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Abstract: In this work, the Newton potential, together with the low-key corrective energy, an 

attractive loop of two large non-relativistic masses has been found. The asymptotic behavior of the 

scattering amplitude for two scalar particles at high energies with fixed momentum transfers was 

studied in the one-loop gravitation effective field theory.  
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1. Introduction* 

The high energy scattering amplitude for all types of interactions, including gravitational interaction, 

is one of the central problems of elementary particle physics. The gravitational scattering occurs at 

energies 2 PLs E M = − and is described by “effective field theory” [1-5], where s  is the squared 

energy of the center of mass, 
PLM  is the Planck mass, G is the universal gravitational constant, which 

is characterized by the effective coupling constant / 1G Gs  h . 

The standard method of quantum field theory is based on perturbation theory. This method is 

suitable when the energy of individual particles is not very high, and the effective coupling constant is 

not very large. When the energy is increased, the effective coupling constant also increases so that the 

corrections calculated by perturbation theory play a crucial role. 
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Hitherto, the different approaches tackling this problem have only received the leading term of the 

scattering amplitude. Searching for non-leading terms has failed [6-8] even though they contain many 

classical and quantum effects of unknown nature [7-8]. The determination of these corrections to 

gravitational scattering is currently an open problem. The path-integral method with a modified 

perturbation theory and Logunov-Tavkhelidze quasipotential are used to give the analytic expression of 

the first correction [9-10]. 

This work arms to make a more detailed investigation of the approach, which is based on modified 

perturbation theory, to find the correction terms to the leading eikonal amplitude by solving the 

Logunov–Tavkhelidze quasi-potential equation [11-14]. 

The paper is organized as follows: In the second section, we briefly introduce the scattering matrix 

and the non-relativistic potential. Calculating the one-loop leading eikonal scattering amplitude and its 

first correction to leading amplitude in the effective theory of quantum gravity are constructed in the 

third section. In the last section, we draw our conclusion. 

2. Scattering Matrix and the Non-relativistic Potential 

The scattering amplitude for two scalar massive particles as a function of the momentum transfer 

 
22q p p   in the mixed gravity-scalar theory can be expanded as [1]: 
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where the coefficients ; ;...A B  and 
1 2, ,   depend on the particle masses 

1 2,m m . The terms 

with ; ;...A B  in Eq. (1) are analytical in 
2q  and correspond to local interactions and the other terms 

with 
1 2, ,    correspond to the non-local, long-ranged interactions, described by the nonanalytic 

potential. 

The space parts of the non-analytical terms are performed Fourier transformation:  
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(2)  

So clearly these terms will contribute to the longrange corrections. It should be noted that such 

nonanalytic pieces of the scattering amplitude are essential to the unitarity of the S matrix. 

In the quantization of General Relativity, the definition of potential is certainly not obvious. The 

choice of potential, which includes all one-loop diagrams [3-5] seems to be the simple, gauge invariant 

definition of the potential. We will calculate the non-relativistic potential using the full amplitude. Here 

we simply relate the expectation value for the S matrix to the Fourier transformation of the potential 

 V q
r% :  

    1 2 1 2, , 2p p S p p iV q E E      
r%  (3)  

Where ,p p  is the incoming, outgoing four-momentum, respectively, and  E E  is the energy 

difference between the incoming and outgoing states. Comparing this to the definition of the invariant 

matrix element M we get from diagrams: 
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      
4 4

1 2 1 2 1 2 1 2, , 2p p S p p p p p p iM          (4)  

We have divided the above equation with 
1 2(2 2 )m m  to obtain the non-relativistic limit   0,q q

r
. 
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So that: 

 
 

 
3

3

1 2

1 1

2 2 2

iqrdq
V r e M q

m m 
  

r rr r  (6)  

This will be our definition of the non-relativistic potentialgenerated by the considered non-analytic 

parts, where M is the non-analytical part of the amplitude of the scattering process to a given loop order. 

We evaluate all diagrams which contribute to the one loop scattering amplitude. Finally, we find the 

leading corrections to the nonrelativistic gravitational potential. 

 1 21 2

2 3 2

41
( ) 1 3 ,

10
Newton

G m mm m G
V r G

r c r c r

  
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 

h  
(7)  

Which includes the lowest-order relativistic correction, and the lowest-order quantum correction 

(also relativistic). 

3. The Leading Eikonal Behavior and the First Correction of the Scattering Amplitude in the One-

loop Effective Gravitation Field Theory 

The low energy effective theory of quantized gravity is currently our most successful attempt at 

unifying general relativity and quantum mechanics [1-5]. In this theory, gravity is similar to other 

fundamental interactions, the results are true for energies below the Planck energy scale, and quantum 

correction effects can be calculated at current energy. 

Therefore, we attempt to extend the above approach to calculating the high energy scattering 

amplitude of two “nucleons” for the graviton exchange based on the Newtonian potential with low-

energy leading one gravitational loop corrections of two large non-relativistic masses [1]. 

From item 2 above, we have found the leading corrections to the nonrelativistic gravitational 

potential (7). It is important to note that the classical post - Newtonian term in expression (7) corresponds 

to the lowest-order scattering potential and agrees with Eq. (2.5) of Iwasaki [2]. The correct result for 

the quantum corrections was first published [1]. 

The Newtonian potential with low-energy leading one-loop gravitational corrections Eq. (7) can be 

rewritten as: 

2 4 4

1 2 32 3
( , )Newton

s s s
V r s C C C
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  
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(8)  

Where 1 2
1 2 32 2 3 2

1 3( ) 41
; ;

4.(32 ) 4 .(32 ) 40 .(32 )
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C C C

c c   


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h . 

Asymptotic behavior of the scattering amplitude at high energy s   and fixed t-momentum 

transfer [14]: 
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In Eq. (9) the first term describes the leading eikonal behavior of the scattering amplitude, while the 

remaining terms determine the corrections of relative magnitude. Due to the smoothness of the potential 

V at high energy s   the change of the particle momentum 
r

, is relatively small. Therefore, the 

terms proportional to V
r

and 
2V

r
 in Eq. (9) can be neglected, now we have the leading eikonal 

scattering amplitude and the first correction term. 
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When substituting Newtonian potential (8) into Eq. (10) mention the interaction peaks of gravitons 

between two nucleons, by the way changing 
NewtonV  by 

NewtonsV  [9], graviton still has mass  , we have:  
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(12)  

Perform some necessary calculations, we receive the leading term of the scattering amplitude: 
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By the same way, Eq. (11) is now available: 
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Perform some necessary calculations for the first term of Eq. (16), we have 
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and the second term of Eq. (16) gives the result: 
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The final result for the first correction term of the scattering amplitude has the form: 
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(19)  

From the Eqs. (11) and (19) above, we see that the leading eikonal term and the first correction term 

of scattering amplitude have the same structure, including three small terms: (i) The first term is the 

scattering amplitude by exchanging gravitons, which in its non-relativistic limit will be Newton 

potential; (ii) The second term is the relativistic correction for the scattering amplitude [the term 

containing  1 2m m ]. This term corresponds to the non-analytic contribution because of exchanging 



D. T. Ha, N. T. Huong / VNU Journal of Science: Mathematics – Physics, Vol. 39, No. 4 (2023) 64-70 69 

gravitons. The relativistic correction term is explained as the “zitterbewegung” fluctuation when the 

distance between two interacting particles is shifted by one Compton wavelength [1-2]; and (iii) The 

last term (the term proportional to h) is quantum correction, obtained from the contribution of the one 

loop diagram in the high energy scattering process. The quantum correction term found in the linear 

gravitational field corresponds to the local interaction that is related to the analytical properties of the 

scattering amplitude. The Newtonian potential and its quantum corrections are related to the non-locality 

of the quasi-potential; non-analytic terms are also related to the non-locality of the Newtonian potential. 

4. Conclusion 

In the framework of the effective field theory, we obtained the expression for the scattering 

amplitude in Newtonian potential, taking into account the contribution of relativistic and quantum 

corrections from the one-loop diagram. The difference with the above case includes: Relativistic 

correction terms are calculated from non-analytical contributions and explained as a result of 

“zitterbewegung” fluctuations when the distance between particles is shifted one Compton wavelength. 

Quantum correction terms related to Planck’s constant was also found. 

The contributions to the high energy scattering amplitude are divided into analytic contributions 

related to the locality and non-analytic contributions associated with the non-locality. This division is 

associated with two ways of describing particles in quantum mechanics and relativistic quantum 

mechanics in that the particle has mass m. If the particle has mass, it is not possible to localization of 

the particle in a volume with linear dimensions less than the Compton wavelength of the corresponding 

particle.  
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