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1. Introduction* 

The Volterra differential equations play an important role in studying mathematical models because 

for almost systems in ecology, economy, the evolution of present time depends on the past history of 

the systems. Therefore, studying the robust stability of systems is important both in theory and practice 

since the system always operates under the effect of uncertain perturbations. One can deal with the 

robust stability by many ways. Some research groups measured the robust stability by using the so-

called stability radii for linear systems [1, 2] or carried-out some estimates of the perturbation ensuring 

the stability of perturbed systems [3, 4]. Also, the other method to study robust stability is to consider 

Bohl-Perron theorem, which establishes a relation between the Liapunov stability of homogeneous 

differential equations in initial conditions and the boundedness of solutions of inhomogeneous one. We 

can refer to [5-7] to get some results on this problem for ordinary or delay linear differential equation.  

The aim of this work is to study the robust stability and Bohl-Perron theorem for the Volterra integro-

differential equation 

                      𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∫ 𝐻(𝑡, 𝑠)𝑥(𝑠)
𝑡

0
𝑑𝜇(𝑠) + 𝑓(𝑡),     𝑡 ≥  0,                                         (1) 

where 𝜇 is a radon measure on (ℝ+, 𝐵(ℝ+)) and 𝐴(. ),𝐻(. , . ) are specified later.  
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Firstly, we deal with the preservation of stability for the linear Volterra integro-differential Eq. (1) 

under small perturbations and then we study Bohl-Perron theorem. Since the derivative of state process 

x(t) depends on all past path 𝑥(𝑠), 0 ≤ 𝑠 ≤ 𝑡, we have to use a more general inequality of Gronwall-

Bellman type to obtain the upper bound of perturbations. Further, the Cauchy operator of the 

corresponding homogeneous equation does not have the semi-group property, which implies that the 

classical argument to solve this problem is no longer valid. To overcome it, we define weighed spaces 

𝐿𝛾([0,∞), 𝑋) and 𝐶𝛾([0, ∞), 𝑋) (see Definitions below) and consider operators acting between these 

spaces. The paper is organized as follows. In the next section we recall some basic properties of linear 

Volterra integro-differential with measures and prove the existence of solutions. In Section 3, we prove 

that if the linear Volterra equations are exponentially stable, then under small Lipschitz perturbations, 

the perturbed system is 𝐿𝑝 stable. Section 4 presents the famous Bohl-Perron Theorem for Eq. (1). We 

introduce some weighted spaces and consider the solutions of Eq. (1) as elements of these spaces. Hence, 

we show that the exponential stability is equivalent to the surjectivity of certain operators. Some 

examples are introduced to illustrate the results. 

2. Linear Volterra Differential Equations 

   Let 𝑋 be a Banach space and 𝐿(𝑋) be the space of the continuous linear transformations on 𝑋. Let 

𝐴(. ): [0,∞) → 𝐿(𝑋) is a continuous function valued in 𝐿(𝑋) and 𝐻(. , . ) is a two variable continuous 

function defined on the set {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 < ∞}, valued in 𝐿(𝑋). For any continuous function 

𝑞: [0,∞) → 𝑋 we consider the linear integro-differential Volterra system  

                                         {
𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∫ 𝐻(𝑡, 𝑠)𝑥(𝑠)𝑑𝜇(𝑠)

𝑡

0
+ 𝑞(𝑡),   𝑡 ≥ 0                             (2)

𝑥(0) = 𝑥0.
             

where 𝜇  is a random measure on (ℝ+, 𝐵(ℝ+)). This means that 𝜇 is a measure and 𝜇(𝑀) < +∞ for 

every compact 𝑀 ⊂ ℝ+. We note that although 𝐻(. , . ) is a two variables continuous function, the 

mapping 𝑡 → ∫ 𝐻(𝑡, 𝑠)𝑥(𝑠)
𝑡

0
𝑑𝜇(𝑠) may be discontinuous at some points (at most in a countable set). 

Therefore, we have to understand the solution x of the initial problem in Eq. (2) in Carathéodory sense, 

i.e., 𝑥(. ) is continuous and it is differentiable almost every where with respect to Lebesgue measure on 

ℝ+. In other words, the function 𝑥(. ) is a solution of Eq. (2) with the initial condition  𝑥(0) = 𝑥0 if and 

only if it satisfies the equation: 

          𝑥(𝑡) = 𝑥(0) + ∫ 𝐴(𝑡)𝑥(𝑡)𝑑𝑡
𝑡

0
+ ∫ ∫ 𝐻(𝜏, 𝑠)𝑥(𝑠)𝑑𝜇(𝑠)

𝜏

0

𝑡

0
 𝑑𝜏 + ∫ 𝑞(𝜏)𝑑𝜏

𝑡

0
,   𝑡 ≥ 0.                    (3) 

Proposition 2.1 The initial value problem in Eq. (2) has a unique solution. 

Proof. Let 𝑇 > 0 fixed. Construct a sequence of Picard approximations 

              𝑥0(𝑡) = 𝑥(0),   0 ≤ 𝑡 ≤ 𝑇, 

          𝑥𝑛+1(𝑡) = 𝑥(0) + ∫ 𝐴(𝜏)𝑥𝑛(𝜏)𝑑𝜏
𝑡

0

+ ∫ ∫ 𝐻(𝜏, 𝑠)𝑥𝑛(𝑠)𝑑𝜇(𝑠)
𝜏

0

 
𝑡

0

𝑑𝜏 + ∫ 𝑞(𝜏)𝑑𝜏.
𝑡

0

                     (4) 

It is seen that 

‖𝑥𝑛+1(𝑡) − 𝑥𝑛(𝑡)‖ = ∫ ‖𝐴(𝜏)(𝑥𝑛 − 𝑥𝑛−1)(𝜏)‖𝑑𝜏
𝑡

0

+ ∫ ∫ ‖𝐻(𝜏, 𝑠)(𝑥𝑛 − 𝑥𝑛−1)(𝑠)‖𝑑𝜇(𝑠)
𝜏

0

𝑡

0

 𝑑𝜏. 

Therefore,  

𝑠𝑢𝑝
0≤𝜏≤𝑇

|𝑥𝑛+1(𝜏) − 𝑥𝑛(𝜏)| = 𝐾 ∫ 𝑠𝑢𝑝
0≤𝜏≤𝑠

‖(𝑥𝑛 − 𝑥𝑛−1)(𝜏)‖𝑑𝑠
𝑡

0

, 
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where 𝐾 = 𝑠𝑢𝑝
0≤𝜏≤𝑇

‖𝐴(𝜏)‖ + 𝜇([0, 𝑇]) 𝑠𝑢𝑝
0≤𝑠≤𝑡≤𝑇

≤ ‖𝐻(𝑡, 𝑠)‖. By induction we get  

𝑠𝑢𝑝
0≤𝜏≤𝑇

‖(𝑥𝑛+1 − 𝑥𝑛)(𝜏)‖  ≤  𝐾 ∫ 𝑠𝑢𝑝
0≤𝜏≤𝑠

‖(𝑥𝑛 − 𝑥𝑛−1)(𝜏)‖𝑑𝑠
𝑡

0

 

                                  ≤ 𝐾2 ∫ (∫ 𝑠𝑢𝑝
0≤𝑢≤𝜏

‖(𝑥𝑛−1 − 𝑥𝑛−2)(𝑢)‖𝑑𝑢
𝑠

0

) 𝑑𝑠
𝑡

0

≤
(𝑇𝐾)𝑛−1

(𝑛 − 1)!
. 

Hence, by using Weierstrass criterion for uniform convergence of series we see that  

𝑥(𝑡) − 𝑥0 = ∑(𝑥𝑘(𝜏) − 𝑥𝑘−1(𝜏))

∞

𝑘=1

= 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛(𝑡) − 𝑥0, 

is a continuous function. By passing the limit as 𝑛 → ∞ in Eq. (4) we have  

𝑥(𝑡) = 𝑥(0) + ∫ 𝐴(𝑡)𝑥(𝑡)𝑑𝑡
𝑡

0

+ ∫ ∫ 𝐻(𝑡, 𝑠)𝑥(𝑠)𝑑𝜇(𝑠)
𝑡

0

𝑡

0

 𝑑𝑡 + ∫ 𝑞(𝑡)𝑑𝑡
𝑡

0

,   𝑡 ≥ 0, 

i.e., 𝑥(. ) is the solution of (3) with the initial condition 𝑥(0) = 𝑥0. The proof is complete. 

The homogeneous equation corresponding with Eq. (2), i.e., 𝑞 ≡ 0  is  

                           {
𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∫ 𝐻(𝑡, 𝑠)𝑥(𝑠)𝑑𝜇(𝑠)

𝑡

0
,   𝑡 ≥ 0,

𝑥(0) = 𝑥0.
                                                       (5) 

We define the Cauchy operator 𝛷(𝑡, 𝑠), 𝑡 ≥ 𝑠 ≥ 0, generated by the system (2.4) as the solution of 

the matrix equation: 

                            {
𝛷′(𝑡, 𝑠) = 𝐴(𝑡)𝛷(𝑡, 𝑠) + ∫ 𝐻(𝑡, 𝑠)𝛷(𝜏, 𝑠)𝑑𝜇(𝜏)

𝑡

0
,   𝑡 ≥ 𝑠 ≥ 0

𝛷(𝑠, 𝑠) = 𝐼
.                              (6) 

As it is mentioned above, the mapping 𝑡 → 𝛷(𝑡, 𝑠) is continuous and it is differentiable almost every, 

where 𝑡 ∈ [𝑠,∞). We have the following useful lemma, called the variation of constants formula,  

Lemma 2.2 The solution of the Volterra equation (2.1) can be expressed as  

                                           𝑥(𝑡) = 𝛷(𝑡, 0)𝑥0 + ∫ 𝛷(𝜏, 𝜌)𝑞(𝜌)
𝑡

0
𝑑𝜌.                                                           (7) 

Proof. We have 

∫ [𝐴(𝜏) ∫ 𝛷(𝜏, 𝑢)𝑞(𝑢)𝑑𝑢
𝜏

0

+ ∫ 𝐻(𝜏, 𝑠) (∫ 𝛷(𝑠, 𝑢)𝑞(𝑢)𝑑𝑢
𝑠

0

) 𝑑𝜇(𝑠) +
𝜏

0

𝑞(𝜏)]
𝑡

0

 𝑑𝜏 

              = ∫ [𝐴(𝜏) ∫ 𝛷(𝜏, 𝑢)𝑞(𝑢)𝑑𝑢
𝜏

0

+ ∫ (∫ 𝐻(𝜏, 𝑠)𝛷(𝑠, 𝑢)𝑑𝜇(𝑠)
𝜏

𝑢

) 𝑞(𝑢)𝑑𝑢 +
𝜏

0

𝑞(𝜏)]
𝑡

0

 𝑑𝜏 

              = ∫ [∫ (𝐴(𝜏)𝛷(𝜏, 𝑢)𝑞(𝑢)𝑑𝑢 + ∫ 𝐻(𝜏, 𝑠)𝛷(𝑠, 𝑢)𝑑𝜇(𝑠)
𝜏

𝑢

)
𝜏

0

𝑞(𝑢)𝑑𝑢 + 𝑞(𝜏)]
𝑡

0

 𝑑𝜏 

              = ∫ [∫
𝑑

𝑑𝜏
𝛷(𝜏, 𝑢)

𝜏

0

𝑞(𝑢)𝑑𝑢 + 𝑞(𝜏)]
𝑡

0

 𝑑𝜏 = ∫ 𝑞(𝑢) (∫
𝑑

𝑑𝜏
𝛷(𝜏, 𝑢)𝑑𝜏

𝜏

𝑢

)
𝑡

0

𝑑𝑢 + ∫  𝑞(𝜏)𝑑𝜏
𝑡

0

 

              = ∫ 𝛷(𝑡, 𝑢)𝑞(𝑢)
𝑡

0

𝑑𝑢 = 𝑥(𝑡). 

  Since the semi-group property of the Cauchy operator does not hold for the Volterra Eq. (5), we 

have to use another technique to study the Bohl-Perron Theorem for Volterra Equations. 

Definition 2.3 i) The Volterra equation (5) is uniformly bounded if there exists a positive number 

𝐶0 such that 
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                                                       ‖𝛷(𝑡, 𝑠)‖ ≤ 𝐶0, 𝑡 ≥ 𝑠 ≥ 0. 

ii) Let 𝜔 > 0. The Volterra equation (2.4) is 𝜔 -exponentially stable if there exists a positive number 

M such that  

‖𝛷(𝑡, 𝑠)‖ ≤ 𝑀𝑒−𝜔(𝑡 − 𝑠), 𝑡 ≥ 𝑠 ≥ 0. 

The conditions ensuring the boundedness or stability of the equation (5) can be referred to [6,8,9] 

and references therein. 

3. Stability of Volterra integro-differential Equation Under Small Perturbations 

In this section, we consider the effect of small perturbations to the stability of the Volterra Eq. (5). 

Let 𝑓(𝑡, 𝑠, 𝑥) and 𝑔(𝑡, 𝑥) be two continuous functions. Suppose that for every 𝑠 ≤ 𝑡 and 𝑥 ∈ 𝑋, the 

coefficients 𝐻(𝑡, 𝑠)𝑥 and 𝐴(𝑡)𝑥 of Eq. (5) are perturbed by f and g. Thus, they become 𝐻(𝑡, 𝑠)𝑥 ↦
 𝐻(𝑡, 𝑠)𝑥 + 𝑓(𝑡, 𝑠, 𝑥) and 𝐴(𝑡)𝑥 ↦  𝐴(𝑡)𝑥 + 𝑔(𝑡, 𝑥). Thus, for any 𝑡0 ≥ 0, the Cauchy problem for the 

perturbed Eq. (5) has following form:  

     {
𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∫ 𝐻(𝑡, 𝑠)𝑥(𝑠)𝑑𝜇(𝑠)

𝑡

0
+ ∫ 𝑓(𝑡, 𝑠, 𝑥(𝑠))𝑑𝜇(𝑠)

𝑡

0
+ 𝑔(𝑡, 𝑥(𝑡)),   𝑡 ≥ 0

𝑥(0) = 𝑥0

             (8) 

Suppose further that 𝑓(𝑡, 𝑠, 𝑥) is Lipschitz in x with Lipschitz coefficients 𝑘𝑡,𝑠 and 𝑔(𝑡, 𝑥) is 

Lipschitz with Lipschitz coefficient 𝑙𝑡, where 𝑘𝑡,𝑠, 𝑡 ≥ 𝑠 ≥ 0, and 𝑙𝑡 , 𝑡 ≥ 0 are continuous functions. 

One can suppose that 

𝑓(𝑡, 𝑠, 0) = 0,    𝑔(𝑡, 0) = 0,   𝑡 ≥ 𝑠 ≥ 0. 

With these assumptions, Eq. (8) has the trivial solution 𝑥(. ) ≡ 0. 

By a similar as in the proof of Proposition 2.1 we can show that for any 𝑥0 ∈ 𝑋 and 𝑡0 ≥ 0, Eq. (8) 

has a unique solution, namely 𝑥(. , 𝑡0, 𝑥0) ≡ 0, with the initial condition 

𝑥(𝑡0, 𝑡0, 𝑥0) = 𝑥0 and this solution is defined on 𝑡 ≥ 𝑡0.  

In the following, we write simply 𝑥(. ) or 𝑥(. , 𝑡0) for 𝑥(. , 𝑡0, 𝑥0) if there is no confusion. To proceed, 

we need the following lemma. 

Lemma 3.1 (Pachpatte inequality see [10]). Let the functions 𝑢(𝑡), 𝜎(𝑡), 𝑣(𝑡), 𝜔(𝑡, 𝑟) be 

nonnegative and continuous for 𝑎 ≤ 𝑟 ≤ 𝑡, and let 𝑐1 and 𝑐2 be nonnegative. If for 𝑡 ∈ 𝑎, ∞), 

𝑢(𝑡) ≤ 𝑐1 + 𝑐2 ∫ (𝑣(𝑠)𝑢(𝑠) + ∫ 𝜔(𝑠, 𝑟)𝑢(𝑟)𝑑𝜇(𝑟)
𝑠

𝑎

) 𝑑𝑠
𝑡

𝑎

, 

then for 𝑡 ≥ 𝑎, 

𝑢(𝑡) ≤ 𝑐1 𝑒𝑥𝑝 {𝑐2 ∫ (𝑣(𝑠) + ∫ 𝜔(𝑠, 𝑟)𝑑𝜇(𝑟)
𝑠

𝑎

) 𝑑𝑠
𝑡

𝑎

}. 

Firstly, we consider the boundedness of solutions {of Eq. (5) under small perturbations.  

Theorem 3.2 Suppose that the solution of Eq. (5) is uniformly bounded. Then, there exists a constant 

𝑀1 such that the following estimate:                                                     

                                                         ‖𝑥(𝑡)‖ ≤ 𝑀1‖𝑥(𝑡0)‖,        𝑡 ≥ 𝑡0,                                                       (9) 

holds for solution x(.) of Eq. (8), provided 

                                                    𝑁 = ∫ (𝑙𝑡 + ∫ 𝑘𝑡,𝑢𝑑𝜇(𝑢)
𝑡

𝑡0
) 𝑑𝑡

∞

𝑡0
< ∞. 
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Proof by Eq. (7) we have 

          

0 0t t

0 0 0( ) ( , ) ( , ) , ( ) , ,( (  ( ) ( ) , .

t t

x t t t x t g x f u x u d u t td     
 

   



 





             (10) 

By the assumptions, 𝑠𝑢𝑝
𝑡≥𝑡0

‖𝛷(𝑡, 𝑡0)‖ = 𝐶0 < ∞ and 𝑓(𝑡, 𝑠, 𝑥), 𝑔(𝑡, 𝑥) are Lipschitz continuous in x 

with the Lipschitz coefficients 𝑙. and 𝑘., respectively, we get  

                                    ‖𝑥(𝑡)‖ = 𝐶0‖𝑥0‖ + 𝐶0 ∫ (‖𝑥(𝜏)‖ + ∫ 𝑓(𝜏, 𝑢, 𝑥(𝑢)𝑑𝜇(𝑢)
𝑡

𝑡0
)

𝑡

𝑡0
𝑑𝜏.  

By using Pachpatte inequality in Lemma 3.1 with 𝑐1 = 𝐶0‖𝑥0‖ and  𝑐2 = 𝐶0 we have 

‖𝑥(𝑡)‖ = 𝐶0‖𝑥0‖ 𝑒𝑥𝑝 {𝐶0 ∫ (𝑙𝜏 + ∫ 𝑘𝜏,𝑢‖𝑥(𝑢)‖𝑑𝜇(𝑢)
𝑡

𝑡0

) 𝑑𝜏
𝑡

𝑡0

}. 

Thus, we get the estimate 𝑥(𝑡) ≤ 𝐶0𝑒𝐶0𝑁‖𝑥0‖, for all 𝑡 ≥ 𝑡0. The proof is complete. 

Example 3.3 Consider the equation 

                                       𝑥′(𝑡) = −𝑥(𝑡) +
1

𝑡2 ∫ 𝑠𝑥(𝑠)𝑑𝜇(𝑠)
𝑡

0
,   𝑡 ≥ 0,                                                (11) 

where 𝜇(. ) = ∑ 𝛿𝑛(. )∞
𝑛=1 . Thus 𝑥0 > 0 

i) When 0 ≤ 𝑡 ≤ 1, we have 𝑥(𝑡) = 𝑥0𝑒−𝑡. 

ii) When1 < 𝑡 < 2, we have 𝑥′(𝑡) = −𝑥(𝑡) +
1

𝑡2 𝑥(1) ≤ −𝑥(𝑡) + 𝑥(1), therefore  

𝑥(𝑡) ≤ 𝑥(1) = 𝑥(0)𝑒−1. 

iii) When 2 ≤ 𝑡 < 2, we have  

𝑥′(𝑡) = −𝑥(𝑡) +
1

𝑡2
(2𝑥(2) + 𝑥(1)) ≤ −𝑥(𝑠) +

1

22
(2𝑥(2) + 𝑥(1)) ≤ −𝑥(𝑠) + 𝑥(1), 

which implies that 𝑥(𝑡) ≤ 𝑥(1) = 𝑥(0)𝑒−1. 

iv) Continuing this way we have 𝑥(𝑡) ≤ 𝑥(0)𝑒−1,  ∀𝑡 ≥ 0. When x(0)<0 we can prove by a similar 

way that 𝑥(0)𝑒−1 ≤ 𝑥(𝑡),  ∀𝑡 ≥ 0. This means that the solution of (3.4) is bounded. Consider a 

perturbed equation 

𝑥′(𝑡) = −𝑥(𝑡) +
1

𝑡2 ∫ 𝑠𝑥(𝑠)𝑑𝜇(𝑠)
𝑡

0
+ ∫

𝑠

1+𝑡4 𝑠𝑖𝑛 𝑥 (𝑠)𝑑𝜇(𝑠)
𝑡

0
,   𝑡 ≥ 0. 

The function 𝑓(𝑡, 𝑠, 𝑥) =
𝑠 𝑠𝑖𝑛 𝑥(𝑠)

1+𝑡4  is Lipschitz continuous with the Lipschitz coefficient 𝑘𝑡,𝑠 =
𝑠

1+𝑡4. 

It is clear that  

∫ 𝑘𝑡,𝑠𝑑𝜇(𝑠)
𝑡

0
= ∑

𝑛

1+𝑡4 ≤
[𝑡]
𝑛=1

𝑡(𝑡+1)

2(1+𝑡4)
≤

2

1+𝑡4,   and    𝑁 = ∫ ∫ 𝑘𝑡,𝑠𝑑𝜇(𝑠)
𝑡

0

∞

0
≤ ∫

2

1+𝑡2 𝑑𝑡
𝑡

0
= 𝜋. 

Thus, from theorem 3.2, it follows that the solution of Eq. (8) is bounded by 𝑒𝜋𝑒−1
. 

Next, we prove that the exponential stability implies 𝐿𝑝 stability under under small perturbations. 

Definition 3.4 (See [2]) The trivial solution 𝑥 ≡ 0 of Eq. (8) is said to be uniformly L_p-stable if 

there exist constants 𝑀1, 𝑀2  such that 

                                               ‖𝑥(𝑡, 𝑡0, 𝑥0)‖ℝ𝑛 ≤ 𝑀1‖𝑥0‖ℝ𝑛 , 𝑡 ≥ 𝑡0,                                                 (12) 

                                                ‖𝑥(𝑡, 𝑡0, 𝑥0)‖𝐿𝑝(𝑡0,∞) ≤ 𝑀2‖𝑥0‖ℝ𝑛 .                                                    (13) 
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Lemma 3.5 Let1 , ,p q 
1

𝑝
+

1

𝑞
= 1 and U(x), V(x) are positive functions. There is a finite C for 

which 

                                      [∫ |𝑈(𝑥) ∫ 𝑓(𝑡)𝛥𝑡
𝑥

𝑡0
|

𝑝
𝛥𝑥

∞

𝑡0
]

1

𝑝
≤ 𝐶 [∫ |𝑉(𝑥)𝑓(𝑥)|𝑝𝛥𝑥

∞

𝑡0
]

1

𝑝
,                                 (14) 

is true for real f, where 𝐵 = 𝑠𝑢𝑝
𝑟>0

[∫ |𝑈(𝑥)|𝑝𝛥𝑥
∞

𝑟
]

1

𝑝 [∫ |𝑉(𝑥)|−𝑞𝛥𝑥
𝑟

𝑡0
]

1

𝑞, (with the convention  0∞ = ∞0 

= 1). Furthermore, if C is the least constant for which (14) holds, then 𝐵 ≤ 𝐶 ≤ 𝑝
1

𝑝𝑞
1

𝑞𝐵, for which 1 <
𝑝 < ∞ and B=C if 𝑝 = 1 or ∞. 

Remark 3.6 If we use 𝑈(𝑥) = 𝑉(𝑥) = 𝑒𝛼𝑥, then  

𝐵 = 𝑠𝑢𝑝
𝑟∈𝑇𝑡0

[∫ (𝑒𝛼𝑠)𝑝𝑑𝑠
∞

𝑟
]

1

𝑝 [∫ (𝑒−𝛼𝑠)−𝑞𝑑𝑠
𝑟

𝑡0
]

1

𝑞 ≤
1

𝛼𝑝
1
𝑝𝑞

1
𝑞

   and  
1

𝛼𝑝
1
𝑝𝑞

1
𝑞

≤ 𝐶 ≤
1

𝛼
. 

where 𝜂𝛼 =
𝛼1

1+𝛼2𝜇∗  and  𝜇∗ = 𝑚𝑎𝑥 𝜇 (𝑡) , t ∈ 𝐓. 

[∫ |𝑒𝛩𝛼(𝑡, 𝑡0) ∫ 𝑓(𝑠)𝛥𝑠
𝑡

𝑡0

|

𝑝

𝛥𝑡
∞

𝑡0

]

1
𝑝

≤
𝑝

1
𝑝𝑞

1
𝑞

𝜂𝛼
[∫ |𝑒𝛩𝛼(𝑡, 𝑡0)𝑓(𝑡)|𝑝𝛥𝑥

∞

𝑡0

]

1
𝑝

. 

Theorem 3.7 Assume that Eq. (5) is exponentially stable and  

𝑠𝑢𝑝
𝑡≥𝑡0

𝑙𝑡 + 𝑠𝑢𝑝
𝑡≥𝑡0

(∫ 𝑘𝑡,𝑢
𝑝

𝑑𝜏
∞

𝑡

)

1
𝑝

= 𝑚 <
1

𝑀𝐶
 

with 𝛼, M to be defined in Definition 2.3, and 𝐶 = 𝐶(𝛼) is defined in Remark 3.6 corresponding to the 

function 𝑈(𝑥) = 𝑉(𝑥) = 𝑒𝛼𝑥. Then, the solution 𝜃 of the perturbed equation  

{
𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∫ 𝐻(𝑡, 𝑠)𝑥(𝑠)𝑑𝜇(𝑠)

𝑡

𝑡0

+ ∫ 𝑓(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

𝑡0

+ 𝑔(𝑡, 𝑥(𝑡)),   𝑡 ≥ 𝑡0

𝑥(𝑡0) = 𝑥0 ∈ 𝑋,

 

is uniformly 𝐿𝑝 −stable. 

Proof: By the variation of constants formula in Eq. (7), when 𝑡 ≥ 𝑡0 one has 

0 0

0

t t

0( ) ( , ) ( , ) , , ( ) ( , ( )) .(

t t

x t t t x t f u x s ds x dg    
 

   
 





 


 

 

0

0

0

( ) ( )

,

t

0

t

( )    ( ) ( ) .
t t t

s

t t

x t Me x M e k x s ds l dx
  

      
 
   
 
 

 
 

By using Hardy inequality first and then using Minkowski inequality we get 

   

0 0 0 0 0

0
0 0 0

11

- ( - )

, ,

t

1 11

, ,t

( ) ( )

( )  ( ) .

  

    sup

pp

t

s s

t t t

p
T t T

T T

t

p ppp p

s
t

t t t

T

t

p p

t

e k x s ds k x s ds

x s k ds

d C d

C d C dk x s ds

 

 

 

 

 

 




   
   

   
   

    
        

    

  
  

   
   



    

   
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Thus, from Eq. (7) we get 

‖𝑥(𝑡)‖𝐿𝑝[𝑡0,𝑇] ≤  
𝑀‖𝑥0‖

(𝑝𝜔)1/𝑝
+ 𝑀 [∫ (∫ 𝑒−𝜔(𝑡−𝜏)

𝑡

𝑡0

(∫ 𝑘𝜏,𝑠‖𝑥(𝑠)‖𝑑𝑠
𝜏

𝑡0

) 𝑑𝜏)
𝑇

𝑡0

𝑝

𝑑𝑡]

1
𝑝

+ 𝑀 [∫ (∫ 𝑒−𝜔(𝑡−𝜏)
𝑡

𝑡0

𝑙𝜏‖𝑥(𝜏)‖𝑑𝜏)

𝑝

𝑑𝑡
𝑇

𝑡0

]

1
𝑝

 

                          ≤  
𝑀‖𝑥0‖

(𝑝𝜔)1/𝑝
+ 𝑀𝐶𝑠𝑢𝑝

𝑡≥𝑡0

(∫ 𝑘𝜏,𝑡

∞

𝑡

𝑑𝜏)

1
𝑝

‖𝑥(. )‖𝐿𝑝[𝑡0,𝑇] + 𝑠𝑢𝑝
𝑡≥𝑡0

𝑡𝑙𝑡‖𝑥(. )‖𝐿𝑝[𝑡0,𝑇] 

                          ≤   
𝑀‖𝑥0‖

(𝑝𝜔)1/𝑝
+ 𝑀𝐶𝑚‖𝑥(. )‖𝐿𝑝[𝑡0,𝑇],        

where  𝑚 = sup 𝑙𝑡 + 𝑠𝑢𝑝
𝑡≥𝑡0

(∫ 𝑘𝜏,𝑡
∞

𝑡
𝑑𝜏)

1

𝑝 

𝑡≥𝑡0

.  Hence, 

‖𝑥(𝑡)‖𝐿𝑝[𝑡0,𝑇] ≤  
𝑀‖𝑥0‖

(1 − 𝑀𝐶𝑚)(𝑝𝜔)1/𝑝
. 

Letting 𝑇 → ∞ obtains ‖𝑥(𝑡)‖𝐿𝑝[𝑡0,∞] ≤  
𝑀‖𝑥0‖

(1−𝑀𝐶𝑚)(𝑝𝜔)1/𝑝. Thus we get (13). 

We pass to prove (13). Using Holder inequality and Minkowski inequality we see that 

∫ 𝑒−𝜔(𝑡−𝜏)
𝑡

𝑡0

(∫ 𝑘𝜏,𝑠‖𝑥(𝑠)‖𝑑𝑠
𝜏

𝑡0

) 𝑑𝜏 ≤ 𝑒−𝜔𝑡 (∫ 𝑒𝑞𝜔𝜏
𝑡

𝑡0

𝑑𝜏)

1
𝑞

(∫ (∫ 𝑘𝜏,𝑠

𝜏

𝑡0

‖𝑥(𝑠)‖𝑑𝑠)

𝑝

𝑑𝜏
𝑡

𝑡0

)

1
𝑝

                  

                                ≤
1

(𝑞𝜔)
1
𝑞

(∫ ‖𝑥(𝑠)‖𝑝 (∫ 𝑘𝜏,𝑠

𝑡

𝑠

𝑑𝜏) 𝑑𝑠
𝑡

𝑡0

)

1
𝑝

≤
1

(𝑞𝜔)
1
𝑞

𝑠𝑢𝑝
𝑡≥𝑡0

(∫ 𝑘𝜏,𝑡

∞

𝑡

𝑑𝜏)

1
𝑝

 ‖𝑥(. )‖𝐿𝑝[𝑡0,𝑡]           

                                                 ≤
𝑀2

(𝑞𝜔)
1
𝑞

𝑠𝑢𝑝
𝑡≥𝑡0

(∫ 𝑘𝜏,𝑡
∞

𝑡
𝑑𝜏)

1

𝑝‖𝑥(𝑡0)‖ 

Similarly, 

∫ 𝑒−𝜔(𝑡−𝜏)
𝑡

𝑡0

𝑙𝜏‖𝑥(𝜏)‖𝑑𝜏 ≤
1

(𝑞𝜔)
1
𝑞

𝑠𝑢𝑝
𝑡≥𝑡0

 𝑙𝑡‖𝑥(. )‖𝐿𝑝[𝑡0,𝑡] ≤
𝑀2‖𝑥(𝑡0)‖

(𝑞𝜔)
1
𝑞

𝑠𝑢𝑝
𝑡≥𝑡0

 𝑙𝑡.               

Therefore,  

‖𝒙(𝒕)‖ ≤ 𝒆−𝝎(𝒕−𝒕𝟎)𝑴‖𝒙(𝒕𝟎)‖ + 𝑴 ∫ 𝒆−𝝎(𝒕−𝝉)
𝒕

𝒕𝟎

(∫ 𝒌𝝉,𝒔‖𝒙(𝒔)‖𝒅𝒔
𝝉

𝒕𝟎

+ 𝒍𝝉‖𝒙(𝝉)‖) 𝐝𝝉

≤ 𝑴𝟏‖𝒙(𝒕𝟎)‖.              

 where 𝑀1 = 𝑀 + 𝑀𝑀2(𝑞𝜔)
−1

𝑞 (𝑠𝑢𝑝
𝑡≥𝑡0

(∫ 𝑘𝜏,𝑡
∞

𝑡
𝑑𝜏)

1

𝑝+𝑠𝑢𝑝
𝑡≥𝑡0

 𝑙𝑡).   We have the proof.  
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4.  Bohl-Perron Theorem  

This section continues to study the Bohl-Perron Theorem by considering the exponent stability to 

Eq. (2) via properties of mapping between weighted spaces 𝐿𝛾(𝑡0) and 𝐶𝛾(𝑡0) defined below. We 

construct an operator N and show that the exponential stability of Eq. (5) is equivalent the fact that the 

operator N is surjective.  

Let 𝛾 ≥ 0. Define two families of Banach spaces 𝐿𝛾(𝑡0) and 𝐶𝛾(𝑡0) as 

𝐿𝛾(𝑡0) = {𝑓: [𝑡0,∞) → 𝑋,   𝑓  𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑   ∫ 𝑒𝛾𝑡‖𝑓(𝑡)‖𝑑𝑡 < ∞
∞

𝑡0

} , 

𝐶𝛾(𝑡0) = {𝑥: [𝑡0,∞) → 𝑋,   𝑥 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑥(𝑡0) = 0 𝑎𝑛𝑑   sup
𝑡≥𝑡0

𝑒𝛾𝑡‖𝑥(𝑡)‖ < ∞}, 

with the norms defined as follows  

‖𝑓‖𝐿𝛾(𝑡0) = ∫ 𝑒𝛾𝑡‖𝑓(𝑡)‖𝑑𝑡                  and     
∞

𝑡0

‖𝑥‖𝐶𝛾(𝑡0) = sup
𝑡≥𝑡0

𝑒𝛾𝑡‖𝑥(𝑡)‖. 

When𝛾 = 0, the space 𝐿0(𝑡0) is 𝐿1([𝑡0, ∞), 𝑋) consisting all integrable functions and 𝐶0(𝑡0) =
𝐶𝑏([𝑡0,∞), 𝑋) is the set of all bounded continuous. 

 To simplify notations, we write 𝐿𝛾(𝑡0), 𝐶𝛾(𝑡0) by 𝐿𝛾and 𝐶𝛾 if there is no confusion. For any 𝑓 ∈
𝐿𝛾 we consider equation 

                             𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∫ 𝐻(𝑡, 𝑠)𝑥(𝑠)
𝑡

𝑡0
𝑑𝜇(𝑠) + 𝑓(𝑡),     𝑡 ≥  𝑡0,                                (15) 

with initial condition𝑥(𝑡0) = 0. As is mentioned in the function 𝑥(𝑡), 𝑡 ≥ 𝑡0 is a solution of (15) if and 

only if                                   

                             𝑥(𝑡) = ∫ (𝐴(𝜏)𝑥(𝜏) + ∫ 𝐻(𝜏, 𝑠)𝑥(𝑠)𝑑𝜇(𝑠) + 𝑓(𝜏)
𝜏

𝑡0
) 𝑑𝜏

𝑡

𝑡0
,   𝑡 ≥ 𝑡0.                       (16) 

By using the constant variation formula (7), the solution x(t) of (15) is expressed as 

                                          𝑥(𝑡) = ∫ 𝛷(𝑡, 𝑠)𝑓(𝑠)
𝑡

𝑡0
 𝑑𝑠,   𝑡 ≥ 𝑡0.                                                          (17) 

Define 𝑁𝑠𝑓(𝑡) = ∫ 𝛷(𝑡, 𝑠)𝑓(𝑠)
𝑡

𝑡0
𝑑𝑠, 𝑡 ≥ 𝑡0,  𝑓 ∈ 𝐿𝛾(𝑠). We write simply 𝑁 for 𝑁𝑡0

. 

Theorem 4.1 For any 𝛾 ≥ 0, if 𝑁 maps 𝐿𝛾to 𝐶𝛾, then there exists a positive constant K such that for 

all 𝑠 ≥ 𝑡0,       

‖𝑁𝑠‖ ≤ 𝐾. 

Proof. Consider the case 𝑠 = 𝑡0. For every 𝑡 > 𝑡0, we define an operator 𝐹𝑡: 𝐿𝛾 → 𝑋 by 

𝐹𝑡(𝑓(. )) = 𝑒𝛾𝑡 ∫ 𝛷(𝑡, 𝑠)𝑓(𝑠)
𝑡

𝑡0

𝑑𝑠 = 𝑒𝛾𝑡𝑁𝑓(𝑡). 

By the assumption of Theorem, the operator 𝑁 maps 𝐿𝛾 to 𝐶𝛾. Therefore,  

sup
𝑡≥𝑠

‖𝐹𝑡(𝑓)‖ = sup
𝑡≥𝑠

𝑒𝛾𝑡‖𝐿𝑓(𝑡)‖ < ∞,    𝑓 ∈ 𝐿𝛾 . 

By using the Uniform Boundedness principle, we have sup
𝑡≥𝑡0

‖𝐹𝑡‖ = 𝐾 < ∞. It is known that, 

‖𝑁‖ = sup
𝑓∈𝐿𝛾

‖𝑁𝑓‖𝐶𝛾

‖𝑓‖
= sup

𝑓∈𝐿𝛾

sup
𝑡≥0

‖𝐹𝑡𝑓‖

‖𝑓‖
= sup

𝑡≥𝑡0

‖𝐹𝑡‖ = 𝐾. 

This means that we have the proof with 𝑠 = 𝑡0.  
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We pass to the case with arbitrary 𝑠 > 𝑡0. Let f(t) be a function in 𝐿𝛾(𝑠). We extend the function f 

to a function 𝑓 defined on [𝑡0,∞) as follows: 

𝑓 = {
0,        𝑡0 ≤ 𝑡 ≤ 𝑠
𝑓(𝑡),   𝑡 > 𝑠. 

 

It is seen that 

𝑁𝑓(𝑡) = ∫ 𝛷(𝑡, 𝜏)𝑓(𝜏)
𝑡

0

𝑑𝜏 = 𝑁𝑠𝑓(𝑡). 

Therefore, from (4.6) we get 

‖𝑁𝑠𝑓‖𝐶𝛾 = sup
𝑡≥𝑠

𝑒𝛾𝑡‖𝑁𝑠𝑓(𝑡)‖ = sup
𝑡≥𝑡0

𝑒𝛾𝑡‖𝐿𝑓(𝑡)‖ = ‖𝐿𝑓(𝑡)‖
𝐶𝛾 ≤ 𝐾‖𝑓̄‖

𝐿𝛾 = 𝐾‖𝑓‖𝐿𝛾(𝑠). 

The proof is complete. 

Theorem 4.2 Let 𝛾 > 0 be a positive number. The operator 𝑁 maps 𝐿𝛾to 𝐶𝛾 if and only if Eq. (5) 

is 𝛾 -exponentially stable. 

Proof. First, we prove the necessary condition. Suppose that 𝑁 maps 𝐿𝛾 to 𝐶𝛾. We show that then 

(5) is 𝛾 -exponentially stable. 

From Theorem 4.1, we see that 𝑁 is a bounded operator from 𝐿𝛾  to 𝐶𝛾 with ‖𝑁‖ = 𝐾. This means 

that if 𝑓 ∈ 𝐿𝛾(𝑠) and 0 ≤ 𝑠 ≤ 𝑡 , then 

                                𝑒𝛾𝑡 ‖∫ 𝛷(𝑡, 𝑢)𝑓(𝑢)
𝑡

𝑠
 𝑑𝑢‖ = ‖𝑁𝑓‖𝐶𝛾(𝑠) ≤ 𝐾‖𝑓‖𝐿𝛾(𝑠).                                     (18) 

Let 𝛾 > 0 and 𝑥 ∈ 𝑋, define the function 

𝑓𝜎(𝑢) = {

1

𝜌
𝑒−

𝑢−𝑠
𝜎

−𝛾𝑢 𝑣 ,  𝑢 ≥ 𝑠,      

𝑓(𝑡),   𝑡0 ≤ 𝑡 ≤ 𝑠. 

 

By a simple calculation we have 

∫ 𝑒𝛾𝑢‖𝑓𝜎(𝑢)‖
∞

𝑡0

 𝑑𝑢 =
1

𝜎
∫ 𝑒−

𝑢−𝑠
𝜎 ‖𝑣‖

∞

𝑡0

 𝑑𝑢 = ‖𝑣‖. 

i.e., 𝑓𝜎 ∈ 𝐿𝛾 and ‖𝑓𝜎‖𝐿𝛾 = ‖𝑣‖. Moreover, 

𝑙𝑖𝑚
𝜎→0

∫ 𝛷(𝑡, 𝑢)
𝑡

𝑠

𝑓𝜎(𝑢)𝑑𝑢 = 𝑙𝑖𝑚
𝜎→0

∫ 𝛷(𝑡, 𝑢)
1

𝜎
𝑒−

𝑢−𝑠
𝜎

−𝛾𝑢𝑣
𝑡

𝑠

𝑑𝑢 

                                = 𝑙𝑖𝑚
𝜎→0

∫ 𝛷(𝑡, 𝑠 + 𝜎ℝ)𝑒−ℝ−𝛾(𝑠+𝜎ℝ)𝑣

𝑡−𝑠
𝜎

0

𝑑ℝ = 𝑒−𝛾𝑠𝛷(𝑡, 𝑠)𝑣. 

Hence, 

𝑒𝛾(𝑡−𝑠)‖𝛷(𝑡, 𝑠)𝑣‖ = 𝑒𝛾(𝑡−𝑠)𝑙𝑖𝑚
𝜎→0

‖∫ 𝛷(𝑡, 𝑢)
𝑡

𝑠

𝑓𝜎(𝑢)𝑑𝑢‖ ≤ 𝐾𝑒_𝛾𝑠‖𝑓𝜎‖𝐿𝛾(𝑠) = 𝑒_𝛾𝑠𝐾 ≤ 𝐾. 

Thus,   

‖𝛷(𝑡, 𝑠)‖ ≤ 𝐾𝑒−𝛾(𝑡−𝑠),    𝑡 ≥ 𝑠 ≥ 𝑡0. 

This means that Eq. (5) is uniformly asymptotically stable. We will prove the inverse relation. For 

any 𝑓 ∈ 𝐿𝛾, by (18) it yields 

𝑒𝛾𝑡‖𝑁𝑓(𝑡)‖ ≤ 𝑒𝛾𝑡 ∫ ‖𝛷(𝑡, 𝑢)‖‖𝑓(𝑢)‖
𝑡

𝑡0

𝑑𝑢 ≤ 𝑀𝑒𝛾𝑡 ∫ 𝑒−𝛾(𝑡−𝑢)‖𝑓(𝑢)‖
𝑡

𝑡0

𝑑𝑢 



N. T. Ha / VNU Journal of Science: Mathematics – Physics, Vol. 39, No. 2 (2023) 100-110 109 

                 ≤ 𝑀 ∫ 𝑒𝛾𝑢‖𝑓(𝑢)‖
𝑡

𝑡0

𝑑𝑢 ≤ 𝑀‖𝑓‖𝐿𝛾 < ∞.              

Thus, 𝐿𝑓 ∈ 𝐶𝛾The proof is complete. 

Remark 4.3 The argument dealt with in the proof of theorem 4.2 is still valid for 𝛾 = 0. Thus, if L 

maps 𝐿1 to 𝐶𝑏  then the solution of (5) with the initial condition 𝑥(0) = 0 is bounded. 

Corollary 4.4 The equation (5) is γ -exponentially stable if and only if the solution of 

                 𝑦′(𝑡) = 𝐴(𝑡)𝑦(𝑡) + 𝛾𝑦(𝑡) + ∫ 𝐻(𝑡, 𝜏)𝑒𝛾(𝑡 −𝜏)𝑦(𝜏)
𝑡

𝑡0
𝑑𝜇(𝜏) + 𝑓(𝑡),     𝑡 ≥  𝑡0,                   (19) 

is bounded for all 𝑓 ∈ 𝐿𝛾. 

Proof. Denote by 𝛹(𝑡, 𝑠) the Cauchy operator of the homogeneous equation corresponding to (19), 

i.e., 𝛹(𝑠, 𝑠) = 𝐼 and  

𝛹′(𝑡, 𝑠) = 𝐴(𝑡)𝛹(𝑡, 𝑠) + 𝛾 𝛹(𝑡, 𝑠) + ∫ 𝐻(𝑡, 𝜏)𝑒𝛾(𝑡 −𝜏)𝛹(𝜏, 𝑠)
𝑡

𝑡0

𝑑𝜇(𝜏). 

From (6) we get 

𝑑

𝑑𝑡
(𝑒𝛾𝑡𝛹(𝑡, 𝑠)) = 𝐴(𝑡)𝑒𝛾𝑡𝛹(𝑡, 𝑠) + 𝛾 𝑒𝛾𝑡𝛹(𝑡, 𝑠) + ∫ 𝐻(𝑡, 𝜏)𝑒𝛾(𝑡 −𝜏)𝑒𝛾𝜏𝛹(𝜏, 𝑠)

𝑡

𝑡0

𝑑𝜇(𝜏). 

The uniqueness of solutions says that 𝛹(𝑡, 𝑠) = 𝑒𝛾𝑡𝛷(𝑡, 𝑠).  

Hence, the 𝛾 -exponential stability of (5) implies that the solution of (19) is bounded. Let y(t) be the 

solution of (19) with the initial condition 𝑦(0) = 0. By (18), this solution can be expressed as 

𝑦(𝑡) = ∫ 𝛹(𝑡, 𝜏)𝑓(𝜏)
𝑡

0

𝑑𝜏 = 𝑒𝛾𝑡 ∫ 𝛹(𝑡, 𝜏)𝑓(𝜏)
𝑡

0

𝑑𝜏 = 𝑒𝛾𝑡𝑁𝑓(𝑡). 

The boundedness of y(t) says that 𝑁 maps 𝐿𝛾to 𝐶𝛾. Therefore, by theorem 4.2, Eq. (5) is 

exponentially stable. The proof is complete. 
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