] 

where D is the covariant differential and uµ is the four-velocity, . Inserting the latter 

in (4) we get 

 .                                            (5) 

This equation in the spacetime with metric (3) and x0 = ct, dτ = √𝑔00𝑑𝑡 = √𝑒𝑎𝑑𝑡 has the form 

                     ,                         (6) 

Where   and  . Let us consider a circular free motion (dr = 0,θ = π/2) of a particle in 

a static (b˙ = 0) central field, the latter equation becomes 

 .                                                    (7) 

The particle’s orbital velocity can be calculated as 

 .                                 (8) 

where dl = [eb(r)dr2 + r2(dθ2 + sin2 θdφ2)]1/2 = rdφ. Replacing (8) in (7) we get 

                                                    .                                                                        (9) 

ds2 = ea(r, t)(dx0)2 – eb(r, t)dr2 – r2 (dθ2 + sin2θdφ2). 

 The motion of a freely moving particle in the spacetime satisfies the equation [1] 

(3) 

Duµ ≡ duµ + Γ𝛼𝛽
µ

uα dxβ = 0,  (4) 
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In the case of a constant velocity (v = const.:= vtg)1 the solution of (9) is simply 

  ,                                                   (10) 

with a0 being an integration constant. Therefore, 

,                                                                  (11) 

where,  = const. Thus, the metric (3) now has the following form [12] 

 . (12) 

The geometric origin of the dark matter lies in the metric (12) encoding the presence of dark 

matter in spacetime. 

3. The Equivalence between the f(R)-gravitation and the Scalar-tensor Gravitation 

Einstein’s theory of general relativity (GR) is built on the Hilbert-Einstein action 

 ,                            (13) 

where .  The fact that there are a number of GR-beyond problems calls for extending of the 

GR. The f(R)-theory of gravitation is one of the first and simplest extensions of the GR. This modified 

gravitation theory is based on the action [13, 14, 15] 

                                         ,                                    (14) 

where f(R) is a regular general function of the scalar curvature R. This theory generalizes the GR and 

returns to the latter at f(R) = R (or f(R) = R − 2Λ if the cosmological constant Λ is included). By some 

manipulation, and then, substitution 

R = φ,                                                                           (15) 

in some term, we can prove that the action (14) is equivalent to the action of the scalar-tensor  

theory [13] 

,                                                          (16) 

With ,  where 

 ϕ = f ′(R).                                   (17) 

________ 
1 The hypothesis of the existence of dark matter is based on the observation that the rotation velocity of luminous matter 

objects near the edges of galaxies or galaxy clouds is constant 
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Here, to save the length of the paper, we do not go into the details of a proof of this claim, but 

instead refer readers to Ref. [13]. 

The action (16) is an action of a scalar field interacting with gravitation (or just a free field in a 

curved spacetime) without kinetic term, (∂ϕ)2 = gµν∂µϕ∂νϕ = 0, which can be recovered by using 

f(R,(∇R)2,□R) instead of f(R) (see [23] for more details). The scalar-tensor theory represents an 

interface between particle physics and gravitation theories and has different variations depending on 

what problems to be solved. Hence, this theory is very interesting for consideration. It is namely the 

subject of the next section. 

4. Scalar-tensor Theory LST  = ϕR− 2γϕη 

The action of a general scalar-tensor theory has the form 

 . (18) 

After some rescaling and transformation it can be re-written in a simpler form 

 . (19) 

By choosing different ω(φ) and/or V (φ) in (19) we get different scalar-tensor theories. Choosing ω 

= const. and V (φ) = 0 leads to the well-known Brans-Dicke theory (in vacuum), also called sometimes 

the Jordan–Brans–Dicke theory. It is an early and simple version of the scalar-tensor theory which has 

a long research history [2] and admits more solutions, in particular, the vacuum ones, than the GR 

[24]. Here, we will work with the model 

 , (20) 

which is the model (19) with ω = 0. We also choose 

V (ϕ) = 2γϕη, (21) 

where η is a dimensionless constant, while the constant γ has the same dimension with R ([γ] = [R]). It 

is not difficult to find the extended Einstein equation in this case 

 . (22) 

via a variation of the action (20) with respect to the metric gµν, where □ = ∇µ∇µ with ∇µ being the 

covariant derivative. On the other hand, the variation of (20) with respect to ϕ leads to the equation 

R = 2γηϕη−1.                            (23) 

Two equations (22) and (23) are independent and can be solved for a(r,t), b(r,t) and ϕ(r,t). Indeed, 

the trace of (22) and (23) give 

 □𝜙 =
2𝛾(2−𝜂)

3
𝜙𝜂.                                  (24) 

Replacing this equation in (22) we get 

  . (25) 

Now we solve the last equation in several variants of the spherically symmetric metric (3), 
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 ds2 = ea(r, t)(dx0)2 – eb(r, t)dr2 – r2 (dθ2 + sin2θdφ2).                             (3) 

With this metric, the non-vanishing Christoffel elements are [1] 

 

                                              .                               (26) 

where �̇� =
𝜕𝑎

𝜕𝑐𝑡
 and 𝑎′ =

𝜕𝑎

𝜕𝑟
. Then, the non-zero elements of the Einstein tensor 

                                                                                                          (27) 

are [1] 

 

Consequently, 

       .  (33) 

It follows 

                      (34) 

                      

(35) 

                      (36) 

                     (37) 

                     (38) 
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Therefore, the equation (25) become: 

(39) 

                                                   (40) 

      (41) 

The equation (24) in a central static field gets the form 

 

while Eq. (23) now is 

 . (43) 

Combining (39) with (40) we get 

.                                                     (44) 

A combination of (41) and (43) gives 

 .                          (45) 

With the substitution 

                                                         b(r) = −ln q(r).                                                              (46) 

the equations (39) – (45) becomes respectively. 
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Note that, not all but only three of Eqs. (47)–(53) are independent. It is enough for solving for 

three functions a(r), q(r) and ϕ(r). For illustration we consider several cases following. 

4.1. The Case ϕ = 1 

In this case, setting V = 2γ conveys the model (20) into Einstein’s GR with cosmological constant 

Λ = γ. Then, Eq. (42) means η = 2 and Eq. (44) gives 

a′ + b′ = 0,                                 (54) 

while (39) becomes 

                                                                                             (55) 

In the next subsection we will consider the condition (54) with more arbitrary ϕ.  To solve (55) we 

substitute 

 

where C1 is an intergration constant. Putting Eqs. (58), (56) and (54) all together we find the metric 

 ,       (59) 

where the constant C1 is fixed at  with M being the mass of the gravitational source, to 

obtain Newton’s gravitation at γ = 0. Metric (59) is exactly a spherically symmetric metric in the GR 

with cosmological constant Λ = γ. 

4.2. The Case a′ + b′ = 0 for More General ϕ 

It is not difficult to show that Einstein’s GR (with or without the cosmological constant) can be 

derived from the present model as a special case under the condition 

a′ + b′ = 0. 

It follows from (44) that ϕ′′ = 0, or 

(54) 

ϕ(r) = C2r + C3, (60) 

where C2 and C3 are constants. Replacing (60) in (42), (45) and (39) we get, respectively, the 

following equations 

                       ,                                       (61) 
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 (62) 

                         (63) 

 

which all together, after some intermediate calculations, lead to the following result 

 

Since the latter is valid for any r the condition C2γ(2 − η) = 0 must be held. It follows the only 

solution is that in (59) as it has to be proved. The above condition is fulfilled in three cases, either  

C2 = 0 or γ = 0 or η = 2. The case C2 = 0 (that is, ϕ = const.) corresponds to the GR with cosmological 

constant (with Largangian LG = R − 2Λ). The case γ = 0 (with LG = ϕR) and, especially, the case η = 2 

with LG = ϕR − 2γϕ2 give rise to GR-extended models but the corresponding solutions still have 

spherically symmetric forms similar to (59) as the GR with cosmological constant. Thus, hopefully, 

the models LG = ϕR and LG = ϕR − 2γϕ2 can describe an accelerating expanding of Universe (problem 

of dark energy). Therefore, the dark energy can be treated geometrically. 

4.3. The Case ea = αrβ 

Let us now to look for a dark matter solution of (20). Referring to (12), one could do this by 

setting ea = αrβ or, equivalently, 

a = ln α + β ln r,                                      (65) 

where α and β are constants (but α > 0). Therefore, .  Then, the equation (47), (48), (49), (50), 

(51), (52) and (53) becomes  
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respectively. Among these equations (66)–(72) only three are independent. To solve them in general is 

quite complicated. Let us choose a relatively simple case where 

q = λ = constant. 

Putting (73) in (70) we immediately find 

(73) 

                                  .                            (74) 

Using the latter and (71), (66) and (68) we obtain 

 

Finally, we get a spherically symmetric static metric 

 .          (77) 

One of the parameters β or η can be determined by (75) if the other one is given. Starting with the 

value 

 .               (78) 

we get the metric (77) which resembles the metric (12) describing the dark matter. This is a 

geometric interpretation of dark matter. The solution (77) is similar the dark-matter solution obtained 

in [12] but the former is an exact solution, while the latter is a perturbative solution. To see the 

geometric meaning of this approach, let us go back to the metric (77) where we identify the metric 

element g00, 

   ,                      (79) 

With .  In the first order Taylor expantion (Newtonian approximation) it becomes 

                             (80) 

where 

               .                                                                (81) 

is a Newtonian potential. This potential keeps a material object to rotate at distance r around a 

gravitational source of mass M at a constant speed vtg related to the mass M as follows GM/r = vtg
2. It 

means that, to guarantee a constant rotation speed around a mass at distance r, the mass density should 
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be . It is easy to show that (81) satisfies Poinsson equation for an isotropic mass distribution

, namely, ∆ϕN = 4πGρ, or more explicitly, 

                                           .                                        (82) 

5. Conclusion 

Following the cosmological principles and the fact that the dark matter distribution dominates the 

Universe’s matter content we have worked out a dark matter model based on the scalar-tensor theory 

with Lagrangian LST = ϕR − 2γϕη. We have obtained an exact solution (77) consistent with a 

perturbative solution obtained elsewhere by other authors. This solution can be reduced to the GR 

solution under a particular condition. The solution means that the dark-matter is a geometric behaviour 

of the space-time rather than a mystery substance in the space-time. 
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