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Abstract: The buckling and post-buckling of magneto-electric-elastic (MEE) sandwich plate are 

presented. The core layer consists of epoxy matrix reinforced with graphene origami auxetic metal-

material in which the volume fraction of graphene origami is assumed to vary the thickness direction 

in three different distributions. For MEE face sheets, the proportions of ferroelectric and 

ferromagnetic components are chosen equally. The Reddy's higher order shear deformation plate 

theory forms the basis for establishing the governing equations. The axial compressive loading- 

deflection amplitude relation and the expression of critical buckling loading are obtained through 

the application of Galerkin method. The method's accuracy is validated by comparing its results with 

those published by other authors. The influences of various parameters on the buckling and post-

buckling of the sandwich plate are investigated in details.   

Keywords: Buckling and post-buckling; sandwich plate; graphene origami; auxetic metal-material; 

hygrothermal environment. 

1. Introduction* 

Recently, there has been significant attention on novel three-dimensional structures called graphene 

origami and kirigami, owing to their remarkable mechanical, electronic, and optical properties. Jiang et 

al., [1] presented the design and bandgap optimization of multi-scale composite origami-inspired 

metamaterials reinforced with grapheme platelets and carbon fibers based on the Mindlin plate theory, 

higher-order spectral elements, and the Bloch theorem. Within the framework of the first-order shear 
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deformation beam theory, Zhao et al., [2] investigated the free vibration behavior and dynamic responses 

of functionally graded beams composed of novel graphene origami-enabled auxetic metal metamaterials 

subjected to an impulsive load. Based on the molecular dynamic simulations, Fan and Shen [3] designed 

a novel metamaterial which incorporates origami-graphene with single crystal copper matrix. Murari et 

al., [4] presented a numerical study on nonlinear free vibration and post-buckling behaviors of 

functionally graded graphene origami-enabled auxetic metamaterial tapered beams immersed in fluid, 

with a particular focus on the effect of negative Poisson’s ratio on the nonlinear frequencies and post-

buckling equilibrium paths. Using molecular dynamics simulations, Luo et al., [5] managed to 

effectively simulate the controlled graded release of C60 and C180 from a graphene box, drawing 

inspiration from the origami technique and employing an external electric field.  

Due to their remarkable properties in both ferroelectricity and ferromagnetism, the MEE materials 

have emerged as a cutting-edge smart material of the next generation, capturing significant interest from 

scientists worldwide due to its wide-ranging applications across various industries. Esen and Ozmen [6] 

investigated the thermal vibration and buckling of magneto-electro-elastic functionally graded porous 

nanoplates using nonlocal strain gradient elasticity. Thai et al., [7] presented a nonlocal strain gradient 

iso-geometric model, which includes the higher-order shear deformation theory, nonlocal strain gradient 

theory and iso-geometric analysis method, for free vibration analysis of functionally graded nanoplates 

made of magneto-electro-elastic materials. Further, Zhou and Qu [8] introduced the magneto-electro-

elastic coupling iso-geometric analysis method for the static and dynamic analysis of magneto-electro-

elastic structures under thermal loading. In 2022, the nonlinear static buckling analysis of MEE 

sandwich plate on Pasternak-type elastic foundations subjected to the mechanical, thermal, electric and 

magnetic loadings is presented in the work of Quang et al., [9]. Jena et al., [10] presented an XFEM-

based framework to model the semipermeable crack in magneto-electro-elastic material in which the 

interaction-integral technique is modified and implemented to extract the normalized magnetic induction 

intensity factor. Barati and Shariyat [11] proposed a novel analytical layer-dependent closed-form 

solution for multilayer magneto-piezo-elastic hollow spheres with anisotropic layers under asymmetric 

2D magneto-electro-hygrothermo-mechanical loads.  

This work introduces analytical approach for the buckling and post-buckling of the sandwich plate 

with functionally graded graphene origami reinforced core layer in hygrothermal environment. Three 

different distribution patterns of graphene are considered. The basic equations are derived by using the 

Reddy’s higher order shear deformation plate theory and solved by using Galerkin method. 

2. Problem Statement 

 

Figure 1. Modeling of the sandwich plate on Pasternak’s type elastic foundations. 
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Let's take into consideration a smart sandwich plate with dimensions: length a, width b, and 

thickness h . This plate is composed of two magneto-electro-elastic face sheets and an epoxy matrix 

reinforced with a graphene origami core layer. The core layer, comprising NL layers, has a uniform 

thickness, resulting in a total thickness of 
ch . Each face sheet has a thickness of fh . To establish a 

coordinate system, we define xyz , where the xy  plane represents the middle surface of the sandwich 

plate, and the z -axis corresponds to the thickness direction. Figure 1 shows a visual representation of 

the sandwich plate's geometrical parameters and coordinate system. 

The volume faction of graphene origami corresponding to the three distribution patterns is expressed 

as follows [3, 4]. 
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(1) 

The Young’s modulus, thermal expansion coefficient and Poisson’s ratio of epoxy matrix reinforced 

with graphene origami auxetic metalmaterial core layer are [3, 4] 
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(3) 

The material properties of magneto-electro-elastic face sheets are given in Table 1 [9]. 

Table 1. Mechanical properties of magneto-electro-elastic face sheets 

Material properties Notation Values 

Elastic constants  GPa  
11 22
f fC C

 
220  

12 13 23
f f fC C C 

 
120  

Piezoelectric constants  2/C m   

31e
 

3.5  

33e
 

9.0  

15e
 

0  

Dielectric constants  2/ NC m   
11 22 

 
90.85 10  

33


 
96.3 10  

Magnetic permeability  2 2Ns / C   
11 22 

 
42 10   

33


 
40.9 10  
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3. Governing Equations 

The force and moment resultants of the sandwich plate are defined as 
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(4) 

The geometrical compatibility equation for the sandwich plate is written as  
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The equilibrium equation of the sandwich plate is expressed as follows 
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in which the parameters 
1 2 3, , ( 1,6),i i iL L L i S

 
are expressed in Appendix A. 

The strain compatibility equation is defined as 
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(9) 

The boundary conditions assume that the four edges of the imperfect sandwich plate are simply 

supported as 
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    (10)                                                                            

The problem's solutions consist of a double trigonometric function that meets the given boundary 

condition as follows  
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Applying the Bubnov - Galerkin method to Eq. (7) after replacing Eq. (11) results in 
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 (13)                                     

where the coefficients ijp  may be found in Appendix B. 

The reaction forces on two sides 0,y b  is determined as 
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Introducing Eq. (14) into Eqs. (13), we have the axial compressive load - deflection relation as 
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The critical buckling load is obtained as: 
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4. Results and Discussion  

 

Figure 2. Comparison of the load–deflection curves of compressive isotropic plate. 
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In order to validate the method and showcase the findings, a comparison between the load-deflection 

curves of a compressive isotropic plate and Shen's numerical results was made [12], employing Reddy's 

higher order shear deformation theory. Figure 2 illustrates a remarkable resemblance between the 

outcomes presented in the study and Shen's results. This similarity serves to affirm the reliability of the 

method utilized. 

Table 2 presents a comprehensive analysis of the critical buckling load of a sandwich plate in a 

thermal environment, focusing on the influence of three key factors: the weight fraction of graphene 

origami, magnetic potential, and the plate width to thickness ratio. The investigation encompasses three 

distinct weight fraction levels of graphene origami, three magnetic potential levels, and four plate width 

to thickness ratios.  

Table 2. Effects of the weight fraction of graphene origami, magnetic potential, and the width to thickness ratio 

on the critical buckling loading of the sandwich plate 

G rW
 

 /b h  

0 ( )A
 10 15 20 25 

1.5 

-200 

3.8293 1.7056 0.9285 0.5625 

2 5.1205 2.2885 1.2558 0.7699 

2.5 12.1147 5.4651 3.0436 1.9036 

1.5 

0 

3.8300 1.7067 0.9300 0.5643 

2 5.1215 2.2900 1.2578 0.7724 

2.5 12.1166 5.4680 3.0436 1.9036 

1.5 

200 

3.8308 1.7078 0.9314 0.5661 

2 5.1224 2.2915 1.2597 0.7749 

2.5 12.1185 5.4709 3.0475 1.9084 

To begin with, it is observed that the weight fraction of graphene origami significantly impacts the 

stiffness of the sandwich plate, consequently leading to a noteworthy increase in the critical buckling 

load. As the weight fraction of graphene origami rises, the sandwich plate's stiffness experiences an 

appreciable enhancement, resulting in an augmented critical buckling load. On the other hand, the effect 

of magnetic potential on the critical buckling load appears to be relatively subtle. Although there is a 

slight increase in the critical buckling load with the increment of magnetic potential, its influence 

remains comparably minor compared to other factors. 

From Table 3, one can observe the effects of various factors, namely, the degrees of graphene 

origami folding, total number of layers, and temperature increment, on the critical buckling load ( )GPa  

of the sandwich plate. Notably, as the temperature increment rises, the critical buckling load experiences 

a significant decrease. This outcome is unsurprising as temperature has a detrimental impact on both the 

elastic modulus and stiffness of the sandwich plate, leading to reduced load-bearing capacity. Moreover, 

the critical buckling load displays substantial growth with increasing graphene origami folding degrees 

or total number of layers. This enhancement can be attributed to the corresponding increase of the 

structural stiffness of the sandwich plate. The greater the graphene origami folding degrees or the total 

number of layers, the higher the resistance to buckling, thus resulting in a notable boost in the critical 

buckling load. 
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Table 3. Effects of the graphene origami folding degrees, total number of layers and temperature change  

on the critical buckling loading of the sandwich plate 

G rH
 

NL 
T  

0 50 100 

60%  

6 

 

1.2506 1.1868 1.1220 

80% 1.3065 1.2389 1.1707 

100% 1.3447 1.2729 1.2010 

60% 

8 

1.2645 1.2030 1.1404 

80% 1.3275 1.2620 1.1958 

100% 1.3787 1.3082 1.2376 

60%  

10 

 

1.2712 1.2112 1.1501 

80% 1.3380 1.2738 1.2089 

100% 1.3971 1.3277 1.2578 

Figures 3 and 4 display the impact of the weight fraction and the distribution pattern of graphene 

origami on the axial compressive loading – dimensionless deflection curves of the sandwich plate on 

elastic foundations in a thermal environment. The results indicate that the load carrying capacity of the 

sandwich plate increases with higher weight fractions of graphene. This improvement can be attributed 

to the reinforcement effect of graphene, which enhances the structural stiffness of the sandwich plate, 

leading to a higher load carrying capacity. Furthermore, the distribution pattern of graphene also plays 

a significant role in determining the load carrying capacity. The sandwich plate with a UD distribution 

pattern of graphene exhibits the lowest load carrying capacity, while FG-O follows with slightly better 

performance. Notably, the sandwich plate with FG-X demonstrates the highest load carrying capacity 

among the three patterns studied. This disparity can be attributed to the varying distribution of graphene 

within the texture of the sandwich plate, influencing its overall mechanical properties. Specifically, 

higher graphene is concentrated on the middle plane of sandwich plate with the FG-O distribution 

pattern while the large concentration of graphene on the top and bottom faces with FG-X distribution 

pattern. 

 

Figure 3. Effect of volume fraction of graphene on the axial compressive loading – dimensionless deflection 

curves of the sandwich plate.  
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Figure 5 shows the impact of different degrees of graphene origami folding on the dimensionless 

deflection curves of a sandwich plate under axial compressive loading, combined with thermal, electric, 

and magnetic loadings. Three values of graphene origami folding degrees  

( 60%, 80%, 100%GRH  ) are considered. It is evident that as the graphene origami folding degrees 

increase, the load-carrying capacity of the sandwich plate also increases. This phenomenon is attributed to 

the development of auxetic behavior in the sandwich plate as the graphene origami folding degrees rise. 

 

Figure 4. Effect of distribution pattern of graphene on the axial compressive loading – dimensionless  

deflection curves of the sandwich plate. 

 

Figure 5. Effect of graphene origami folding degrees on the axial compressive loading – dimensionless 

deflection curves of the sandwich plate. 

Figure 6 displays the influence of the total number of layers on the axial compressive loading – 

dimensionless deflection curves of the sandwich plate on elastic foundations in a thermal environment. 

The data clearly indicates a gradual enhancement in the load-carrying capacity of the sandwich plate 

with an increasing total number of layers. This phenomenon can be explained by the concurrent rise in 

the structural stiffness of the sandwich plate, which is directly proportional to the augmentation of layers. 
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As the total number of layers grows, the sandwich plate exhibits improved resistance to compressive 

loads, resulting in a higher load-carrying capability. This behavior is a result of the added structural 

integrity and mechanical strength imparted by each additional layer, leading to an overall incremental 

enhancement in load-bearing performance. 

 

Figure 6. Effect of total number of layers on the axial compressive loading – dimensionless deflection curves  

of the sandwich plate. 

5. Conclusions 

In this work we focused on the investigation of the nonlinear buckling and post-buckling behaviors 

of an imperfect magneto-elastic-electric sandwich plate. The Galerkin method is employed to determine 

crucial findings such as the critical buckling load and the load carrying capacity of the sandwich plate. 

From the obtained numerical results, following notable conclusions can be drawn: 

- An increase in the weight fraction of graphene origami leads to a simultaneous increase in both the 

critical buckling loading and the load carrying capacity of the sandwich plate.  

- With a rise in the total number of layers, the critical buckling load and load carrying capacity show 

a slight increase.  

- Different distribution patterns of graphene exhibit distinct load carrying capacities. The sandwich 

plate with a UD distribution pattern of graphene exhibits the lowest load carrying capacity, followed by 

FG-O with slightly better performance.  

- The critical buckling loading of the sandwich plate experiences a significant reduction as the 

temperature increment is increased. This highlights the vulnerability of the plate to buckling under 

higher temperatures. 

- The geometric parameters have a substantial impact on the nonlinear buckling and post-buckling 

behavior of the sandwich plate.  
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