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Abstract: We considered the two — dimensional problem of reconstructing the historical
distribution on the surface of a finite slab from interior temperature data in the nonhomogeneous
case. The problem is ill — posed. So, a regularization is essential. Using the integration truncation
method, we have got the estimation of the error between the regularized solution and the exact
solution in the nonhomogeneous case. Then, we provided a numerical experiment for illustration
ofthe theoretically obtained results.
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1. Introduction

In this work, we investigate the problem of recovering the surface heat distribution

u(x,0,t) =v(x,t) (1)
such that

Au—-u, =F(x,y,t), xeR,0<y<2,t>0, (2)

u(x,1,t) = f(x,t), xe R, t>0, (3)

u(x,2,t)=g(xt), xeR, t>0, 4)
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u(x,y,00=0, xeR,0<y<2. (5)
where T,Q are measured dataand F is the heat source.

The problem (1) — (5) has been researched by many scientists because of its applications in many
fields, such as physics and geology. As we know, this problem has been treated widely in one -
dimensional case [1, 2] and two — dimensional case [3, 4].

For instance, in [2], Le et al. solved the following problem:
Finding W(t) =u, (1,t) such that
u,—-u =01<x<a, t>0a>2,
u@t) = f(t),t>0,
u(2,t) =g(t),t > 0.
Moreover, the authors also considered the problem:
Finding u(0,t) =v(t) such that
u,—-u =00<x<1t>0,
u@t)=f(),t>0,
u, (1,t) =w(t), t >0.
To regularize these problems, the authors use the Tikhonov method.

In addition, in [3], Dinh Alain et al. considered the problem (1) — (5) in the homogeneous case:
Finding u(x,0,t) =Vv(x,t) such that

Au-u,=0,xeR,0<y<2,t>0,
u(x,Lt) = f(xt), xeR, t >0,
u(x,2,t)=g(x,t), xeR,t>0,
u(x,y,0)=0,xeR,0<y<2.
Moreover, in [4], the authors solved the homogenous problem as follows
Finding U, (X,1,t) =w(x,t) such that

Au-u,=0,xeR,1<y<2,t>0,
u(x,Lt)= f(x,t), xeR,t>0,
u(x,2,t) =g(xt), xeR,t>0,
u(x,y,0)=0,xeR,1<y<?2.

By using the truncation method, the authors regularize the problem.

As is known, such problem is ill — posed. In fact, a small change in the data may lead to a large
change in the solution. Hence, a regularization is in order and that is the main goal of this paper.

To the best of our knowledge, papers related to the problem (1) — (5) in the nonhomogeneous case
are not much. Therefore, in this work, we regularize this problem by using truncated integration
method. With different conditions on the exact solution, we will get the error estimates between the
regularized solution and the exact solution.
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1

If v, € Hl(Rz)ﬂ Ll(Rz)ﬂ LOO(RZ)and O<8<e75 then ||Vg _VO” SC4—I (1/ );
2 n &

where C, > 0 depends onV,,.

If v, € Ll(Rz), e(S/Z)\/ZZH’Z

Vo(z,1)|el’ (Rz)and 0<e<ethen v, —v,|, <Cge*?,

where C, >0 depends onV,,.

The rest of our paper is divided into three sections. In Section 2, we will find the exact solution
and construct the regularized solution. Then we give the main results of the regularization method. In
Section 3, we will give the proof of main results. Finally, a numerical example will be given in Section
4, which proves the effectiveness of our method.

2. Main Results
2.1. The Solution of the Problem (1) - (5)

Lemma 1 (see [5]). Let a > 0. Put

1 x*+a?
Heuy={ge * (D eRxD)
0 (X,t)ERX(—CD,O)
K(x,t) = ¥eiT (x,t) e R x[0,+0) .
0 (x,t) € R x (—o0,0)

H(z,r) :ge(’a’ﬁwm+Zz [cos((a/ﬁ)VVz“ +r2 —7? ) —isgn(r)sin((a IN2WNZH+ 12 - 72 H

R (—al2)YNz'+r2+2?
K(z,r) :e\/_ﬁ[\/\/z“ +r24+7° cos((a/\/f)\/\/z“ +r’— 22)
22" +r

—msin((a/ﬁ)mj
- ngn(r)\/i\MSin((a/ﬁ)m)
—i sgn(r)\/ixlz“ﬂz—zzcos((a / \/5)\/7\/2%(#_22)}

To get the exact solution, we will transform problem (1) — (5) into a convolution integral equation.
We put

C(x=&)*+(y-n)?

FX) )t) IRV B = e =)
x,y,t,8,m,7) (D)
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and
G(X’ y!t!§! 77; T) = F(X! yyt;éj; 771 T) _F(Xi4_ y’t’é’ 77’ T) "
It gives
G, +G,, +G, =0.

Taking integration of the identity div(GVuU—-uVG)—(uG), =G.F over the domain
(=n, n)x (1, 2) x(0, t — &) and letting & — 0, after some rearrangements, we get,

+o0 t +o t

[Jac.06,(x y.t.&.2,0dede + [ [Gx,y.t.&L0)u, (& Lo)dede
) -0 0 (6)

4o t +oo t 2

~[[ (€06, ytEL)drde +ulx y,0) + [ [[G(x y,t&,n,0)F (& n,7)dndrdé =0.

-0 0 -0 01

Letting Y — 1" in (6), we obtain

+oo t 1 _(4X(:5)§ 1 _(X4—(f)2';'4 1 +o0 t 1 _(X4—(f)2';'4
—e M _—— ¢ 7 L7)drdé+— | |———e 7 f(&,r)dd
_'[o'(l; 2n(t—7) 27(t—7) u,(e.Lo)dz §+27z_'[o'!(t—r)2 (6,7)drds )
1 too t 1 C(x=)*+1 o0t 2
- 4(t-7) _
2”££—(t-r)2 e g(&,7)drdé+ f(x,t)+ZJ;CHG(X,l,t,g,n,r).F(f,n,r)dndrdg—O.
We put
N (X! yltlél 771 T) = F(Xl y!ta ga 771 T) - F(Xl_yltlglnl T)
satisfying
N.+N, +N_ =0
Taking integration of the identity div(NVu—-uVN)—(uN), = N.F over the domain
(-n,n) x(0,1)x (0, t — &) and letting N —> 0, £ >0, we have
+o0 t +o t
JIN&yt a1, (ELadrds - [ [1(£ N, (xy.t & Lo)deds
(®)
+o t +ot 1
+[ [V DN, (6 y,1.£,0.0)dedE—u(x y,0)— [ [ [N(x y.t&n,0) F(&n,r)dndzdé =0.
—% 0 -0 00
Letting Y — 1™ in (8), after some computations, we get
400 t 1 7(:(:5); 7(2*(;5)24;4 1 4o t 1 7(2*(':;)2;4
e " —e M JL7)drdé—— e "7 f(&,r)dad
[} P bEadds o [ [y (6. npdede o

(x5’ b0t 1

+%uﬁe 4(t=) v(e:,r)dfdg—f(x,t)—2_[0!!N(x,1,t,§,n,r).F(a;,n,r)dndrdz;:o.
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From (7) and (9), we obtain
1 =L g (x=¢)°+1

e T v(g ndrde= T |
-7 T

1 (x=£)%+4
e 7 fGndeds
-7

O t—

)
t 1 _(x=&)’+
j(t )ze D g(E,r)drd &+ 2 F (X, t)
0 -7

t 2 1 [ (x=&)*+(1-n)? (=) (3-n) |
J'J'— e 4t g 4(t-r)
03 27 (

F(&,n,7)dpdzdé

t1 1 [ (x=&)*+(1-n)° C(x=&)2+(1+)” ]
00 2

e 4t g 4(t-1) F(&,n,7r)dndrdé.

This implies that

S#v(x,t)=2R * f(x,t)-S *g(x,t)+2f(x,t)+j(R2 —Ry)*F(x,7,t)dy

(10)
+ (R, ~R,)*F(xn.0dln.

in which we define that V(X,t) = f(x,t)=g(x,t)=0as t <0,

X2+1

o4t

sS(xt)=1{¢° (x,t) € R [0, +e0)
0 (x,t) € R x(—00,0)

x2+4

R (x,t) = e “ (X,t)eRX[O,+oo),

0 (X’t)ERX(_OO1O)

4t

1| - x2+(1-7)?
R,(X,7,t) = ¥|:e :| (x,7m7,t) e Rx[0,2] % [0,+x) |

0 (x,7,t) e R x[0,2] x (—,0)

4t

1 _x2+(3—17)2
~le x,n,t) e Rx[0, 2] %[O,
R,(x, 1) =1 1 (x,7,1) e Rx[0, 2]x[ +°0)’

0 (x,77,t) e R x][0, 2] x (=00, 0)

1 7x2+(1+77)2
~le # x,n,t) e R x[0, 2] %[0, +
A t{ } (x,7.0) € Rx[0, 2]x[0,4+)

0 (x,17,t) e R x[0, 2] x (—0,0)
Put
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M(x,t)=2R * f(x,t)-S *g(x,t)+2f(x,t)+j(R2 —-R,)*F(x,7,t)dn

1
+[(R,—R,)* F(x,7,t)dn.
0

(11)
Taking the Fourier transform of (10), we get
S(z,r)N(z,r) = M (z,1), (12)
where
V(z,1) = iijiov(x,t)e‘(X”“)dxdt.
2 e 2
From (12), we get the exact solution of the problem (1) — (5)
v(x,t) = ij' IMe‘(XZ*tr)dzdr. (13)
2z = 2 S(z,r)
In the following main results, we denote || . ||, the L*(IR*) - norm.
2.2. The Regularization of Problem (1) — (5) by Truncated Integral Method
We construct the regularized solution for the problem (1) — (5) as follows
1 ¢ M(zr)
VS(X,t) —_ ,\ ( ’ )el(xz+tr)dzdr, (14)
27 5, S(z,1)

where D, = {(z, r/a, <|z|<b, and a’ <|r < bf} with a_,b,_ positive will be chosen later such
that lima, =0 and limb_ = +o.
&0 &0
Lemma 2 (The stability of regularized solution given by (14)).
Assume that Vv, € L2 (RZ) is the regularized solution given by (14) corresponding to the data

f.,g, € 2(R?),F, el2(0,2,12(R?)),k =1,2.
Then

2 2 2y !
ag L7(0,2,L°(R?))

1
[vi =V, < Cle(ﬁmm” \/" fi— lelﬁ +]g, - 92”2 +—[FR - ':2”2

where C, >0 is constant.
Theorem 1.

Let y € (O,%) and £ €(0,e™).

Assume that V, € L2 (RZ) is the (unique) solution of (1) — (5) corresponding to the exact data
f,g, € '(R?*),F, € *(0,2,L*(R?)) and Vv, el’(R*)is the solution given by (14)
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corresponding to the measured data f_,g. e Ll*(R?),F, €L?(0,2,L*(R?)) satisfying
|f_fo 9.~ Y% F.-F
Then

)Sg,|

& L%(R? L2(R?) < ¢& and | L2(0,2,L2(R?)) sé

V, V|, <C,&" +n(e),

where C, >0 and 77(¢) >0as £ > 0.

Remark 1.

In the above theorem, the error estimate is not good because the condition of the exact solution is
not strong enough. In two following theorems, we will give some explicit error estimates with
different conditions on the exact solution.

Theorem 2.
Let V_,V, beasin Theorem 1.
Assume that v, € H'(R?) N L'(R*) N L*(R?).
If 0<&<e™ then
1
v. -V | <C,——,
Iv. =vol, <€ In(1/¢)
where C, > 0 depends onV,,.

Remark 2.

When F =0, the error estimate has the same order with the result in [3]. To get the error estimate
of order £” (0 < p <1), we need a stronger condition on the exact solution.

Theorem 3.

Let V_,V, beasin Theorem 1.

We assume that V, € L*(R?) and eV Vo (z,1)|e L® (Rz).

If 0<eg<e”’ then

V, =V, < Ces™,

where C, >0 depends onV,,.

Remark 3.

As we can see, the error estimate in theorem 3 is of the Holder type. However, the condition on the
exact solution is so strong and that is one disadvantage of our method.

3. Proof of the Main Results

Proof of Lemma 2.
From Lemma 1, we have

‘é(Z, r)‘2 = 4efﬁm,
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V2NN 4 +r? 422
Nzt

2Bz 12422

F’iz(z’ r)r = °

A 2 e
R3(z,r)‘ = ,
Nz 1P
R 2 e—\/fll+n|\/\/z“+r2+zz
R“(Z’r)‘ - 4, 2
Z +r

For (z,r) € D,, we have

~ 2

S(z,r)‘ > 4g PV,
A oA A2

R R, <—-,

2 3 a’

~ |2 ~ |2
R,| +[R, s£22.

aE

Put

M, (x,t) = 2R, * f,(x,t) - S * gl(x,t)+2f1(x,t)+J2'(R2 —R,)*F(x,7,t)dn

1

+I(R2 - R4)* F(x,7,t)dn,

0
2
M, (x,t) = 2R, * f,(x,t) =S * gz(x,t)+2f2(x,t)+I(R2 —Ry)*F,(x,n,t)dn
1

1

+.[(R2 ~R,)* F,(x,7,t)d7.

0

We get

-~ ~ 2
~ ~ ~ ~ M ’ _M ’
v~ vl = [0~ %1, :H!z|vl(z,r)—vz(z,r)|2dzdr = [H (2 ;A)(Z’r)Z(Z gl dzdr.
Applying the inequality (2 +b+c+d)* <4(a”+b*+c®+d?), we have

v, v, seﬁmgj‘(‘(2+2|§l)(ﬂ— L) +[5(6.-6.)

+j (R, ~R,)(FCmn) - ﬁz(.,n,.))‘2 d;7+_l[ (R, ~R.) (R - ﬁz(.,n,.))r dnjdzdr.

Applying (15) and the inequality (a +b)* < 2(a” + b*), we get

2

101

(15)
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vy <€ (@ +8RID| . - fol} + S 9. - 0.l;
2
SR
1
STEGRT

< [(8+8||R1||f - 2+ IS o, - oaff +

(B~ Bl )| dadrdy

(BCn) =Rl dzdrdnJ

”F FZ"L2 (0,2,1%(R? ))]

2
12(0,2,L2(R?)) } !

8

Therefore, it leads to

1
A _V2|| <Cle i, {" f,— leli+||91—92||§+§||F1—Fz

where
c; = max 8-+ 8[R.|f 5| |

Thus, we obtain

(N2/2)yV2+1b,
”V _V2|| <Ce \/”f - f ” +||g1 g2|| t7 ”F F, L2(02L2(R2))' (16)
This completes the proof of lemma 2.
Proof of Theorem 1.
We put
a =¢&,
2 1
b = f In(—y)
J2+1 \&
Applying triangle inequality, we have
ftogef Ol :‘ (1, 05 ) Vo PR A ) _Vg(fo,go,FU) ) €(10.90.Fo) Vo 2 (17

Applying Lemma 2 and the inequality v/a® +b® +c? <a+b+c for a,b,c >0, we get

V -V <Ce” (28+5’7¢9).

&(1s.05.Fe) (%0.00.F0)

2
Hence

~

<C,e", (18)

&( 15,05 F) €(t9.90.F0)

2

where C, = 3C,.
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Moreover, putting 7(&) :\/ I |\70(Z,r)|2dzdr , we have

RA\D,
Ag(foygm) —Vo|, = n(¢) — 0 as ¢ - 0. (19)
From (17), (18) and (19), it implies that
Vv, —V0||2 <C,e"¥ +n(¢). (20)

This completes the proof of theorem 1.
Proof of Theorem 2.
We put

T, =[-b,.b,]x[ -bZ,b7],
K. =[—ag,a£]x[—a§,a§],
D, =T \K.
From Lemma 2, it implies that

A

s 1000 (R0 fo.90) [[2

2 2
< C12e\/§\/\/5+]b£ |:2€2 + ‘("2 :|
% (21)

2
V.. =Y f IV, (z, r)| dzdr = j (24 )|V (Z r)| dzdr + _[|\70(z,r)|2dzdr
(Fo.f0.90) R\D [RZ\TE Z +r ‘
<|INzZ?+ 1?0, (z, r)H g (Rz)af
Hence
G 0, < N7 P02 r)H +4||v0|| 2. @2)

From (17), (21) and (22), it results in

2
L V| < C2| gel2 +i2+g—2eﬁ“ﬁ*1bﬁ +af], (23)
b> a:

where
ClZ= max{ZCf,%“ 2 +1%9,(z, l’)H2 4||Vo||f}
2

Let bg be the positive solution of the following equation

eﬁ\/\/i+1b€bi0/3 _ iz . (24)
&
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The function h(s) = 510822 s sirictly increasing in (0;+ ) and h(R*)=R", so that
equation (24) has a unique solution b_and b, — +o0 as & — 0.

For & sufficiently small, it implies that

6b, > /2472 +1b, +%In(b8) _ 2In(1j.
&

Therefore
1 3 (25)
b, In(l/g)
Putting
3
LB
& b2/3
we have @, =0 as ¢ - 0.
From (23) and (25), it leads to
S 1 1 1 2
v, —Y|, <C; [blols b_j+fbj+b_§
2 1)1
<o+ 5
9 1
~ TIn*(1/¢)
where
C?=9C? (4 + ij
4 3 {Q’/Z
Thus, we obtain
< (26)
Ve 0" 1/5)

This completes the proof of theorem 2.
Proof of theorem 3.

We put
b. = L In( ! )
T a2+ \¥2e)
a :24/981/3.
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We have
SW |O (Z )|2

A

I [0, (z,r)[ dzdr = I dzdr + I|00(z,r)|2dzdr
KE

\'} Y/
0
€(Fy.f0.90) ]RZ\D RZ\TE e5\/22+r2
< (5/2)\/22+r2" 2 1 4 ~ 12 .3
<le vo(z,r) o + 4|9, . @
(5/2)Nz +r2 '* 2 3
Z,r +4|v, .
R R
(27)
From (23) and (27), it gives
1 £* o Jamp
.=V, <C2 SRR S L
0 ” [ ee,«/z(ﬁu)bf af ¢
where
2,2 | A 2 2
c: :max{ZCf, S e
2
This implies that
3 2 13
2 2| 2 1 13 & 1 413
V. —V.|. <Ci|l & | —— | +27¢c+——z| ——— | +277¢
& 0”2 5 (lesgj 28/982/3 21/38
1 1
<C? 5 eP+2M e+ =42 |,
2 2
Therefore
Ve _V0||2 = (28)
where

C,=C \/(2—}/9+2”3 + ; +24’3j

This completes the proof of theorem 3.

4. Numerical Example

We consider the problem:

2 X% Kooty
Au—u, =F(x,y,t)= (E+T+t 1} 4 xeR,0<y<2,t>0, (29)
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_x2_¢2
u(x,L,t)= f(x,t)=ete 4 ,xeR,t>0, (30)
—x%-t?
u(x,2,t) =g(x,t)y=e?’te 4 ,xeR,t>0, (31)
u(x,y,0)=0,xeR,0<y<?2. (32)
that the unknown is
v(x,t) =u(x,0,t). (33)
The exact solution of the equation is
—x2-t2
Vo (x,t) =te 4 . (34)
The Fourier transform of exact solution is
V. (z,r) = —4ire ™" (35)
Let £>0 and f :(1+ij f, G :(1+ijgl = :(1+ij|£_
‘ 12 ¢ 12 ¢ 12
We get
f,—f ety <€ |g£ = O)|p ey <& and |Fg -F o2y < &
We have

(20 =(@R +2).8. )@ ~(84.)@n - (R~ R )£ )@n iy

+I((§2 - Isé4)-'35)(2,77, r)dn

0

Let
a = 49 LU

b, = L In[ L j (36)
32(/2+1) \¥2¢

We obtain the Fourier transform of the regularized solution

~ |\7| Z,r E A
V. (z,r) :#ZDS :(1+EJV8X(Z,F)ZD£
(37)

where D, ={(z,r)/a, <|z|<b, and a’ <|r|<b?}.

We consider ¢ =10°, &, =107, £,=10", ¢, =107, & =10". Then we get the error
estimate between the exact solution and the regularized solutions corresponding to &;, i=1,...,5. From
(35), (36) and (37), we get the following table which expresses the error estimate.



N. Q. Huy. N. M. Hai / VNU Journal of Science: Mathematics — Physics, Vol. 39, No. 4 (2023) 94-109 107

Table 1. The errors between the error estimate between the regularized solution and the exact solution
corresponding to &, 1=1..5.

& a‘s bs VL‘ - Vex ||2
10° 0.0293 1.7115 0.5456
1010 6.3163.10* 3.458 0.0794
10" 1.3608.10° 5.2045 0.0117
10%° 2.9318.10” 6.9510 0.0017
10°%° 1.3608.10™"° 10.444 3.6938.10°

0.8

Figure 1. The 3D graph of the exact solution.

08+
0.8

Figure 2. The 3D graph of the regularized solutions corresponding to &;, i=1,2.
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Figure 3. The 3D graph of the regularized solutions corresponding to &, i =3,4,5.

5. Conclusion

In this work, we regularized the problem of reconstructing the historical distribution from interior
data in the nonhomogeneous case. We proposed the truncation method to establish the regularized
solution and get the error estimate of the regularization. Moreover, we provided a numerical example
to illustrate results obtained by our theoretical method. In the future, we will consider the problem in
the nonlinear case.
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