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Abstract: This work presents an analysis of nonlinear vibration in Function Graded Magneto-

Electro-Elastic (FG-MEE) plates subjected to mechanical, electrical, and magnetic loads using the 

nonlocal stress theory approach. In this study two types of MEE plates, namely BaTiO3 and CoFe2O4 

were considered. The basic equations are derived using classical plate theory with nonlocal stress 

theory and are solved using the Galerkin method and Runge-Kutta method. We investigated the 

effects of nonlocal parameters, materials, and geometrical characteristics on the natural frequencies 

and nonlinear vibration of the FG-MEE microplates. 
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1. Introduction * 

Functionally graded materials offer several advantages in terms of their resistance to the coupling 

of various conditions, where material discontinuity can significantly affect the performance of structural 

systems. A new class of adaptive structures or smart composites has emerged, consisting of both 

piezoelectric and electromagnetic materials. These structures and composites are commonly known as 

multilayer composites or magneto-electro-elastic (MEE) composites. They have shown promising 

potential in a wide range of applications, including microelectromechanical systems (MEMS) and 

nanoelectromechanical systems (NEMS), sensors, actuators, and wireless communication devices [1]. 

Zhou et al., utilized a smoothed cell-based finite element method for static and dynamic analyses of 

magneto-electro-elastic structures under uniformly increasing temperature [2-3]. Hsu and Hwu [4] 
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analyzed the elongation-bending boundary element for asymmetric magneto-electro-elastic plates with 

multiple holes, cracks, and impurities based on the corresponding boundary element method for coupled 

stretching-bending composite plates. Kuo and Wang [5] used the pseudo-Stroh formulation and 

propagation matrix method to calculate wave motion analysis solutions for layered magneto-electro-

elastic plates with interface defects of membrane type. Zhang et al., [6] addressed issues of nonlinear 

oscillation and bending of multilayer magneto-electric beams in thermal environment based on high-

order shear deformation theory combined with the von-Karman nonlinear dynamic model. Vinyas et al., 

[7] examined the impact of varying the thickness of the alternating current on the frequency of three-

phase smart magneto-electro-elastic plates. Furthermore, Zhou et al., [8] investigated the dynamic 

characteristics of smart composite structures under combined thermal loads and mechanical loads. Chen 

et al., [9] proposed a vector state method to study the free vibration of magneto-electro-elastic laminated 

plates. Dat et al., [10-11] analyzed the nonlinear magneto-electro-elastic vibration of a smart sandwich 

plate placed on a Pasternak-type elastic foundation and subjected to combined external pressure, 

thermal, electric, and magnetic loads. 

Non-classical continuum theories are used to analyze the properties of materials at the nanoscale or 

to study the behavior of materials with complex structures such as composite materials, biological 

tissues, and porous materials. These theories are also useful in the design and analysis of advanced 

materials used in aerospace, automotive, and biomedical applications. Liu et al., [12] based on the 

Almansi theory and the Schmidt method presented a non-local theoretical solution for three-dimensional 

rectangular penetrating cracks in electroelastic materials. Zhang et al., [13] investigated the effects of 

surface and nonlocal elasticity on the dispersion relationship of piezoelectric nanosheets. Meanwhile, 

Chen et al., [14] studied the relationship between the nonlocal parameter and the reflectance and 

transmission coefficients of planar waves for liquid-submerged multilayer MEE plates. 

After conducting a careful investigation of the available literature, it has been observed that most of 

the studies related to the nonlocal stress theory focus on plates. It can be concluded that despite the high 

demand for understanding, no research has been conducted on microplates with function graded 

magneto-electro-elastic using the nonlocal stress theory approach. Therefore, the aim of this work is to 

investigate the effect of nonlocal parameters, material properties, mechanical, electrical, and magnetic 

loads on the nonlinear vibration of the microplate. 

2. Analytical Solution 

2.1. Modeling of Structure 

 

Figure 1. The model of magneto-electro-elastic microplate. 
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Consider a rectangular Magneto-electro-elastic plate as shown in Fig. 1. This figure shows an MEE 

microplate with dimensions of length (a), width (b), and thickness (h). The plate is attached to a 

Cartesian coordinate system (x, y, z), where the z-axis is aligned with the thickness of the plate, and the 

x-y plane is located on the neutral plane of the microplate. 

2.2. Theory and Formulations 

The nonlocal stress theory for FG-MEE microplate 

The equation representing the constitutive relationship for the nonlocal stress tensor is as follows: [15]: 

   ' ' ',
v
K X X t x dx   ,  (1) 

in which 𝜎, 𝜎′ are local and nonlocal stress tensors module  ' ,K X X   represents the interaction 

between two points of the material X  and 'X ; 0 0/ ,e a l e   is a constant appreciation to the material; 

a  and l  are the internal and external length, respectively. 

 The more commonly used differential form [15] of the nonlocal constitutive relation is shown 

below: 2 '       in which  
2

0e a  specifies the nonlocal parameter and 2 2

2

, ,x y
     is the 

Laplacian operator. 

Basic equations 

Based on the classical plate theory, the relationships between strain and displacement have been 

established as follows: 
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The stress-strain relations presented in this study take into account the effects of electric and 

magnetic fields: 
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The electric and magnetic field components can be expressed in terms of the gradients of the scalar 

electric and magnetic potentials, denoted as  and , respectively [11] 

    , ,, ,, , , .k kk kE yH k x z    %%                              (5) 

with 
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where ,
 

are the spatial variation of the electric and magnetic potentials, 

respectively. Also, 
 
and 

 
represent the external electric and magnetic potentials at the initial stage, 

respectively.  

Replacing Eq. (5) into Eq. (6) yields 
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The force and moment resultants of the FG-MEE microplate can be expressed by calculating the 

stress, strain, and displacement components as follows: 
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Introducing Eq. (2) into Eqs. (3), and subsequently substituting the obtained results into Eq. (8), one 

can obtain follows: 
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in which the detail of coefficients    661,2; 1,4 , ( , ), 11,12,22,66ij ijB i j B B I L K ij     may be 

found in Appendix. 

The nonlinear motion equations of the microplate are defined as 

% %

/ h     , , , x t x t

0 0
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in which,  q Pa  is an distributed load of the FG-MEE microplate and 
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z dz 


             (11) 

To express the deformation compatibility equation for a microplate, we can write   
22 0 2 02 0 2 2 2

2 2 2 2

y xyx w w w

y x x y x y x y

        
    

        
                   (12) 

Upon introducing this stress function into Eqs. (10) and (12) and carrying out the required 

transformations, it becomes evident that the resulting six equations can be reduced to two nonlinear 

equations expressed in terms of the variables  and . These equations are utilized to investigate 

the nonlinear vibration of the MEE microplate. 

Solution of problem 

In this work, four edges of the plate are considered to be simply supported and immovable, and the 

specific boundary conditions are determined based on the in-plane restraint at the edges. The 

corresponding boundary conditions are as follows: 

0
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with 0 0,x yN N  are pre-buckling compressive force resultant in direction x . 

In this approach, the stress function Airy is selected and shown as:
2 2 2

2 2
, , .xx yy xyN N N
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To solve four newly obtained equations, while taking into account the boundary conditions (13), we 

make the following assumptions regarding the approximate solutions: 
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       , , sin sin , , , sin sin ,m n nmw x y t W t x y tx y t x y        

where  ,  ,  are odd natural numbers and      , ,W t t t   are time-dependent 

functions. The coefficients  1,2,3kT k   are determined by introducing of Eq. (15) into Eq. (12), and: 
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By substituting the assumed approximate solutions (15) into Eqs. (10) and applying the Galerkin 

method to the resulting equation yields: 
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where  1, 1 4ijy i j    are shown in Appendix. 

The conditions that ensure immovability on all four edges (fixed boundary conditions are satisfied 

on both the x and y axes), such that 

                          (18) 

From Eq. (9), we can determine the strain components in the middle surface of the microplate as 

follows: 
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From Eqs. (6) and (19), the derivative of displacements can be determined as 
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Introducing Eq (19) into Eq. (21) and substituting the resulting expression into Eq. (18) yields 
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where  , , 1 5i jg f i j   are shown in Appendix. 

Assuming a uniformly distributed transverse load with the form of q st , the resulting equations 

are employed to investigate the nonlinear vibration of a microplate can be shown: 
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in which    *

1 11 6 , 1,3,5,6l ko l o k    are expressed in Appendix. 

The fundamental frequency of nonlinear vibration of the microplate can be by finding the minimum 

value of the three solutions of the equation: 

* 2
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                                      (24) 

3. Results and Discussion  

To assess the accuracy of the calculations, a comparison of the dimensionless natural frequency 

parameter 
2

11

b

b

a

h C


 %  with Monaco et al., [16], Ramirez et al., [17] and Ismail et al., [18]. Here, 

35300 /b kg m   and 11 166bC GPa  are the bottom material’s mass density and elasticity modulus 
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(BaTiO3). The plate is made of BaTiO3/CoFe2O4 with 2 , 1a m b m  , and ratio / 0.2h a  . Based on 

the data presented in Table 1, it can be observed that the results obtained in this study are in excellent 

agreement with the previously published data. 

Table 1. Comparison of the dimensionless frequencies %of an FG simply supported  

rectangular plate consisting of BaTiO3/CoFe2O4 

Mode Monaco et al., [16] Ramirez et al., [17] Ismail et al., [18] This work 

(1,1) 9.53 10.02 16.64 12.86 

(2,2) 28.76 32.57 51.97 51.31 

The geometrical parameters of the microplates chosen 

0 0 0 31 , 0.1, / 80, 50 , 20 , 50%Batioh m e b h mV mA V        . The following results evaluate how 

the dynamic response and natural frequency of microplates are influenced by geometrical and material 

parameters, as well as electric and magnetic potentials under uniformly distributed transverse load. 

Table 2 provides the material coefficients used in the study.  

Table 2. The magnetic, piezo, electro properties of CoFe2O4 and BaTiO3 

Notation 11 22

f fC C
 12

fC
 13 23

f fC C
 33

fC
 31

fe
 33

fe
 11 22

f f 
 33

f
 

Unit  GPa
 

 2/C m
 

 9 210 / NC m

 
CoFe2O4 286 173 170 269.5 0 0 0.08 1.2 

Batio3 166 77 78 162 -4.4 18.6 0.093 12.6 

Notation 
11 22
f f 

 33
f

 31

fq
 33

fq
 11 22

f fm m
 33

fm
 3

fp
 f  

Unit  4 2 210 Ns / C

 
 / AN m

 
 1210 Ns/ VC

 
 7 210 /C m K

 
 3/kg m

 

CoFe2O4 -5.9 1.57 580 700 0 0 0 5300 

Batio3 0.05 0.1 0 0 0 0 0 5800 

Table 3 respectively illustrates the impacts of applied electric and magnetic potentials on the natural 

frequencies of FG-MEE microplate. The natural frequency is observed to vary slightly with changes in 

the electric and magnetic potentials. An increase in electric potential leads to a rise in the natural 

frequency, while a decrease in magnetic potential results in a decline in the natural frequency. This trend 

can be attributed to a reduction in structural stiffness as the electric potential increases or the magnetic 

potential decreases, leading to a lower natural frequency. 

Table 3. Variation of the natural frequencies  3 110 s  of the MEE plate depending on electric potential 

0 ( )mV , magnetic potential 0 ( )mA  

0                          0
 

-20 0 20 

-50 4114.7853 4554.2702 4954.9265 

0 4056.8218 4501.9687 4906.8973 

50 3998.018 4449.0524 4858.3934 
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Table 4 provides insights into how the natural frequency of the FG-MEE microplate is effected by 

the width-to-thickness ratio and non-local parameters. An evident reduction in the natural frequency is 

observed as the /b h  ratio is increased. This can be attributed to the larger plate resulting from the 

increase in the /b h  ratio while keeping the thickness constant, leading to a lower load-carrying capacity. 

Furthermore, the nonlocal parameter have minimal influence on the frequency of FG-MEE micro-plate. 

Table 4. Variation of the natural frequencies  3 110 s  of the MEE plate depending on ratio width to thickness 

/b h  and nonlocal parameters 0e  

/b h                        0e  0 1 2 

70 6239.6636 6239.6633 6239.6588 

80 4858.3937 4858.3934 4858.3888 

90 3910.1284 3910.1281 3910.1234 

  

Figure 2. Change of ratio width-to-thickness b/h  

on the deflection. 

Figure 3. Change of volume fraction  

of piezoelectric phase on the deflection. 

  

Figure 4. Change of electric potential  

on the deflection. 

Figure 5. Change of magnetic potential  

on the deflection. 

The behavior of MEE microplates with 01 , 0.1h m e   is affected by various geometric 

parameters, including the width-to-thickness ratio /b h  and volume fraction of piezoelectric phase 
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3BatuiOV  can be observed in Fig. 2 and 3. It is evident from the figures that the deflection amplitude of 

the MEE plate increases significantly  as the width-to-thickness /b h  ratio or volume fraction of the 

piezoelectric phase 3BatuiOV  increases. 

Fig. 4 and 5 respectively depict the variation of the nonlinear vibration of the MEE microplate with 

respect to the magnetic potential and electric potentials. The results presented in these figures 

demonstrate the opposite effect of magnetic and electric potentials on the deflection amplitude of the 

microplate. Increasing the magnetic potential from to leads to a reduction in the maximum deflection 

amplitude from -20 mA to 20 mA. In contrast, the change in maximum deflection amplitude due to the 

electric potential is negligible. Increasing the electric potential from -50 mV to 50 mV results in an 

increase of only 1% in the maximum deflection amplitude. 

The influence of excitation force amplitude on the deflection amplitude curve of the FG-MEE 

microplates are depicted in Fig. 6. As indicated by the effect of the load has a marked effect on the 

deflection of the microplate. Obviously, as we increase the load, the deflection of the structure increases.  

Fig. 7 shows the effect of initial imperfection on the nonlinear vibration of the FG-MEE microplates, 

where the imperfection coefficient is denoted by  0,0.1,0.2  . It can be observed that the 

imperfection coefficient has a considerable influence on the nonlinear vibration of the FG-MEE 

microplates.  

  

Figure 6. Change of excitation force amplitude  

on the deflection. 

Figure 7. Change of imperfect coefficients  

on the deflection. 

4. Conclusion 

In this work the nonlinear vibration of FG-MEE microplates under mechanic-magneto-electro loads 

based on a nonlocal stress theory were studied. From obtained reults, following conclusions can be given:  

- The natural frequency decreases with increasing electric potential or decreasing magnetic potential. 

- The volume fraction of the piezoelectric phase has a negative impact on the nonlinear vibration of 

the microplate. 

- Increasing the initial imperfection parameter results in a notable decrease in the deflection 

amplitude. 

- The vibration characteristics of the microplate are highly dependent on its geometrical parameters. 
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