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Abstract: The Nambu-Goldstone (NG) modes in the system of two segregated Bose-Einstein 

condensates (BECs) limited by two hard walls are studied by means of the Gross-Pitaevskii (GP) 

theory. Based on the double-parabola approximation (DPA) combining with the Bogoliubov-de 

Gennes (BdG) equations we found four NG modes that proves the failure of the Watanabe-Brauner 

counting rule and, furthermore, their dispersion relations depend explicitly on the geometrical 

structure.  
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1. Introduction* 

It is known that the Goldstone theorem [1, 2] has been a cornerstone for all physical systems with 

spontaneous breaking of symmetry. It states that any relativistic system for which a continuous, global 

symmetry is spontaneously broken must contains in its spectrum gapless modes called the Nambu-

Goldstone (NG) modes and, moreover, the number of NG modes NGn coincides with the number of 

broken symmetries , .BS NG BSn n n  

In recent years there is an increasing interest on the investigation of NG modes   in those relativistic 

systems which violate the Lorentz invariance as well as in non-relativistic systems [3-13] since in these 

the number of NG modes is usually greater than the number of broken symmetries. This trend is 

pioneered by the work of Nielsen and Chadha [3] where a new counting rule was formulated for 

relativistic systems violating the Lorentz invariance:  the number of type I plus twice number of type II 
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of NG modes are equal or greater than the number of broken generators, here the type I and type II, 

respectively consists of NG modes with odd andeven power of momentum in the low momentum limit. 

This counting rule was extended for non-relativistic systems by Watanabe and Brauner [8] who 

conjectured a new counting rule which was later proved by Hidaka [10] assuming the translational 

invariance 

1
rank [ , ] ,

2
BS NG a bn n Q Q     

here ,a bQ Q are the set of spontaneous broken conserved charges and 

1
[ , ] lim 0 | [ , ] | 0 ,a b a b

V
Q Q Q Q

V
      

with V being the volume of system under consideration. 

For system of two segregated BECs with the spontaneous breaking of the translation along z -axis 

it was shown [12] that there exist only two NG modes: one phonon mode and one ripplon mode.  

Nevertheless, all foregoing studies have only dealt with infinite systems. 

This work is devoted to investigating how the spatial limitation gives rise to the number as well as 

the dispersion relations of NG modes. To this end, we adopt the double-parabola approximation (DPA) 

developed in [14] to the Gross-Pitaevskii (GP) theory for two immiscible BECs. The power of DPA 

rests in the fact that it allows us to find systematically analytical formulae of many physical quantities 

with high reliability. To begin with, let us start from the GP Hamiltonian in the bulk 
22
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   
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
  
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2
* 4 2 2

1 2 12 1 2
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( , ) | | | | | | ,
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[ ]jj

j j j j
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V g       
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     (1b) 

here ( ), , ( 1,2)j j j jx m j   
r

are respectively the wave function, the atomic mass and the chemical 

potential of each species ,j with ( , ), ( , )x a z a x y 
r r r

% to be denoted in what follows. The coupling constant 

is given as 

2 1 1
2 ,( )jj jj

j j

g a
m m

 



 h  

with 
jja  being the s wave scattering length. In the following we restrict ourselves to the case when two 

condensates are separated, that is when 2

12 11 22 0.g g g   It is clear that (1) (1)U U is the symmetry group 

of (1) and the presence of a hard wall breaks explicitly the translation. Hence, the number of broken 

symmetries 2.BSn   

This article is organized as follows. The Section 2 is devoted to the boundary conditions. The DPA 

is briefly presented in Section 3. The application of DPA to finding the analytical expressions of NG 

modes is presented in Section 4. The conclusion and discussion are given in the last Section 5. 

2. Boundary Conditions 

For the system of BECs separated by an interface S and limited by two hard walls its total  

1 2

1 2

,b S W W

V S W W

H H dV H dS H dS H dS        (2) 
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where 
1

,S WH H and 
2WH are respectively the Hamiltonians of interface, hard wall 1 and hard wall 2. Their 

forms determine the boundary conditions imposed on the condensates at each surface. Usually, the 

surface Hamiltonian is chosen in the phenomenological forms   
2

*

1

,j j j

j

H c  

  


   (3) 

in which j

 is the surface field induced by the bulk field 
j on the surface 1 2, , and jS W W c  is called 

the surface chemical potential. The quantity 1/j jc  with dimension of a length is called the 

extrapolation length which was introduced by de Gennes [15] and is determined from the system 

Hamiltonian [16].  The fact that the equilibrium values of the fields 
j minimize the total Hamiltonian 

given in (1), (2) and (3) lead to the time-independent GP equations in the bulk together with the 

corresponding boundary conditions at the surfaces 

2
2 2

1 11 1 12 2 1

1

| | | | 0,
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 (4b) 

where ( 1,2)j j  fulfills the boundary conditions at interface 

,j j jn c    
r

 (5a) 

and  

( , )  for ( , ) .S

j ja z a z S  
r r

% %       (5b) 

 

Figure 1. Two hard walls 1 2,W W  are located at z h %% and the interface S at 0 .z z% %  

In (5a), n
r

is the unit vector normal to the interface and pointing inside the system. For a planar 

interface locating at 0z z% %and two hard walls at z h %% as indicated in Fig. 1, Eqs. (5) turn out to be Robin 

boundary conditions 
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at two hard walls. 
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The Robin conditions (6) expresses the continuity at the interface of the first derivative of condensate 

profiles with respect to z%. In the case when the surface fields at two hard walls vanish, the boundary 

conditions at two hard walls are the Dirichlet ones, instead of the foregoing Robin conditions 

( , ) 0.[ ]jW

j z h
a z


%%

r
%  (7) 

It is necessary to emphasize that the boundary conditions at the interface (5) are the direct 

consequences of the interface Hamiltonian and, moreover, they are taken at equilibrium state of the 

system limited by two hard walls. 

3. Ground States in Double-parabola Approximation 

It is necessary to point out that the DPA is applied to the system of two immiscible BECs which are 

separated by interface. In this respect, let us remember that the equilibrium values of order parameters 

which minimize the Hamiltonian (2) are the solutions of the time-independent GP equations (4) together 

with the boundary condition at the interface. 

Assume that the condensate 1 and condensate 2 occupies the region 𝑧 ̃ > 𝑧0 and 𝑧 ̃ < 𝑧0, 

respectively. Therefore, it is possible to restrict our consideration on the condensate profiles which 

depend only on .z%For simplicity, they are also symbolized by ( )j z %which satisfies the equations 

22
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(8b) 

the corresponding potential is 

2
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(9) 

where, without loss of generality, 
j is assumed to be real. 

Introducing the dimensionless quantities 
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 

h
 

are the healing length and the bulk density of component j, respectively. For simplicity we consider 

the symmetric case 1 2 .     Utilizing these parameters Eqs. (8) turn out to be 
2
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1 1 2 12

0,
d

K
dz


         

(10a) 

2
3 22

2 2 1 22
0,

d
K

dz


         

(10b) 

and the potential (9) is rewritten in the form 
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In the context of surface and interfacial phenomena the DPA is established as follows. We assume 

that in the half-space    _ 0   _ 0  z z z z  the condensate profiles behave like 

0

0

, ( , ) (1,2),
1 , ,

, ( , ) (2,1),
j j j j

z z j j
with

z z j j
    

 
   

 
 

(12) 

here the dimensionless real quantities 
j and 

j  are treated as small perturbations. Then expanding the 

potential (11) up to second order in 
j and 

j  we arrive at the potential in the DPA which consists of 

two quadratic potentials, each of them is to be used in the appropriate half-space 

2

1 2

1
( , ) (2 1)(2 3) ( 1) ,

2
DPA j j jV K           

(13)  

with 

0 0, ( , ) (1,2), , ( , ) (2,1).z z j j z z j j       

Next the DPA is used to calculate the ground states of the system. To do this, we  employ the 

Dirichlet boundary conditions  at the hard wall for both condensates 

( ) 0,  with (1,2).j z h j      (14) 

Then we rewrite Eqs. (10) corresponding to DPA potential (13) on each side of the interface. In the 

right-hand side it reads 
2

1
12

1
2( 1) 0,

2

d

dz


     

(15a) 

2

2
22

1
( 1) 0.

2

d
K

dz


     

(15b) 

The solutions to Eqs. (15) satisfying (14) can be simply found 
2 2 2 2 2 2( )

1 ( ) 1,z z h h zAe e e e       (16a) 

                                          1 2 1 2 1

2 ( ),K z K z K hBe e e       (16b) 

with two integral constants A, B. In the left-hand side we have that 
2

1
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dz
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2

2
22
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2( 1) 0,

2

d

dz


     

 

whose solutions satisfying (14) are easily derived 
2( 1)(2 ) 2 2( 1) ( )

1 [ 1],
K h z K h z

Ce e     
   (17a) 

                                            
2( ) 2

2 1 2 sinh[2( )],h z he De h z        (17b) 

with two integral constants ,  .C D  

To proceed further let us  determine the constants , , ,A B C D by means of   the boundary conditions 

at the interface. The first condition is the continuity  at interface of  first derivative of condensate profiles 

with respect to z given in (6a) 

0 00 0 .( ) ( )j j

z z z z

d d

dz dz

 
     

(18a) 

The second condition is the continuity of both condensates at interface, 0 ,z z  

0 0( 0) ( 0).j jz z     (18b) 
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Substituting (16) and (17) into (18) gives 

0 22 2 21
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Figure 2. The condensate profiles calculated in DPA (solid lines) and in GP equations (dashed lines).  

The red and blue lines correspond to first and second components. 

The condensate profiles in DPA and in GP theory are plotted in Fig. 2 for the symmetric case 

1 2 11 22,  .m m m g g g     Fig. 2 tells that: 

- For symmetric condensates, Fig. 2a, the interface is located at   0z  , where two condensate 

profiles intersect. For asymmetric cases, Figs. 2b and 2c, the locations of interface slightly deviate from 

  0z  . 

- In all cases there is a qualitative accordance between  the behaviors of both types of solutions. This 

fact proves that the DPA is a reliable approach. 

Taking into account the condensate profiles found above we can easily calculate the surface 

chemical potential from (6). 
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which vanish when K tends to 1. 
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4. Nambu-Goldstone Modes 

For convenience the symmetric case is investigated in the BdG theory where the wave functions are 

expanded as 
/
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j j jx t z a z t e
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Substituting (20) into the time-dependent GP equations 
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Basing on (12) we can rewrite (21) as follows 
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Substituting (20b) into (22) and turning into the dimensionless form we get BdG equations 
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Solutions of (23) are found straightforwardly 
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for right-hand side of interface, and 
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2 2
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In order to determine the NG modes, let us introduce the functions 
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For sake the simplicity, we are now considering the case of strong segregation. For phonon mode 
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boundary condition at interface 

2 0( ) 0,k z z    (24) 

and on 2 ( )k z the Robin boundary condition 

0

2 0,|k

z z
z







 

(25) 

which lead to the systems of two homogeneous, linear equations 

11 1 12 1M C +M D =0,  (26a) 

21 1 22 1M C +M D =0,  (26b) 

here 

2

11 02( 1 1) sinh( ( )),
hM e h z  

       (27a) 

2

12 02( 1 1) sinh( ( )),
hM e h z  

       (27b) 

2

21 02 ( 1 1) cosh( ( )),
hM e h z   

        (27c) 

2

22 02 ( 1 1) cosh( ( )).
hM e h z   

        (27d) 

Taking into account (27) the existence of non-trivial solutions to Eqs. (26) requires that  

11 22 21 12M M -M M =0,  

yielding the first phonon mode 
2 32 [ ].h       

In the left-hand side of interface, the Robin boundary condition is used for both 1k and 1k , 

namely, 

0

1

1 02 ( ),|k

z z k z
z




  


 

(28) 

and 

0

1 0.|k

z z
z







 

(29) 

Eqs. (28) and (29) lead to a couple of homogeneous linear equations 

11 12M A+M B=0,  (30a) 
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 21 22M A+M B=0,  (30b) 

here 

0 02( )2

11 ( 1 1) ( ( 2) 2),
z h z

M e e
      

         (31a) 

0 0(2 ) 2( )2

12 ( 1 1) ( ( 2) 2),
h z h z

M e e
       

         (32b) 

0 02( )2

21 ( 1 1)( )( 1),
z h z

M e e
      

       (33c) 

0 0(2 ) 2( )2

22 ( 1 1)( )( 1).
h z h z

M e e
       

       (34d) 

Taking into account Eqs. (31) the second phonon mode is derived straightforwardly from the 

requirement that Eqs. (30) possesses non-trivial solutions 
2 32 [ ].h       

Finally, weak segregation of condensates is concerned. From continuous conditions at interface 

0 0( -0) ( 0),jk jku z u z    

0 0( -0) ( 0),jk jkv z v z    

with (1, 2)j  , we have 

0 0 0

0

( (2 ))

2 2 0

1 2 2

( ( ) 2 sinh( ( )))
,

z z h z h

z h

e B e e A e h z
A

e e

   

 

   

 

 

  



 

(35a) 

0 0 0 0 0

0

( ) (2 ) (2 ) 2 ( )

2 11
1

2 22

( ( 1) )
,

1( )

h z h z z h h z h z

z h

e A e e B
B

e e

     

 





     

 

       

  
 

 
 

(32b) 

0 0( ) ( 2 )( )

11 2 ( ),
h z h z

B B e e
       

    

0 0 0( ) 2

21 1 1( ), 
z h z z

C C D e e
          

    (33c) 

0 0( )( 2 )

0 21

2
2

(coth( ( )) 1)
, 

2 1

h z z
e h z D

D
   



     

  



 

(34d) 

Taking into account (34) the existence of non-trivial solutions to Eqs. (33) requires that 

11 22 21 12M M -M M =0,  

yielding the third phonon mode 
22 [ ].     

Applying conditions (28) and (29) for the component 2 in the left-hand side of interface, and using 

(32c), (32d) we have 

11 1 12 1M C +M D =0,  (35a) 

21 1 22 1M C +M D =0,  (35b) 

here 

0 0 0 0

0

( (2 )) 2 2 ( ) 2 ( )2 2

11 0 0
2

( )( ) 2

0 0 0

1
( )(coth( ( )) 1)(coth( ( )) 1) 1( 1)( 1)

4 1

4 sinh( ( ))( 2( 1 )sinh( ( )) cosh( ( ))) ,

(

)

h z z h z h zh

h z

M e e e h z h z e e

e h z h z h z

   

 

   


      

   

 

   

  

 

     

        


      

 

0 0 0 0

0

( ) 2 2 ( ) 2 ( )2 2

12 0 0
2

( )( ) 2

0 0 0

1
( )(coth( ( )) 1)(coth( ( )) 1) 1( 1)( 1)

4 1

4 sinh( ( ))( 2( 1 )sinh( ( )) cosh( ( ))) ,

( (

))

z z h z h zh

h z

M e e e h z h z e e

e h z h z h z

   

 

   


      

   

 

  

  

 

     

         


      
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0 0 0 0

0 0

( (2 )) 2 2 ( ) 2 ( )2

21
2

2 ( ) 2 ( )2

0 0

1
( )( ( 1)( 1)

4 1

1( 1)( 1))(coth( ( )) 1)(coth( ( )) 1) ,

(

)

h z z h z h zh

h z h z

M e e e e e

e e h z h z

   

 

 


   

   

 

   

 

 

  

    


       

 

0 0 0 0

0 0

( ) 2 2 ( ) 2 ( )2

22
2

2 ( ) 2 ( )2

0 0

1
( )( ( 1)( 1)

4 1

1( 1)( 1))(coth( ( )) 1)(coth( ( )) 1) .

(

)

z z h z h zh

h z h z

M e e e e e

e e h z h z

   

 

 


   

   

 

  

 

 

  

   


       

 

Taking into account (36) the existence of non-trivial solutions to Eqs. (35) requires that 

11 22 21 12M M -M M =0,  

yielding the fourth phonon mode 
22 [ ].     

5. Conclusion and Discussion 

In the preceding sections we presented the main content of the work. It consists of the following 

items: 

The solutions derived from DPA are in qualitative agreement with those obtained directly from  

GP theory. 

Adopting the DPA we derived successfully four NG modes that indicates the failure of the 

Watanabe-Brauner counting rule and, moreover, their dispersion relations depend on the spatial 

limitation. This result is our major success.  

The existence of the interface Hamiltonian SH is very important because it guarantees that the 

boundary condition at the interface (18) is taken at equilibrium state. For simplicity we chose the 

Dirichlet condition as the boundary condition at hard wall assuming that the hard wall Hamiltonian 

vanishes. Consequently, the total Hamiltonian of our system (2) was established. However, it is worth 

mentioning that there has been a long-standing interest in the problem of phase transition in confined 

geometry where the hard wall Hamiltonian play’s crucial role [17-23]. In this regard, taking into 

consideration this quantity is the subject of our next study. 
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