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1. Introduction

The Volterra differential equations play an important role in studying mathematical models because
for almost systems in ecology, economy, the evolution of present time depends on the past history of
the systems. Therefore, studying the robust stability of systems is important both in theory and practice
since the system always operates under the effect of uncertain perturbations. One can deal with the
robust stability by many ways. Some research groups measured the robust stability by using the so-
called stability radii for linear systems [1, 2] or carried-out some estimates of the perturbation ensuring
the stability of perturbed systems [3, 4]. Also, the other method to study robust stability is to consider
Bohl-Perron theorem, which establishes a relation between the Liapunov stability of homogeneous
differential equations in initial conditions and the boundedness of solutions of inhomogeneous one. We
can refer to [5-7] to get some results on this problem for ordinary or delay linear differential equation.

The aim of this work is to study the robust stability and Bohl-Perron theorem for the Volterra integro-
differential equation
X'(t) = A () + [ H(t,$)x(s) du(s) + (), t= 0, (€Y)
where  is a radon measure on (J*, B(C%)) and A(.),H(.,.) are specified later.
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Firstly, we deal with the preservation of stability for the linear Volterra integro-differential Eq. (1)
under small perturbations and then we study Bohl-Perron theorem. Since the derivative of state process
X(t) depends on all past path x(s),0 < s < t, we have to use a more general inequality of Gronwall-
Bellman type to obtain the upper bound of perturbations. Further, the Cauchy operator of the
corresponding homogeneous equation does not have the semi-group property, which implies that the
classical argument to solve this problem is no longer valid. To overcome it, we define weighed spaces
LY ([0,),X) and CY ([0, ), X) (see Definitions below) and consider operators acting between these
spaces. The paper is organized as follows. In the next section we recall some basic properties of linear
Volterra integro-differential with measures and prove the existence of solutions. In Section 3, we prove
that if the linear Volterra equations are exponentially stable, then under small Lipschitz perturbations,
the perturbed system is L,, stable. Section 4 presents the famous Bohl-Perron Theorem for Eq. (1). We
introduce some weighted spaces and consider the solutions of Eq. (1) as elements of these spaces. Hence,
we show that the exponential stability is equivalent to the surjectivity of certain operators. Some
examples are introduced to illustrate the results.

2. Linear Volterra Differential Equations

Let X be a Banach space and L(X) be the space of the continuous linear transformations on X. Let
A(.):[0,0) = L(X) is a continuous function valued in L(X) and H(.,.) is a two variable continuous
function defined on the set {(t,s):0 <s <t < o}, valued in L(X). For any continuous function
q:[0,) — X we consider the linear integro-differential VVolterra system

{x’(t) = A(D)x(t) + [ H(t, $)x(s)du(s) + q(t), t =0 (2)
x(0) = x,.

where p is a random measure on ([1*, B([J*)). This means that u is a measure and u(M) < +oo for
every compact M c [1*. We note that although H(.,.) is a two variables continuous function, the
mapping t — fOtH(t, s)x(s) du(s) may be discontinuous at some points (at most in a countable set).

Therefore, we have to understand the solution x of the initial problem in Eq. (2) in Carathéodory sense,
i.e., x(.) is continuous and it is differentiable almost every where with respect to Lebesgue measure on
1*. In other words, the function x(.) is a solution of Eq. (2) with the initial condition x(0) = x, if and
only if it satisfies the equation:

x(8) = x(0) + [, A@®)x(®)dt + [ [ H(z,)x(s)du(s) dt + [, q(v)dz, t =0, 3)
Proposition 2.1 The initial value problem in Eq. (2) has a unique solution.
Proof. Let T > 0 fixed. Construct a sequence of Picard approximations
x0(t) =x(0), 0<t<T,

t t T t
Xn41() = x(0) +f A(T)xn(r)dr+f f H(t,s)x,(s)du(s) dt +f q(t)dr. 4)
0 0 Y0 0
It is seen that
t t T
Pns1 (©) = xa (Ol = f A Gen — xn_) (@ lld7 + f f 1H (T, 5) (= xn) () | dpa(s) d.
0 0 Y0

Therefore,

t
SUP s 1 (©) — 20 (D] = K j sup [|Gon — %)@ lds,
0

0<t<T 0<7<Ss
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where K = sup A + u([O, T]) sup < ||H(t, s)||. By induction we get

<t<T
t
sup |Gonsr — )@ < K f sup [|Cn — 1)@ llds
0=<t<T o 0=stss
t S ( )n—l
< K2 f ( f sup |ty — X 2)(u)||du>ds
0 0 Osusrt ( )

Hence, by using Weierstrass criterion for uniform convergence of series we see that

X(6) = %0 = ) (D) = Xpa (1)) = limoey (6) = xg
k=1
is a continuous function. By passing the limit as n — oo in Eq. (4) we have

¢ t ot t
x(t) = x(0) +.[ A(t)x(t)dt+f j H(t,s)x(s)du(s) dt+f q(t)dt, t =0,
0 0 Jo 0

i.e., x(.) is the solution of (3) with the initial condition x(0) = x,. The proof is complete.
The homogeneous equation corresponding with Eqg. (2), i.e., g = 0 is
{x'(t) = A()x(t) + [} H(t,)x(s)du(s), t =0, 5
x(0) = x,.

We define the Cauchy operator @(t,s),t = s > 0, generated by the system (2.4) as the solution of
the matrix equation:

{(D'(t, 5) = AP (¢, ) + [, H(t, )P (1,)du(t), t>5>0
: (6)
®(s,s) =1

As it is mentioned above, the mapping t — @(t, s) is continuous and it is differentiable almost every,
where t € [s, o). We have the following useful lemma, called the variation of constants formula,

Lemma 2.2 The solution of the Volterra equation (2.1) can be expressed as

x(8) = @ (6,000 + f; @(z, p)a(p) dp. @)
Proof. We have

f [A(T)f ?(x, u)q(u)du+f H(t,s) (f d(s, u)q(u)du> du(s) +q(r)] dt

= J A(‘L’)J & (t,u)q(w)du +f (fTH(T $)P(s, u)d,u(s))q(u)du +q(r)] dt
0 u
t[ (T

=f f <A(r)q§(r,u)q(u)du+f H(T,S)d)(s,u)dy(s)>q(u)du+q(r)] dt
o Lo u

tr Td t T d t
- ~ o, d dr = —(r,u)dr | d d
[ [ fewu | ae= [ ([ Fowwar)au+ [ aw

t
=f @ (t,u)q(w) du = x(¢).
0

Since the semi-group property of the Cauchy operator does not hold for the Volterra Eq. (5), we
have to use another technique to study the Bohl-Perron Theorem for Volterra Equations.
Definition 2.3 i) The Volterra equation (5) is uniformly bounded if there exists a positive number
C, such that
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&t )|l < Copt =5 =0.

ii) Let w > 0. The Volterra equation (2.4) is w -exponentially stable if there exists a positive number
M such that

lo(t, s)|| < Me=@C=9) ¢t >5 > 0.

The conditions ensuring the boundedness or stability of the equation (5) can be referred to [6,8,9]
and references therein.

3. Stability of Volterra integro-differential Equation Under Small Perturbations

In this section, we consider the effect of small perturbations to the stability of the Volterra Eq. (5).
Let f(¢t,s,x) and g(t,x) be two continuous functions. Suppose that for every s <t and x € X, the
coefficients H(t,s)x and A(t)x of Eq. (5) are perturbed by f and g. Thus, they become H(t,s)x -
H(t,s)x + f(t,s,x)and A(t)x » A(t)x + g(t, x). Thus, for any t, > 0, the Cauchy problem for the
perturbed Eq. (5) has following form:

{x'(t) =A@®)x() + fOtH(t, s)x(s)du(s) + fotf(t, s, x(s))du(s) + g(t,x(t)), t=0 ®)
x(0) = xg
Suppose further that f(t,s,x) is Lipschitz in x with Lipschitz coefficients k. and g(t,x) is

Lipschitz with Lipschitz coefficient I, where k.5, t > s > 0, and [;,t > 0 are continuous functions.
One can suppose that

f(t,s,0)=0, g(t0)=0 t=s=0.
With these assumptions, Eq. (8) has the trivial solution x(.) = 0.

By a similar as in the proof of Proposition 2.1 we can show that for any x, € X and t, = 0, Eq. (8)
has a unique solution, namely x(., ty, x¢) = 0, with the initial condition

x(to, to, Xg) = Xo and this solution is defined on t > t,.

In the following, we write simply x(.) or x(., ty) for x(., to, xo) if there is no confusion. To proceed,
we need the following lemma.

Lemma 3.1 (Pachpatte inequality see [10]). Let the functions wu(t),a(t), v(t), w(t,r) be
nonnegative and continuous for a < r < t, and let ¢; and c, be nonnegative. If for t € a, ©),

t s
u(t) <c + czf <v(s)u(s) + f w(s, r)u(r)du(r)) ds,

a
then for t > q,

t N
u(t) <c exp {czf <v(s) + f w(s, r)dy(r)) ds}.

Firstly, we consider the boundedness of solutions {of Eq. (5) under small perturbations.

Theorem 3.2 Suppose that the solution of Eq. (5) is uniformly bounded. Then, there exists a constant
M, such that the following estimate:

eIl < Mqllx(E)ll, =t )
holds for solution x(.) of Eq. (8), provided

N= f:j (lt + ftto kt,udu(u)) dt < oo.
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Proof by Eqg. (7) we have

X(t) = D(t,t,)X, + j@(t,r){g(r, X(7) + j[ f(z,u,x(u)d u(u)j dr, tx>t,. (10)

to to

By the assumptions, sup||®(t, ty)|| = Co < oo and f(t, s, x), g(t, x) are Lipschitz continuous in x
t=t,
with the Lipschitz coefficients [ and k_ respectively, we get

(Ol = Collxoll + Co f;. (Ix@) + [ £ (5w, x(u)du(w) ) dr.

By using Pachpatte inequality in Lemma 3.1 with ¢; = C0||x0|| and ¢, = C, we have

t t
Xl = Collxoll exp {Cof <lT + kT,uIIX(u)IIdM(u)) dT}-

Thus, we get the estimate x(t) < Coe ! ||x,||, for all t > ¢t,. The proof is complete.
Example 3.3 Consider the equation

x'(t) = —x(t) + [, sx(s)du(s), t =0, (11)
where u(.) = Yn=16,(.). Thus xoy > 0
i) When 0 <t < 1, we have x(t) = xge".
ii) Whenl < ¢ < 2, we have x'(t) = —x(t) + (1) < —x(t) + x(1), therefore
x(t) < x(1) = x(0)e™?

0

iii) When 2 < t < 2, we have
x'(t) = —x(t) +t12(2x(2) + x(1)) < —x(s) +%(2x(2) +x(1)) < —x(s) + x(1),

which implies that x(t) < x(1) = x(0)e™ L.
iv) Continuing this way we have x(t) < x(0)e™?1, Vvt > 0. When x(0)<0 we can prove by a similar

way that x(0)e~! < x(t), Vt = 0. This means that the solution of (3.4) is bounded. Consider a
perturbed equation

x'(t) = —x(t) + Zf sx(s)du(s) +f — sinx (s)du(s), t=0.

ssin x(s) S

1+t4°

The function f(t,s, x) =
It is clear that

Jy kesdu(s) = 3 2 < S8 < 2t4, and N = [ [ kesdu(s) < [, —dt =m.

n=lgies = 2(1+t4) = 1+ 1+¢2
-1

is Lipschitz continuous with the Lipschitz coefficient k, ; =

Thus, from theorem 3.2, it follows that the solution of Eq. (8) is bounded by e™¢
Next, we prove that the exponential stability implies L,, stability under under small perturbations.

Definition 3.4 (See [2]) The trivial solution x = 0 of Eq. (8) is said to be uniformly L_p-stable if
there exist constants M;, M, such that

lx(t, to, Xo) llrn < Mqllxollgn, £ = to, (12)
llx(t, tO:xO)”Lp(to,oo) < M ||xo | rn- (13)
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Lemma 3.5 Letl< p,q <o, % + % = 1 and U(x), V(x) are positive functions. There is a finite C for

which
v 7 reyar” Ax] <clf” IV(x)f(x)I”Ax] (14)
is true for real f, where B = sup[f |U(x)|7’Ax]7" [f V(x)|~ qAx] (with the convention 0%° = 0o

1 1
= 1). Furthermore, if C is the least constant for which (14) holds, then B < C < prq4B, for which 1 <
p <ocoand B=Cifp =1 or co.
Remark 3.6 If we use U(x) = V(x) = e**, then

1

1
= —ass—a 112 1
B = sup [foo(eas)pds]p [fr(e as) qu]q <—— and ——<C<2
T to = = = = a
rETtO apPqi apPq

where 1, = alﬂ* and u* =maxu(t),teT.
2

*© p
[ f eoa(t, to) f (s)4s [ leaq (8, to) f (D[P Ax
to to
Theorem 3.7 Assume that Eq. (5) is exponentially stable and
I + < f ki,d > < !
su su T =m<—
tztIZ ‘ tztzz MC

with @, M to be defined in Definition 2.3, and C = C(«) is defined in Remark 3.6 corresponding to the
function U(x) = V(x) = e**. Then, the solution 6 of the perturbed equation

l 11
pPqd

a

P
AtS

t t
x'(t) = A(t)x(t) + j H(t,s)x(s)du(s) + | f(t,s,x(s))ds + g(t,x(t)), t=t,

to to
x(ty) = xy € X,
is uniformly L,, —stable.
Proof: By the variation of constants formula in Eq. (7), when t > t,, one has

) )

X(t) = D(t.t,)% + | @(t,p)[ [ f(p.ux(s)ds+g(p, x(p))]dp.

O] < e e fe f’{f K, o)+, ||x<p>||}1 P

By using Hardy inequality first and then using Minkowski inequality we get

| [j gt ﬂ{j kps|x(s)||ds]dp] c:] []ka,s”x(s)"ds] dp

to\ b

1 1 1

cel . o< co e o for s
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Thus, from Eqg. (7) we get
1

M”xou —(u(t—‘r) T P
IO 071 S s+ f kesllx(s)llds | dr ) dt
to \Vto to

1
T t p D
+M [f <f e~ @D lﬂlx(r)lldr) dt]

Ml
< ———+MC k.. d : l .
< s+ MEsup [ koedr ) IOlltegm + supebx Ol g

M| xo||
(pw)t/P

1
where m = supl, + sup(ftOo k.. dt)P . Hence,
t2t,

'Bl»—\

+ MCml|x( )l eo,r),

t=t,
M| x|

< .
= (- MCm)(pw) 7P

M||xo|
S Comemy ey Thus we get (13).

We pass to prove (13). Using Holder inequality and Minkowski inequality we see that

(12, 1e0.m)

Letting T — oo obtains ||x(t)||,, olto,eo] S

|~

t T t q t T p p
fe“"(t‘f)< kT_Sllx(s)IIds>dTSe“"t<f e‘“‘”dr) <f ( ke s ||X(S)||d5> dT)
t to t to \t,

0 0 0
1

<— ( ||x(s)||v(f kfsdr>ds>_

(qw)q
1
1 «® p
<——sup( [ keedr) 6Ol
(qwﬁt”‘) ‘
<2 sup(f” ke @) lxCeo)
(qu) t2to
Similarly,
t llx(to)
j e Lllx(@lldr < ——sup LX)l s%sgp Le.
fo (qu)1 = (quya =

Therefore,
t T
lx@Il < e”COM||x(t)|| + M | e ( ko sllx(s)llds + lrllx(r)ll> dr
Lo

to

< My ||x(to)ll.

1 1
where M; = M + MM, (qw) 9 <sup(ft°° ke ¢ dT)P+sup lt>. We have the proof.
t=t, t2t,
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4. Bohl-Perron Theorem

This section continues to study the Bohl-Perron Theorem by considering the exponent stability to
Eq. (2) via properties of mapping between weighted spaces LY (t,) and CY(t,) defined below. We
construct an operator N and show that the exponential stability of Eq. (5) is equivalent the fact that the
operator N is surjective.

Let y > 0. Define two families of Banach spaces LY (t,) and C” (t,) as

e lIf (Dlldt < 00},

LY (ty) = {f: [tg,©) = X, f is measurable and

to
CY(ty) = {x: [tg,©) = X, xis continous x(ty) = 0 and supe?*||x(t)|| < oo},
t2tg

with the norms defined as follows

Wfllzreey) = f e’ |If(®llat and  |[xllcy(ey) = futpe”tllx(t)ll-
2tg

to
Wheny = 0, the space L°(t,) is L;([to, ), X) consisting all integrable functions and C°(t,) =
Cp([tg, ), X) is the set of all bounded continuous.
To simplify notations, we write LY (t,), CY (to) by LYand CY if there is no confusion. For any f €
LY we consider equation

x'(£) = A(®)x(t) + fttOH(t, $)x(s) du(s) + f(©), t= to (15)

with initial conditionx(t,) = 0. As is mentioned in the function x(t),t = t, is a solution of (15) if and
only if

x(t) = f (a@x(@) + JL H, $)x(s)du(s) + f@)dr, t=t. (16)
By using the constant variation formula (7), the solution x(t) of (15) is expressed as
x(t) = fttotb(t,s)f(s) ds, t > t,. 17)

Define Nyf (t) = ftz &(t,s)f(s)ds, t = ty, f € L"(s). We write simply N for Ny .
Theorem 4.1 Forany y > 0, if N maps L"to C?, then there exists a positive constant K such that for
all s > ty,
INs Il < K.
Proof. Consider the case s = t,. For every t > t,, we define an operator F;: LY — X by

F(f() =e" ftfl’(t. $)f (s)ds = eV Nf (1)

to
By the assumption of Theorem, the operator N maps LY to CY. Therefore,
StupIIFt(f)II = stupthIILf(t)II <o, feL
=S =S
By using the Uniform Boundedness principle, we have sup||F;|| = K < . It is known that,
t=t,

INFllcv Stu(I))”th”
INIl = sup —— = sup 20—

rerr AL rerr IFI
This means that we have the proof with s = t,.

= sup||F¢|| = K.
t=t,
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We pass to the case with arbitrary s > t,. Let f(t) be a function in LY (s). We extend the function f
to a function f defined on [t,, «) as follows:
= (0, tg<t<s
B {f (t), t>s.

It is seen that
t

NF(O) = f (t, 1)f (D) dr = Nof (2).
Therefore, from (4.6) we get
INsfller = supe lINsf (Dl = supe?* [LF O = [[LF Ol < KIFly = KIIf sy

The proof is complete.

Theorem 4.2 Let y > 0 be a positive number. The operator N maps LYto CY if and only if Eq. (5)
is y -exponentially stable.

Proof. First, we prove the necessary condition. Suppose that N maps LY to C¥. We show that then
(5) is y -exponentially stable.

From Theorem 4.1, we see that N is a bounded operator from LY to CY with ||N|| = K. This means
thatif f € LY(s)and 0 < s < t, then

t
e || [f @t u)f @) du|| = INFliersy < Kllflurcs) (18)
Lety > 0 and x € X, define the function
1 _u=s_
—e o v, u=s,
fo(w) =1p

f(), to <t<s.
By a simple calculation we have

o0 1 o0 _;
f e"Ifell du =—f e o ||v]l du=|vll
to o tO

i.e., fy € LY and ||f;||,» = ||v||. Moreover,

t t

1
limf o(t,u) f,(W)du = limf o, u)—e o vdu
g—0 s g—0 s o

t-s
= lirr(z)f 7 O(t,s +ol)e” YTy drl = e VSP(t, s)v.
ag— 0
Hence,
t
e?E=9||o(t, s)v| = ey(t‘s)lintl) f @ (t,u) fy(wdu|| < Ke*||f5llLrs) = eV*K < K.
o
S

Thus,
ot s)|| < Ke VE9), t>5>t,.
This means that Eq. (5) is uniformly asymptotically stable. We will prove the inverse relation. For
any f € LY, by (18) it yields
t t
e INFONl <e” | lletwlliflldu < Me”f e "W f (Wl du

to to
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t

<M | e"™[Iflldu < M||fllLr <o
to

Thus, Lf € CYThe proof is complete.

Remark 4.3 The argument dealt with in the proof of theorem 4.2 is still valid for y = 0. Thus, if L
maps L, to C;, then the solution of (5) with the initial condition x(0) = 0 is bounded.

Corollary 4.4 The equation (5) is y -exponentially stable if and only if the solution of

y'(®) =A®)y@) +yy(@) + ft’; H(t, )" Dy@) du(@) + f(1), t= t, (19)
is bounded for all f € LY.

Proof. Denote by ¥ (¢, s) the Cauchy operator of the homogeneous equation corresponding to (19),
ie,¥(s,s) =1and

t
Yi(t,s) = A@®)P(t,s) +y ¥(t,s) + f H(t,7)eY DY (z,s) du(r).
to
From (6) we get

d t
E(e”“l’(t, s)) = A(D)e"'W(t,s) +y e’ W(t,s) + f H(t,D)e?TDeV™Y(1,5) du(r).
to
The uniqueness of solutions says that ¥ (¢t,s) = e”‘'®(t, s).
Hence, the y -exponential stability of (5) implies that the solution of (19) is bounded. Let y(t) be the
solution of (19) with the initial condition y(0) = 0. By (18), this solution can be expressed as

y(t) = .’:'P(t, Df(t)dr = et .[Otll’(t, ) f (t)dt = e Nf(b).

The boundedness of y(t) says that N maps LYto CY. Therefore, by theorem 4.2, Eqg. (5) is
exponentially stable. The proof is complete.
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