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Abstract: More and more real-world datasets have heavy-tailed distribution, while the calculations 

for these distributions in multi-dimensional cases are complex. This work shows a method to 

investigate data of multivariate heavy-tailed distributions. The sufficient condition for every  

-stable random vector is that it has α-stable marginals and Gaussian copula. From that results, we 

have a procedure testing stable distribution of multi-dimensional data and a formula representing 

density functions of multivariate stable distribution. Adopted a new tool, datasets about daily returns 

of 4 stocks on HoSE and 3 grains were analyzed. 

Keywords: Multivariate stable distribution, Gaussian copula, daily returns data. 

1. Introduction * 

Until 1970's, most of the statistical analysis methods were developed under normality assumptions 

with symmetric and do not allow heavy-tailed distributions. In applications, however, datasets have 

asymmetric distributions, especially in finance and risk management studies [1-5]. According to the 

central limit theorem, stable distributions are natural heavy-tailed extensions of normal distributions and 

have attracted a lot of attention [6-8]. 

While the univariate stable distributions are now mostly accessible by several methods to estimate 

stable parameters and reliable programs to compute stable densities, cumulative distribution functions, 

and quantiles for stable random variables [9-12], the use of the heavy-tailed models in practice has been 

restricted by the lack of the tools for multivariate stable distributions. 

The main challenge of dealing with multivariate data with heavy-tailed distributions is ambiguous 

dependence between the coordinates of a random vector. Whilst the dependence can be completely 
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determined by the covariance matrix for the case of multi-normal data, the covariance matrix does not 

exist for heavy-tailed data. Fortunately, the problem can be solved by the tool of copula. The term copula 

was first introduced by Sklar [13] but was not of great interest until recent years. Copula functions 

describe the dependence structure connecting random variables, allowing separating of the dependence 

structure and marginal distributions. 

Another way of parameterizing multivariate stable distributions is to use the well-known univariate 

stable distribution results about one-dimensional projections of random vectors. However, in practice, 

this approach faces challenging computational problems that have not been generally solved for 

multivariate stable distributions. The problems are caused by the complexity of the possible distributions 

with an uncountable set of parameters. In recent years, computations have become more accessible for 

elliptically contoured stable distributions by Nolan [6] which are scale mixtures of multivariate normal 

distributions. The tools for the very special class of stable distributions were applied in several empirical 

studies [5, 14]. Although the method is available only for a narrow subclass of symmetric multivariate 

stable distributions, that approach stimulates researchers to create similar tools for other subclasses of 

general stable multidimensional distributions. We developed a new method for investigating the data of 

multivariate distributions with heavy tails, to decrease the complexity of stable copulas downwards to a 

more practicable case of Gaussian copulas. This method was applied for daily return data on Nasdaq 

[15]. We continue to use it for daily returns data of stocks on HoSE in Vietnam and grains.  

The work is organized as follows. Section 2 presents some auxiliary results on stable distributions 

and copulas. In Section 3, we give the main results of multivariate stable distributions with Gaussian 

copulas, demonstrating that Gaussian copulas are also those of some multivariate stable distributions 

and a random vector is -stable if it has Gaussian copula and all its marginals are -stable. We formulate 

the density function of a stable random vector with a Gaussian copula, which can be practically 

computed. Lastly, the results are applied to the study of stock market data of Vietnam and grains on the 

world. The conclusion is Section 4. 

2. Stable Distributions and Copulas 

2.1. Stable Distributions   

A random variable X is said to have a stable distribution if for any positive numbers A, B, there is a 

positive number H and a real number  such that 𝐴𝑋1 + 𝐵𝑋2 =
𝐷

𝐻𝑋 + , where X1 and X2 are 

independent copies of X, and  =
𝐷

 denotes the equality in distribution. 

For any stable random variable X, there is a number   (0, 2] such that the numbers A, B, and C in 

the above definition satisfy the following formula 𝐴𝛼 + 𝐵𝛼 = 𝐻𝛼. The number  is called the index of 

stability or characteristic exponent. The stable random variable X with index  is called -stable. The 

probability densities of -stable random variables exist and are continuous but, with a few exceptions, 

they are not known in closed form [16]. Characteristic function is a useful tool for studying these 

variables, the following form [17]: 

   
     

    

exp 1 2 1
exp

exp 1 2 1
X

u i tan / sign u i u ,
u iuX

u i / sign u ln u i u , .
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The real parameters , , , and  uniquely determine the distribution of X, then the symbol 

𝑋 ~ 𝑆(,, , ) is used to refer to that situation. Usually , , and  are named as the skewness, the scale 

and the location parameters of X, respectively.   

Similar to the concept of -stable random variable in , the stability can be expanded to random 

vectors in d . Namely, a random vector X is said to have a stable distribution if for any positive numbers 

A, B, there is a positive number H and a vector  in d such that 𝐴𝐗1 + 𝐵𝐗2 =
𝐷

𝐻𝐗 + , where X1 and 

X2 are independent copies of  X. Characteristic functions are still used to describe stable distributions in 

multivariate case, but they are more complicated and determined by three paramaters: stable index , 

vector  and spectral measure  on the unit sphere  1d

d :  ¡x x  of d : 

𝜑X(𝐭) = {
exp[− ∫ |〈𝐭, 𝐬〉|𝛼(1 − 𝑖sign〈𝐭, 𝐬〉tan(𝜋𝛼/2))𝛬(𝑑s) + 𝑖〈𝐭, 𝛅〉

𝕊𝑑
],         𝛼 ≠ 1

exp[− ∫ |〈𝐭, 𝐬〉|(1 + (2/𝜋)𝑖sign〈𝐭, 𝐬〉ln|〈t, s〉|)𝛬(𝑑s) + 𝑖〈𝐭, 𝛅〉
𝕊𝑑

],    𝛼 = 1
   

where t =  1

T

dt ,...,t , s =  1

T

ds ,...,s   d  and the inner product 〈𝐭, 𝐬〉 = 
1 1 d dt s ... t s   of  t and s (see 

[14]). Moreover, any linear combination of the components of 1,...,X
T

dX X of the type                    

𝑌 = ∑ 𝑎𝑘𝑋𝑘
𝑑
𝑘=1  is an -stable random variable, where 

ka .¡   

The spectral measure  is a non-negative Borel measure on 
d

 of the Euclidean space d . The 

dependence structure of a stable distribution on d is determined by the spectral measure , however, 

estimating it is difficult and there is no more direct way to observe it. In some special cases, dependence 

structure of stable random vector is estimated simpler. Stable random vectors with Gaussian copula 

belong to these special cases. 

2.2. Copulas   

A copula is a multivariate distribution whose marginals have a uniform distribution on [0,1]. It is 

used as a model of the dependence structure of random variables. In 1959, copula was first introduced 

by Abe Sklar [13]. For later years, important basic concepts of copulas were found and became 

increasingly popular. In 1999, Embrechts, McNeil, Straumann succeeded in applying copulas in finance. 

In 2006, copulas were utilized as a risk management tool in insurance and bank. Nowadays, copulas 

have been applied in many fields as sea storm [18], risk evaluation of droughts [19]. 

Given a random vector X =  1

T

dX ,...,X  taking values in Euclidean space d , its cumulative 

distribution function (CDF hereafter) and probability density function (PDF hereafter) are denoted by 

FX and fX, respectively. The coordinates 
1 dX ,...,X  are called marginals, simultaneously 

1 dX XF ,...,F  and  

1 dX Xf ,..., f are called marginal CDF’s and marginal PDF’s of X, respectively. 

Let random vector X =  1

T

dX ,...,X , a d-dimensional copula (or d-copula) of X is the function                

CX: [0, 1]d →  [0, 1] given by  
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𝐶X(𝑠1, . . . , 𝑠𝑑) = 𝐹X (𝐹𝑋1

← (𝑠1), . . . , 𝐹𝑋𝑑

← (𝑠𝑑)) 

where FX is the CDF of X, and 
1 dX XF ,...,F 

 are generalized inverse functions of marginal distribution 

functions of X [20], (If F is CDF of continuous variable, 1F F  ). The famous Sklar’s Theorem [15] 

also confirms the following relationship  

𝐹𝐗(𝑥1, . . . , 𝑥𝑑) = 𝐶𝐗 (𝐹𝑋1
(𝑥1), . . . , 𝐹𝑋𝑑

(𝑥𝑑))
 

for  1 dx ,...,x R ; .     From the above equations, we get 

             𝑓𝐗(𝑥1, . . . , 𝑥𝑑) = 𝑐𝐗 (𝐹𝑋1
(𝑥1), … , 𝐹𝑋𝑑

(𝑥𝑑))𝑓𝑋1
(𝑥1)…𝑓𝑋𝑑

(𝑥𝑑)                                    (1) 

and 

                                             𝑐𝐗(𝑠1, . . . , 𝑠𝑑) =
𝑓𝐗(𝐹𝑋1

−1(𝑠1),…,𝐹𝑋𝑑
−1(𝑠𝑑))

𝑓𝑋1(𝐹𝑋1
−1(𝑠1))…𝑓𝑋𝑑

(𝐹𝑋𝑑
−1(𝑠𝑑))

            (2) 

for s1,…,sd ϵ [0;1] and cX(s1,…,sd) is the PDF of the copula CX(s1,…,sd), the CDF FX(x1,…,Xd) is 

continuous. 

A special copula is independence copula, denoted by Пd, which is the copula of a random vector Y 

with independent marginals X1,…,Xd. In this case we have 

           𝐹𝐘(𝑥1, . . . , 𝑥𝑑) = П𝑑 (𝐹𝑋1
(𝑥1), . . . , 𝐹𝑋𝑑

(𝑥𝑑)) =  𝐹𝑋1
(𝑥1). . .𝐹𝑋𝑑

(𝑥𝑑) ,                 (3) 

and 

                                                   𝑓𝐘(𝑥1, . . . , 𝑥𝑑) =  𝑓𝑋1
(𝑥1). . .𝑓𝑋𝑑

(𝑥𝑑) ,                              (4) 

The copula was simply the joint distribution function of random variables with uniform marginals. 

The Gaussian copula is the most popular one in applications. It is simply derived from the correlation 

matrix  and mean vector  of a multivariate Gaussian distribution (without loss of generality, we can 

assume  = 0) and is given by the following formula 

             
  1 1

1 1 22 1
1 1

1
2

2
x x

ds s /d / T

d dC s ,...,s ... exp dx ...dx
    

 

 
      

 
                  (5)    

where si  [0, 1], i = 1, 2, ..., d, x = (x1, ..., xd)T ,  is CDF of standard univariable Gaussian distribution. 

Moreover, the calculation of Gaussian copula is available on computer softwares, such as R software. 

One nice property of copulas is that the copula functions are invariant under strictly increasing 

transformations. Especially, the following proposition given by Embrechts [5] provides a useful tool for 

getting the main results of our study. 

Proposition 1. Let (𝑋1, . . . , 𝑋𝑑) be a continuous random vector which has copula C. If functions T1, 

..., Td : ¡ ¡ are strictly increasing on ran(X1), ..., ran(Xd), respectively, then (T1(X1), ..., Td(Xd)) also 

has copula C. 

3. Results and Discussion  

3.1. Stable Random Vector with Gaussian Copula 

In applied statistics, sometimes transformations that turn a given data set into a new form need to be 

used, for example, normalizing transformations. The following result is applied to transformation for 

continuously distributed data (see [15]). 
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Proposition 2. Let X and Y be continuous random variables with probability density functions 
Xf

and 𝑓𝑌 which are positive on ran(X) and ran(Y), respectively. Then there exists a strictly increasing 

differentiable function g: ran(X) → ran(Y) such that the random variable g Xo has the same distribution 

as Y, in brief 𝑔 ∘ 𝑋 ~ 𝑌.  

Proof.  

By assumption, the probability density functions 
Xf ,

Yf . Therefore, the cumulative distribution 

functions FX and FY are strictly increasing on the images ran(X) and ran(Y), respectively. Then the 

function g : ran(X) → ran(Y) defined by    1

Y Xg u F F u o  is well-determined as a strictly increasing 

function. Besides, for each u  ran(X),       /X Yg u f u f g u   is a positive function.  

The identity implies       Y Xf g u g u du f u du  , that yields 

           
t t

Y Y X XF g t f g u g u du f u du F t
 

    , t  ℝ                                   (6) 

On the other hand, for every t  ℝ,  

           1 1: :g X XF t P g X t P X g t F g t        o
 

Compared the above with (6), putting y = g(t) implies    Y g XF y F y o . 

This confirms the random variable g Xo has the same distribution as Y. The proposition is proved. 

The above proposition immediately implies the following corollaries. 

Corollary 3. Let X be a normal random variable and a positive number   (0; 2]. Then there exists 

a strictly increasing function g: ¡  ¡  such that the random variable g Xo  is -stable. 

Corollary 4. Let X be an -stable random variable for a given positive number   (0; 2]. Then 

there exists a strictly increasing function g: ran(X) → ¡  such that the random variable g Xo has normal 

distribution.  

It is evident that all marginals of a stable random vector are stable random variables. The inverse 

statement is not true, a random vector with all stable marginals is not always stable. However, as it is 

confirmed in the next lemma, the inverse statement is valid if those marginals are independent. Proof of 

that is quite simple and need not be presented. 

Lemma 5. Let (0;2 ]  and a random vector 1( ,..., )dU UU  be given. If the marginals 1,..., dU U  
are independent α-stable random variables, then U is an α-stable random vector.  

The next lemma is a useful tool for the proof of Theorem 8. 

Lemma 6. Let   (0; 2] be given and X be an α-stable random vector with marginals X1,…,Xd. 

Let Y = QX, where Q is a d×d matrix. Then Y also is an α-stable random vector. 

Proof. Let 𝐗∗ be an independent copy of X, then  𝐘∗ =  𝐐𝐗∗  is an independent copy of Y. From 

the stability of 𝐗, for every pair of positive numbers A and B, there is number H =[𝐴𝛼 + 𝐵𝛼]1/𝛼 and a 

vector  in d such that 𝐴𝐗 + 𝐵𝐗∗ =
𝐷

𝐻𝐗 + . Then it is obvious that 

𝐴𝐘 + 𝐵𝐘∗ = 𝐐(𝐴𝐗 + 𝐵𝐗∗) =
𝐷

𝐐(𝐻𝐗 + ) = 𝐻𝐐𝐗 + 𝐐 = 𝐻𝐘 + 𝐐, 

which confirms the α-stability of  𝐘∗ and completes the proof. 

The following lemma is an elementary result of probability theory, its proof can be omitted. 
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Lemma 7. Let G be a d-dimensional normally distributed random vector with expectation 

µ and positive definite covariance matrix Σ, G∼Nd(µ;Σ). Then there exists an orthogonal 

d×d matrix A = (aij) such that the random vector 𝐆∗=AG has independent normally 

distributed marginals. 

The above lemmas are used to prove the next theorem which confirms that Gaussian copula is a 

copula of a stable random vector. 

Theorem 8. Let C be a Gaussian copula of a normally distributed random vector 𝐆 with positive 

definite covariance matrix . Then for every number   (0; 2], there exists an -stable random vector 

W such that C is also the copula of W. 

Proof. Because both addition and multiplication by positive numbers are strictly increasing 

transformations in , by virtue of Proposition 1 it can be supposed that all marginals G1,…, Gd of the 

random vector 𝐆 are standard normal random variables, Gk ~ N(0;1) for k = 1,…,d. Based on the 

assumption, the covariance matrix  of 𝐆 is positive defined, Lemma 7 implies the existence of an 

orthogonal d×d matrix 𝐀 = (aij) such that the normal random vector Y = 𝐴𝐆 has independent marginals 

Y1,…,Yd. Now α-stable random variables S1,…,Sd with the common distribution 𝑆(, 0,1,0) are 

concerned. Corollary 3 ensures that, for each k = 1,…,d, there exists a strictly increasing function 

:kg  such that the random variable Uk = gk ◦ Yk has the same α-stable distribution as Sk. 

Simultaneously, the independence of marginals Y1,…,Yd implies the independence of random variables 

U1,…,Ud. Thus, the random vector U = (U1,…,Ud) has independent α-stable marginals, it must be an α-

stable random vector as the conclusion of Lemma 5. Let define a new random vector W = (W1,…,Wd) = 

𝐀−1𝐔. Then by virtue of Lemma 6, it is clear that W is also an α-stable random vector. We attempt to 

point out that W has the same copula C as 𝐆, that means C CW G , which is equivalent to  

c cW G .              (7) 

Firstly, we defined the transformation : d dB  by 1 1 1( ,..., ) ( ( ),..., ( ))d d dt t g t g tB  for 1( ,..., ) d

dt t . 

Then it is clear that 
1 ( )W A BA G . Denoted by JK  the Jacobian of the transformation : d dK . Then, 

because A  is an orthogonal matrix, 1 1J JA A
, we also have 11( ) ... ( )B d dJ tg tg .  

These equations imply 
1

1 1 1 1( ,..., ) ( ,..., ) ( ,..., ) ( ,..., )( ) ( )d d d df t t f t t J t t f t tY G A GA A , 

1 1

1 1 1 1 11( ,..., ) ( ( ,..., )) ( ,..., ) ( ,..., ) ]( ) ( ) [ ( ) ... ( )U Y B GBA A BAd d d dd df t t f t t J t gt f t t gt t , 

1

1 1 1

1 1 1 1

1 1

1

1

( ,..., ) ( ,..., ) ( ,..., ) ( ( ,..., ))

( ,..., ) [ ( ) ... ( )] .

( ) ( ) ( )W U UA

G

A BA BA A BA BAd d d

d d d

df t t f t t J t t f t t

f gt t tg t
             (8) 

Consider 
1

k kk W Gh F F o , so  
 

  1

k

k k k

G k

k k

W W G k

f u
h u

f F F u
 

o
, for k = 1,…,d. 

On the other hand, Wk ~ S(,0,γk,0), therefore, 
1

k
Wk ~ S(,0,1,0). Suppose that k k kW S , we can be 

calculated 1... 1d   .                                                 (9) 

Moreover, Uk = gk ◦ Yk, for k = 1,…,d, 
1

kk S Yg F F o , we have  
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1
11

k k

k k
k k k

Y k G k

k k k k k

S S Y k
W W Y k

k

f u f u
g u h u

f F F u f F F u








   
o o

                (10) 

However, for 1( ,..., ]) 0;1[ d

ds s , it implies from (2) that  

1

1 1

1 1

1

1 1 1

1

, ,
,...,

d

d d

W W d

d

W W W X d

f F s F s
c s s

f F s f F s

W

W  

and 

1

1 1

1 1

1

1 1 1

1

, ,
,...,

d

d d

G G

G G

d

G

d

G d

f F s F s
c s s

f F s f F s

G

G . 

The above equations together with (8), (9) and (10) ensure the validity of (7), the proof completes. 

In the next theorem we see that owning Gaussian copula is a sufficient condition for a random vector 

with stable marginals with zero skewness parameters to have stable distribution.  

Theorem 9. For given   (0;2], let G be a Gaussian random vector with positive definite 

covariance matrix. Suppose that V is a random vector with -stable marginals 1 1 1( ,0, , )V S ,…, 

( ,0, , )d d dV S  such that the copula of V and of G are both equal to each other. Then V is an -stable 

random vector. 

Proof. From Corollary 4, there exist strictly increasing function hk: ¡ → ¡ , 1k ,...,d , such that 

the random variables k kh Vo has normal distribution N(0;1). Repeated the proof of Theorem 8 we have 

stable random vector W = (W1,…,Wd), ( ,0, ,0)k kW S , 1k ,...,d . Moreover, we can suppose that 

k k k kV W . Modified Lemma 6 with the d×d matrix Q replaced by a linear transformation, we can be 

sure that the random vector V = (V1,…,Vd) is an -stable random vector. The Theorem is proved 

The above theorem together with the special structure of Gaussian copulas allows researchers to 

combine well - known computational tools for one dimensional stable distributions and Gaussian 

copulas to compute density functions and cumulative distribution functions of data which follow stable 

distributions with Gaussian copulas. In particular, from (5) we obtain the following result. 

Corollary 10. For given   (0;2], let G be a Gaussian random vector with positive definite 

correlation matrix  , let S be an -stable random vector with -stable marginals Sk with zero skewness 

parameters, k = 1,..,d. Suppose that the Gaussian copula CG is the copula of S. Then the density function 

of S can be calculated by the formula 

𝑓S(𝑦1, … , 𝑦𝑑) =
exp (

−1

2
(𝜙−1(𝐹𝑆1

(𝑦1)),…,𝜙−1(𝐹𝑆𝑑
(𝑦𝑑)))T∑−1(𝜙−1(𝐹𝑆1

(𝑦1)),…,𝜙−1(𝐹𝑆𝑑
(𝑦𝑑)))

(2𝜋)
𝑑
2|∑|

1
2𝜑(𝜙−1(𝐹𝑆1

(𝑦1))∙…∙𝜑(𝜙−1(𝐹𝑆𝑑
(𝑦𝑑)))

   

              × 𝑓𝑆1
(𝑦1) ∙. . .∙ 𝑓𝑆𝑑

(𝑦𝑑),        

where  and  are PDF and CDF of univariable standard Gaussian distribution. 

Based on Theorem 9, we suggest a procedure to check whether a data set can be fitted to multi-

dimensional stable distribution or not, with details as follows: 

Step 1. To estimate stable parameters of data marginals and to check if all marginals have -stable 

distributions with zero skewness parameters and suitably chosen common stable index .  
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There are several available software packages (eg. R package) that serve to estimate stable 

parameters of univariate data. Having the estimated marginal stable indexes i, it is most practicable to 

take their average as the common stable index  for checking the -stability of all marginals. Then, the 

Kolmogorov-Smirnov test, which is available in almost all statistical packages, can be applied to check 

the -stability of each marginal. If any marginal is rejected to have -stable distribution, the procedure 

can be immediately stopped and one can conclude the concerned data set cannot be fitted to any multi-

dimensional stable distribution. In the case when all marginals are accepted to have -stable distribution 

with zero skewness parameters, the procedure can be continued to the next step. 

Step 2. i) To apply Corollary 4 for transforming the concerned multivariate data to the data which 

have all normal distributed marginals; ii) To estimate the covariance/correlation matrix  of the 

transformed data and to check if the matrix is positive definite; and iii) To test hypothesis for checking 

if the transformed data are fitted to the Gaussian copula determined by (5).  

By virtue of Proposition 1, the transformed data in point: i) Has the same copula as the copula of the 

original data. Besides, it is clear that the matrix in point; ii) Is positive definite if its determinant differs 

from 0. Moreover, the hypothesis test in point; and iii) Can be conducted by using an available statistical 

package (R package for instance). 

If the hypothesis test in Step 2 gets the acceptance, Theorem 9 allows us to conclude that the 

concerned data are fitted to a random vector with stable distribution. However, if the hypothesis remains 

rejected, one cannot conclude that the data are not extracted from a random vector with stable 

distribution, because the class with all stable random vectors is much broader than the class with stable 

random vectors having Gaussian copulas. 

3.2. Application of Stable Random Vector with Gaussian Copula for Real Data 

In this section, we analyze data of stable distribution with Gaussian copula by using the results given 

in the previous section.  

3.2.1. Dataset of Stocks in Vietnam Stock Market 

Dataset includes daily close prices of 4 stocks: BID (BIDVbank), VCB (Vietcombank), FLC (FLC 

Group), VNM (Vinamilk), with a sample from July 24, 2017 to October 14, 2019 to imply observations 

downloaded from Bao Viet Securities website (https://bvsc.com.vn/). These are stocks on Ho Chi Minh 

Stock Exchange (abbreviated HoSE). 

Continuously compounded percentage returns are considered, i.e. daily returns are measured by log-

differences of closing pricing multiplied by 100. Descriptive statistics together with Kolmogorov-

Smirnov test (KS test) for normal distribution of the univariate series are shown in Table 1 and the result 

for the univariate stable model estimation are presented in Table 2. 

Table 1. Normal distribution test for HoSE daily returns 

Stock Size Mean SD Sknew Kurtosis p-value 

BID 497 0.0015 0.03 0.42 3.74 0.00455 

VCB 497 0.0021 0.02 0.34 3.85 0.00068 

FLC 497 -0.0015 0.02 -1.18 13.55 0.00014 

VNM 497 -0.0003 0.02 -2.47 43.59 0.00018 

In Table 1, all p-values smaller than 5% confirm the significant divergence from normal distribution 

of the 4-dimensional vector. Simultaneously, the greater than 5% p-values of KS tests in Table 2  

are crucial arguments to conclude all the daily returns series of BID, VCB, FLC and VNM have 
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univariate stable distributions with common stable index   = 1.416 (the average number of i’s of 

those returns series). 

Table 2. KS test for univariate stability of HoSE daily returns 

Stock       p-value 

BID 1.464 1.416 0.008 0.0143 -0.0015 0.5046 

VCB 1.446 1.416 0.164 0.010 -0.0021 0.2884 

FLC 1.256 1.416 0.02 0.0093 -0.0007 0.2233 

VNM 1.498 1.416 0.02 0.0082 0.0002 0.1952 

After the above conclusion, we guess the 4-component vector of series of BID, VCB, FLC and VNM 

has multivariate stable distribution. To check this, we will use model of multivariate stable distribution 

with Gaussian copula. In the first step, the correlation matrix of daily returns (after normalizing by 

respective functions determined in Proposition 2 and Corollary 4) was calculated, with results given in 

Table 3.  

Table 3. Correlation matrix of HoSE daily returns 

 BID VCB FLC VNM 

BID 1 0.05001 0.00232 0.01380 

VCB 0.05001 1 0.04964 0.05349 

FLC 0.00232 0.04964 1 0.00167 

VNM 0.01380 0.05349 0.00167 1 

Then, the function named gofCopula in the copula package of R software was used to test the 

hypotheses of having Gaussian copula for 4-coordinates vector of daily returns, p-value is 0.2552. The 

result shows that the copula of daily returns vector is significantly Gaussian copula. Thus, according to 

Theorem 8, the daily returns vector of 4 stocks BID, VCB, FLC and VNM has multivariate stable 

distribution with stable index  = 1.416. 

Consequently, by virtue of (1), (2), and (5), Corollary 9 can be applied to determine the density 

functions of 4-coordinate vector of daily returns. In particular, the density functions are defined by the 

following explicit form: 
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where X =  1 4

T
X ,...,X  with 4-coordinate valued daily returns of stocks BID, VCB, FLC, and 

VNM, respectively. Moreover, all linear combinations of -stable random vector are -stable variables 

Therefore, we can consider choice investment portfolio when invests in four these stocks. 

3.2.2. Dataset of Grains  

With the advantage of nutrients, the grain market is increasingly active. Grain prices are also highly 

volatile, while the margins for some grains do not follow a normal distribution. This article will analyze daily 

returns of three kinds of grains: oat, US corn, US soybean meal. Dataset was downloaded from 

"Investing.com website", with 502 observations sample from January 22nd, 2021 to December 30th, 2022.  

Descriptive statistics together with KS test for normal distribution of the univariate series are shown 

in Table 4 and the result for the univariate stable model estimation are presented in Table 5. In Table 4, 
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all p-values smaller than 5% confirm the significant divergence from normal distribution of the  

3-dimensional vector. Simultaneously, the greater than 5% p-values of KS tests in Table 5 are crucial 

arguments to conclude all the daily returns series of Oat, Corn, and Soybean have univariate stable 

distributions with common stable index   = 1.598667. 

Table 4. Normal distribution test for grains daily returns 

Grains Size Mean SD Sknew Kurtosis p-value 

Oat 502 0.0015 0.03 0.42 3.74 0.00455 

Corn 502 0.0021 0.02 0.34 3.85 0.00068 

Soybean 502 -0.0015 0.02 -1.18 13.55 0.00014 

Table 5. KS test for univariate stability of grains daily returns 

Stock       p-value 

Oat 1.648 1.598667 -0.225 1.080558 0.1388824 0.7207 

Corn 1.486 1.598667 -0.067 1.42446101 0.02137818 0.3315 

Soybean 1.662 1.598667 -0.22 1.09887852 0.09673249 0.9960 

Next, we check multivariate stable distribution with Gaussian copula of the 3-component vector of 

series Oat, Corn and Soybean. The correlation matrix of daily returns (after normalizing by respective 

functions determined in Proposition 2 and Corollary 4) was calculated, with results given in Table 6. 

Table 6. Correlation matrix of grains daily returns 

 Oat Corn Soybean 

Oat 1 -0.05413226 0.06138928 

Corn -0.05413226 1 0.05633384 

Soybean 0.06138928 0.05633384 1 

Then, the function named gofCopula in the copula package of R software was used to test the 

hypotheses of having Gaussian copula for 3-coordinate vector of daily returns, p-value is 0.5559. The 

result shows that the copula of daily returns vector is significantly Gaussian copula. Thus, according to 

Theorem 9, the daily returns vector of 3 kinds of grains Oat, Corn and Soybean has multivariate stable 

distribution with stable index   = 1.598667. 

Similar, Corollary 10 can be applied to determine the density functions of 3-coordinate vector of 

daily returns grains. In particular, the density functions are defined by the following explicit form: 
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where X =  1 2 3

T
X ,X ,X  with 3-coordinate valued daily returns of grains Oat, Corn, and Soybean, 

respectively. Therefore, we can consider choosing investment portpolio when investing in three these 

products. 
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4. Conclusion 

Stable random vectors are increasingly being applied to model real-world data, especially for heavy-

tailed multivariate data, while the calculations on this kind of data are very complicated. Copula is a 

connection mechanism that relates marginal distributions together to determine the multivariate 

distribution of a random vector. The paper represents the theoretical base of the Gaussian copula role in 

connection of univariate stable marginal distributions into multivariate stable distributions. This base 

allows to create a tool for testing the stable multivariate distribution of random vector. The tool can be 

applied widely for real-world data. 
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