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* 

1. Introduction 

Let us consider a sequence{ , 1}nX n  of random variables defined on a probability space ( , , )P . 

The concept of negatively quadrant dependent (NQD) random variables was introduced by Lehmann 

[1]. In particular, random variables X  andY are called NQD if                          

                                       ( , ) ( ) ( )P X x Y y P X x P Y y        (1)                                                                                                                                           

for all real numbers ,x y . A sequence of random variables { , 1}nX n  is said to be pairwise negatively 

quadrant dependent (PNQD) if every pair of random variables in the sequence satisfies (1). Obviously, 

a sequence of PNQD random variables contains a pairwise independent random variable sequence as 

special cases. It is important to note that (1) implies 
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                                 ( , ) ( ) ( )P X x Y y P X x P Y y                                                       (2) 

for all real numbers ,x y . Moreover, it follows that (2) implies (1), and hence, they are equivalent for 

PNQD. Ebrahimi and Ghosh [2] showed that (1) and (2) are not equivalent for 3n  . 

We recall that the concept of coordinatewise PNQD random variables with values in Hilbert spaces. 

Let be a real separable Hilbert space with the norm .‖ ‖ generated by an inner product ,  and let

{ , }je j B be an orthonormal basis in . Let X be an -valued random variable, then , jX e   will 

be denoted by
jX . 

Definition 1.1 ([3]) A sequence{ , 1}nX n  of -valued random vectors is said to be 

coordinatewise PNQD if for each 𝑗 ∈ 𝐵, the sequence of random variables { , 1}j

nX n   is PNQD. 

There are no PNQD requirements between two different coordinates of each random variable in the 

notions of coordinatewise PNQD random variables taking value in Hilbert spaces (for more details see 

[4]). Obviously, if a sequence of -valued random variables is pairwise independent then it is 

coordinatewise PNQD. In [3], Example 2.3, the authors showed a sequence of -valued coordinatewise 

PNQD random variable which is not pairwise independent.  

Recently, the results for weak laws of large numbers for weighted coordinatewise PNQD random 

vectors in Hilbert spaces in the case that the decay 𝑟-th order 0 2r  of tail probability was 

established by Dung and Son in [3]. In 2022, Son and Cuong [5] investigated the complete convergence 

and strong laws of large numbers for weighted sums of coordinatewise PNQD random variables taking 

values in Hilbert spaces. Hence, it is very significant to study limit properties of NQD random variables 

in probability theory. The main purpose of this paper is to establish the strong laws of large numbers for 

sequences of coordinatewise PNQD in Hilbert spaces with statistical applications.   

The rest of this work is organized as follows. In Section 2, we provide some useful lemmas and 

several definitions that support our proofs. In Section 3, we discuss about the strong limit results for the 

weighted sums of coordinatewise PNQD sequence random variables. An application of the gereral 

Cramer-Von Mises statistics for coordinatewise PNQD random vectors in Hilbert spaces is given in 

Section 4. 

Throughout this paper, by saying , 1nX n  is a sequence of -valued coordinatewise PNQD 

random variables, we mean that the -valued  random variables are coordinatewise PNQD with respect 

to the orthonormal basis{ , }je j B . The symbol C denotes a generic positive constant whose value may 

be different for each appearance.   

Let{ , 1}na n  and{ , 1}nb n  be sequences of positive real numbers. We use notion n na b instead 

of m0 pl uim f iin l sn n

n n

a a

b b
    ; ( )n na o b  means that lim 0n

n
n

a

b
  and ( )n na O b means that 

n na Cb  (for some 0 < 𝐶 < ∞) respectively. The indicator of A is denoted by 𝐼(𝐴). 

To prove our main results, we need the following lemmas. 

Lemma 1.1 ([1]) Let X and Y  be ¡ -valued NQD random variables. If f and g are Borel fuctions, 

both of which are monotone increasing (or both are monotone decreasing), then ( )f X and ( )g X  

are NQD. 
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Lemma 1.2 ([3, 4]) Let  , 1nX n  be a sequence of -valued coordinatewise PNQD random 

variables with mean 0 and finite second moments. Then,   
2

2

1 1

,
n n

i i

i i

E X E X
 

   

and 
2

n
22

2 i
1

1 i=1

max log (2n) E X .
k

i
k n

i

E X
 



 
 

 
 

   

Lemma 1.3 ([5]) Let , 1nX n  be a sequence of -valued coordinatewise PNQD random 

variables. Then, the series
1

n

k

k

X


 converges a.s. if for some 0c   the following three series are 

convergent: 

i)  
1

,j

n

n j B

P X c


 

  

ii)  
1

,j

n j

n j B

EX c e


 

  

iii) 2

2

1

( ) log n,j

n

n j B

VarX c


 

  

where  , , ( ) ( ) (| | ) ( )j j j j j j

n n j n n n n nX X e X c cI X c X I X c cI X c            for 1,n j B  .  

Definition 1.1 ([6]) A positive measurable function f on  ,a   (for some 0a  ) is is said to be 

regularly varying at infinity with index ( )r r¡ , denoted by
rf  , if 

                                              ( )
lim for all 0.

( )

r

t

f tx
x x

f t
   

A regularly varying function with index zero (𝑟 = 0) is said to be vary slowly function. 

Without loss of generality, we may assume that 𝑎 =  0. It is well known that a function f  is regularly 

varying at infinity with index r  if only if it can be written in the form ( ) ( ),rf x x x l  where (.)l  is 

slowly varying function. 

It proves convenient to define 2log max{1,log }x x for 0x  .  

Clearly, 
log

, log , log log ,
log log

r r r r x
x x x x x x

x
 are regularly varying functions at infinity with index r . 

Lemma 1.4 ([5]) (Karamata's Theorem, see [7])  

Let rf   be locally bounded on [ , )a   with 0a  . Then, 

i) For ( 1)r    ,  
1 ( )

1 as ,

( )

x

a

x f x
r x

t f t dt








   



 



T. V. Chien et al. / VNU Journal of Science: Mathematics – Physics, Vol. 39, No. 3 (2023) 45-56 

 

48 

ii) For ( 1)r    , 
1 ( )

( 1) as .

( )
x

x f x
r x

t f t dt









   



 

2. The Main Results  

In the next theorem, we study the strong laws of large numbers for a weighted sum of -valued 

coordinatewise PNQD random vectors with α-th order decay of tail probability. 

Theorem 2.1 Let  , 1nX n   be a sequence of -valued coordinatewise PNQD random vectors 

with zero mean, such that for each 1n  ,  

   ( )  (1,2),j

n

j B

P X x x x for each 



  l  

where l  is a slowly varying function. Let  , 1na n   and  , 1nb n   be sequences of positive constants 

satisfying 0 nb   . Denote 
log

n
n

n

b
c

a n
  for 1n  . Assume that 

                                   
1

( ) .n n

n

c c 






  l  (3)                                                                                                           

Then                                           
1

1
0 . . .

n

k k

kn

a X a s as n
b 

    

Proof.  For 1, 1 ,n k n j B    , set  

     , .j j j j j j

k k j k k k k k k k k k k

j B

Y Y e Y c I X c X I X c c I X c


          

By the Karamata theorem and the assumption (3), we obtain 

            

 

   

2 2 2

1 1

2 2

1 1

2

0
1 1

2 1

0
1 1

1

log ( )

( ) ( )

( ) ( )

( )

k

k

j
jk k

k k

k j B j Bkk

j j j

k k k k k k

k j B k j B

c
j j

k k k k

k j B k j B

c

k k k

k k

k k

k

a Y
kVar c E Y

b

P X c c E X I X c

P X c c t P X t dt

c c c t t dt

C c c C c

 






  

 


   

 


   

 
  

 






 
 

 

   

   



 

 

 

  

  



l l

l 2 2

1

1

( )

( ) .

k k k

k

k k

k

c c

C c c






 








  





l

l

 

Using Lemma 1.3 and the Kronecker lemma, we have  

1

k k k

k k

a Y EY

b






  converges, which implies that 
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                                                       
1

. .
n

k k k n

k

a Y EY o b a s


                                                                     (4)   

Noting that 0j

nEX  , we also have by the Karamata theorem and the assumption (3) again that 

                             

   

   

   

1

1 1

1

1 1

1

1 1

1

1 1

1

1 1

log
( )

( ) (

k

k

jk
k k k j

k k j Bk

j j j

k k k k j k k

k j B k j B

j j j

k k k k k k

k j B k j B

j j

k k k k
c

k j B k j B

k k
c

k k

a k
EY c E Y e

b

c EX I X c e P X c

c E X I X c P X c

c P X t dt P X c

c t t dt c

 


  

 


   

 


   

 


   

 
 

 



   

   

   



  

  

  

  

  l l

 1 1

1 1

1

)

( )

( ) ,

k

k k k k k

k k

k k

k

c

C c c c C c c

C c c



 





 
   

 






 

  

 



l l

l

   

which implies that
1

 converges a.s. k
k

k k

a
EY

b





  

By the assumption of{ , 1}nb n  , applying the Kronecker lemma, it follows that 

         
1

.
n

k k n

k

a EY o b


                                                                                                (5) 

Combining (4) and (5), we obtain  
1

( ) a.s. as .
n

k k n

k

a Y o b n


   

To complete the proof of Theorem 2.1, we only need to show that  , . . 0.n nP X Y i o   

By the assumption (3) again 

                 
     

2

1 1 1

1

0

( ) .

j j j

n n n n n n

n n j B n j B

n n

n

P X Y P X Y P X c

c c 

  

    






     

 

  

l

 

It follows from the Borel - Cantelli lemma that  , . . 0.n nP X Y i o   The proof is complete. 

One version of Theorem 2.1 for a sequence of -valued identically distributed coordinatewise 

NSD random vectors is Theorem 3.4 in [10]. 
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Example 2.1 Suppose that  , 1nX n  is a sequence of random vectors -valued PNQD whose 

distributions are defined by  0 1
jj

n r

n

P X
q


    and the tail probability 

  
 

,  for 0, ,
jj

n r

n

P X x x j B
x q


   


                                                (6) 

where 1r  , 0,j j

j B

 


     and 
nq  is a sequence of positive numbers such that 

 max ,  for all  .r

j nM q n   

By (6), we obtain  
   

1/

10 0
,

1
 

1

r
j jj j

n n r r

nn

M
EX P X x dx dx

r q rx q

  


      

 
    

and                       
  1

, where .
1

j

n n jr
j B j Bn

EX E X
r q


 


 

 
   

 
   

 It is easy to see that { , 1}n nX EX n   is a sequence of -valued coordinatewise PNQD with 

mean 0 and for 1n  ,      .j j j r

n n n

j B j B

P X EX x P X x x

 

     

Then                    
1 1 1

. j j j

n n n n n

n n j B n j B

P X EX x P X EX x P X x
  

    

         

From Theorem 2.1, for 1n  , let 
1/1, logr

n na b n n   and 

1/

1log

r

n

n
c

n
  for all

1
1 , ( ) 1x x

r
    l , we get 

   1
1 1 1

1
( ) .

log

r

n n n n r
n n n

P X EX c c
n n



  



  

        

Applying Theorem 2.1 for a sequence random variable PNQD { , 1}n nX EX n   we have 

 1/
1

1
0  a.s as  .

log

n

k kr
k

X EX n
n n



    

The following theorem is obtained by using an extension of Theorem 3.5 in [11] for a sequence of 

-valued coordinatewise PNQD random vectors. 

Let { , 1}nc n   be a sequence of positive numbers. For each 1n  , define ( )N n  by 

   : , iN n Card i c n   

where ( )Card A  denotes the number elements of a set A . Note that, (0) 0N  and N  is non-decreasing 

integer valued function with lim ( )
n

N n


  . 
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Theorem 2.2 Let  , 1nX n   be a sequence of -valued coordinatewise PNQD random vectors 

with identical distributions and , 1na n  be a sequence of positive numbers with
1

0
n

n j

j

A a


    . 

Assume that  

             
1 10, for 1 2.

r
j

j B

EX E X r


                                                      (7) 

Denote 
log

n
n

n

A
c

a n
 for 1.n  Assume that   

             ( ), 1.rN n O n n                                                                                        (8) 

 Then 

    
1

1
0 . . . 

n

i i

in

a X a s as n
A 

                                                                       (9) 

Proof.  It is important to note that the definition of ( )N n  implies 
nc   as .n  Otherwise, 

there exist infinite subscripts i  and some 
0n  such that 0

r

ic n , then  0N n   , which is contrary to 

 0 0

rN n Cn  from (8).  

For each 1,n j B  , set    

     , .j j j j j j

n n j n n n n n n n n n n

j B

Y Y e Y c I X c X I X c c I X c


          

Combining (7) and (8) yields 

                  

     

 

 

      

      

      

 

2

1 1 1

1 1

1 1

1

1

1

1

1

1 1

0

1

1 1

1 1

1 1

1

n n

n

j j j

n n n n n n

n n j B n j B

j

n n

n j B c k c

j

n

k j B k c k

j

j B k

j

j B k l k

l
j

j B l k

P X Y P X Y P X c

P X c

P X k

N k N k P X k

N k N k P l X l

P l X l N k N k

N l P l

  

    



    



    



 

 

  



  

     

 

  

    

     

     

  

  

 

 



 

 

 

 

1

1

1

1

1

1

,

j

j B l

r j

j B l

r
j

j B

X l

C l P l X l

C E X



 



 





   

  






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which implies that 

           
1 1

.j

n n n n

n n j B

P X Y P X c
 

  

                                                                        (10) 

It follows from the Borel-Cantelli lemma that 

                , . . 0.n nP X Y i o                                                                                                (11) 

Next, to complete the proof of Theorem 2.2, we only need to show that 
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1
0  a.s. as .

n

i i
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aY n
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                                                                        (12) 

Combining (7), (8) and (10) we have 
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By Lemma 1.3 and the Kronecker lemma, we obtain  1

1

0  a.s. as .
n

n i i i

i

A a Y EY n


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In order to prove (12), it suffices to prove that  
1

1

0 a.s as .
n

n i i

i

A a EY n



   
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In fact, by (7), (8) and (10) again, it follows that   
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which implies that  

       
1

1

0 as .
n

n i i

i

A a EY n



                                                                             (13)  

Hence, the desired result (9) follows from (11-13) immediately. The proof is completed. 

From Theorem 2.1, we can get the following almost sure convergence for weighted sum of 

coordinatewise PNQD random vectors. We set ( )nb n n

 l  with (.)l  is a slowly varying 

function, and the sequence of positive constants { , 1}na n   is changed into an array of positive numbers 

 ,1 , 1nia i n n    satisfying some conditions. The idea is mainly inspired by Shen [12].  

Theorem 2.3 Let  , 1nX n   be a sequence of -valued coordinatewise PNQD random vectors 

with 0nEX   and    
2 2

j j

n nE X    for each 1,n j B  . Let  ,1 , 1nia i n n    be an array 

of positive numbers such that 
2 2

ni iia Ca  for each 1,1n i n   . If for some 1/ 2   
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                                                                                (14) 

where (.)l  is a slowly varying function. 

Then                                       
1

1
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and in consequence             
1

1
0 a.s. as .
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Proof.  By the assumption and Lemma 3 it follows that 
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By the Markov's inequality, the inequality above and the Karamata theorem, we have that for any
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Thus, 
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1
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a X
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
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 completely as n , which implies that 
1

1

( )
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i

a X
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
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l

 

converges almost surely to zero as n . The proof is completed.                                                                                             

Application to General Von Mises Statistics  

Statistics of Cramer-von Mises type is an important tool for testing statistical hypotheses. Next, we 

will consider general bivariate and degenerate von Mises-statistics (V-statistics). Let 
2:h ¡ ¡  be a 

symmetric, measurable function. We call 
, 1

( , )
n

n ni nj i j

i j

V c c h X X


    be V-statistic with kernel .h   

A V-statistic and its kernel h  is said to be called degenerate, if ( ( , )) 0iE h x X   for all x ¡ .  

Furthermore, we assume that h  is Lipschitz-continuous and positive definite, i.e. 

                                                      
, 1

( , ) 0
n

i j i j

i j

c c h x x


  

for all 1 1,..., , ,...,n nc c x x ¡ . Son [5] and [13] gave the almost sure convergence of degenerate von 

Mises-statistics with independent real valued data. 
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In the section, we use methods for random variables taking values in Hilbert spaces to obtain the 

conditions for the almost sure convergence of degenerate von Mises-statistics with pairwise independent 

real valued data.  

Theorem 2.4 Let  , 1nX n  be a sequence of real-valued pairwise independent random variables 

with mean 0 . Let ,1 , 1nia i n n   be an array of positive numbers such that 
2 2

ni iia Ca  for each

1 , 1,i n n j B    . Let ℎ be a Lipschitz-continuous positive definite kernel function such that for 

any 1

2
  , 
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Proof. Using Sun's version of Mercers theorem in [8] (see also [9]), we have the representation of ℎ 

function under these above conditions as follows 
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We consider the -valued random variables ( ( ))n l n lY X  ¥ . Then  { , 1}nY n   is a sequence of 

-valued coordinatewise PNQD random variables with mean 0  and 
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With ( ) 1n n l , we check the assumption (14) in Theorem 2.3, it follows 
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Hence, applying Theorem 2.3 with ( ) 1n n l  yields 

 
1

1
0 a.s. as .

n

nk k

k

a Y n
n



   
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3. Conclusion  

In summary, we stated and proved the strong limit results for the weighted sums of coordinatewise 

PNQD sequence random variables. Moreover, we showed an application of the general Cramer-Von 

Mises statistics for coordinatewise PNQD random vectors in Hilbert spaces. 
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