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Abstract: This work introduces an analysis of the nonlinear buckling and free vibration behavior of
polymer plates reinforced with aligned carbon nanotubes using Reddy's third-order shear
deformation plate theory and incorporating Theodore von Karméan's geometric nonlinearity. The
polymer plates were enhanced with single-walled carbon nanotubes assumed to exhibit either
uniform distribution or functionally graded distribution across the thickness. The equations of
motion were established through Hamilton’s principle and then solved by the Galerkin method and
Airy’s stress function for the composite plates with fully simply supported edges. The investigation
focused on assessing the effects of carbon nanotube distribution, volume fraction, and geometrical
parameters on the buckling load and fundamental frequency parameters of composite plates through
numerical results.

Keywords: Analytical Approach, Free Vibration, Aligned carbon nanotubes, Composite plates,
Static Buckling.

1. Introduction

The unique mechanical characteristics of carbon nanotubes (CNTSs) enable them to effectively serve
as reinforcement components, enhancing the properties of metals, ceramics, and polymers. The
incorporation of CNTSs into these materials enhances composite strength, stiffness, toughness, wear
resistance, electrical conductivity, thermal conductivity, and heat dissipation. As a result, CNTs
reinforced composites find application across a broad spectrum of industries, including aerospace,
automotive, energy, and mechanical engineering [1-4]. The concept of functionally graded distribution
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of CNTs (FG-CNTSs) reinforced composites using molecular dynamics and the rule of mixture for
nonlinear bending analysis was initially introduced in a pioneering study by Shen [5]. Subsequently,
Shen and Zhu [6] extended this research to include an analysis of the buckling and post-buckling
behavior of plates under thermal conditions. Furthermore, various researchers have extensively
employed the Halpin-Tsai model [7, 8] to investigate the mechanical properties of FG-CNTs reinforced
composites. In addition, the Mori-Tanaka model has been utilized by different research groups [9, 10]
to study these composites.

Buckling analysis holds significant importance in structural engineering, and numerous studies have
addressed the topic of CNTs reinforced composite plates. These studies typically employ the finite
element method or the analytical method. The authors in [11-20] present an investigation of the buckling
behavior of composite plates reinforced with CNTs using the first-order shear deformation plate (FSDT)
and finite element approach. Zhang et al., [11, 12] presented the buckling load and load-deflection curve
of composite thick skew plates with uniaxially aligned CNTs and graded material properties, utilizing
the element-free IMLS-Ritz method. Torabi et al., [13] formulated a unified numerical approach using
the variational differential quadrature method (DQM) in conjunction with a coordinate transformation
procedure for investigating the linear thermal buckling behavior in composite plates of different shapes,
which are reinforced with FG-CNTSs. Peng et al., [14] presented the buckling behavior of thin rectangular
composite plates reinforced by CNTs under arbitrarily distributed partial edge compression, utilizing
DQM and the work equivalent method to determine the pre-buckling stress distribution. Civaleka and
Jalaei [15] utilized the geometric mapping discrete singular convolution method to analyze shear
buckling in skew plates composed of FG composites and FG-CNTRC, involving the utilization of two
distinct singular kernels along with the discretization of the singular convolution procedure. Kiani and
Mirzaei [16-19] conducted an investigation into the thermal buckling, thermal post-buckling, and shear
buckling behavior of rectangular plates reinforced with CNTs employing a two-dimensional Ritz
formulation with Chebyshev basis polynomials to determine the elastic and geometric stiffness matrices
for these plates. Hussain [20] introduced a suitable finite element model for SWCNTs reinforced
composite plate, which was developed using ANSYS parametric design language code in the ANSYS
environment to obtain the buckling load.

Free vibration and dynamic analysis play an important role in advancing structural engineering, as
it offers valuable insights, enhances safety, and drives innovation across various engineering systems,
including buildings, bridges, and aerospace structures. This evaluation is critical to ensure that structures
can withstand environmental factors such as earthquakes, wind, and machinery-induced vibrations. An
isogeometric analysis and the higher-order shear deformation theory are employed to investigate the
static and dynamic behavior of FG-CNTs reinforced composite plates by Phung Van et al., [21] and free
vibration by Singh and Bhar [22]. Garcia-Macias et al., [23] presented the results of buckling load and
fundamental frequency of FG-CNT reinforced skew plates. Lei et al., [24] investigated a free vibration
analysis of composite plates with arbitrary boundary conditions using the element-free kp-Ritz method.
The effective material properties of CNTSs reinforced composites can be estimated by either the Eshelby—
Mori-Tanaka approach or the extended rule of mixture. Zhang et al., [25, 26] have provided dependable
numerical solutions for the free vibration analysis of FG-CNTSs reinforced composite plates with elastic
edge constraints. These solutions were achieved using the element-less IMLS-Ritz method in
conjunction with FSDT. Fantuzzi et al., [27] conducted the dynamic analysis of CNT reinforced
composite plates with arbitrary domains and discontinuities. Garcia-Macias et al., [28, 29] emphasized
the use of metamodel-based techniques such as Kriging and RS-HDMR in conjunction with Monte
Carlo Simulation for stochastic analysis. Karamanli and Aydogdu [30] reported that the dimensionless
frequency differences between the two-directional FG-CNTSs and the unidirectional CNT distributions
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are approximately 43.5% and 39% for UD and V CNT reinforced CFFF plates, and approximately 42%
for the X-CNT distribution.

Utilizing the third-order shear deformation theory is crucial for accurately representing the bending,
buckling, and vibration behavior of composite plates. The aim of this work is to present a semi-analytical
approach that combines the third-order shear deformation theory with von Karman's geometric
nonlinearity for fully simply supported composite plates reinforced by aligned CNTSs resting on an
elastic foundation. The equations of motion are derived using Hamilton’s principle and subsequently
solved through the Galerkin method and Airy’s stress function to determine the nonlinear buckling load
and fundamental frequency of composite plates reinforced by aligned CNTSs.

2. CNTs Reinforced Composites

The material properties of the plates reinforced by aligned CNTs are shown as follows:

ECNTE n GCNTG n
Eu = ESNTVY(/WTnl + Eanm, ’E22 = E V = gc‘;/TV ’G12 = G 174 = gCI%TTV (1)
m~ CNT + 22 m m~ CONT + 12 m

where, v~ and v are the volume fractions of CNTs and the polymer matrix, respectively. The

CNT

parameters 7 (i = 1,_3) are shown in Table 1 [5, 6] for CNTs embedded in Poly(methyl methacrylate)

(PMMA) matrix and Poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)] (PmPV)
matrix.

Table 1. Efficiency parameters for CNT reinforced composite plates

Vewr 7, 7, 7,

0.12 0.137 1.022 0.715

PMMA matrix 0.17 0.142 1.626 1.138

0.28 0.141 1.585 1.110

0.11 0.149 0.934 0.654

PmPV matrix 0.14 0.150 0.941 0.659

0.17 0.149 1.381 0.967

Poisson’s ratio is determined by:

,U12 = V;N T vlcQNT + ‘/;n, ,Um, ’ (2)
where, UENT and U, represent Poisson’s ratios of CNTs and matrix, respectively.
Vi = Yenr ,with w,, .. denotes CNT’s mass fraction, while o,

Weny T (pCNT /pm,) - (pCNT /pm)w(wT
and p stand for the density of CNTs and matrix, respectively.

The effective density of composite plates reinforced by CNTs can be calculated as:
The calculation for the density of composite plates reinforced by CNTs can be expressed as follows:

P = pCNTVCNT + p’nL‘/:rL (3)

Considering three different distributions of aligned CNTSs: a uniform distribution (UD) and two
functionally graded distributions of CNTSs, denoted as FG-X and FG-O. In FG-X, the maximum volume
fraction is located at the upper external surfaces of the plate. In FG-O, the maximum volume fraction is
positioned at the midheight of the plates, as shown in Figure. 1.



P. D. Nguyen et al. / VNU Journal of Science: Mathematics — Physics, Vol. 39, No. 4 (2023) 26-43 29

. H

. z
@UuUb:v,  =v. ., (b)FG-X: Venr = 4Vour e (©) FG-O: Vi =2V | 1= 2% “)
a. UD b. FG-X ¢. FG-O

Figure 1. Three types of CNT volume fraction of plates.

3. Formulation of Composite Plates

Consider a composite plate with following dimensions: length a, widthb, and total thicknessh. A
coordinate system (x, Y, z) is established, where (x, y) plane corresponds to the plate’s middle surface.

The zdirection represents the thickness ranging from —% to h2 , as illustrated in Figure 1.

Figure 2. Model of CNTs reinforced plates.

The displacement-strain relationship, which considers Karman’s geometric nonlinearity for plates,
is defined by [31]:

ou 1fouw)

or 2\ ox 6_u + a_w
€, 2 Ve _| 0z ox

ov 1 ow ) =
e |=| —+=|— ¥ ov  Ow (5)
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The strain fields of the plate, according to Reddy's third-order shear deformation plate theory, can
be expressed as follows [31]:
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The constitutive relations of the plate can be written as
O-JI,‘ Qll QIZ O 0 0 g:}:
o, @, @, 0 0 0ffs (72)
o-u/ = 0 0 Q 66 O 0 }/.’zry ’
O-yz 0 0 0 Q44 0 yyl
O-rz O 0 O O Q55 7/1‘2
where,
E v, E E
— 11 , — _1277%» ’ — 22 , — — =G . 7b
Qll 1 _ ,012/021 12 1 _ 1}121}21 22 1 _ va?l Q44 Q55 Q66 12 ( )
Hamilton’s principle can be stated in analytical form as:
T
[(U +6V -6K)dt =0 (8)
0
The virtual strain energy is expressed as follows:
h
2
oU = '[ I (O};&z +0,0¢ +0, 0y, +0.0y, + O'yzé?’yz)dZdA 9)
A h
2
The virtual work done by applied forces is determined by:
oV = [(g,0w, )dA (10)
A
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The variation of kinetic energy due to virtual velocities is shown as:

l

A L

SK = j p, (B8 B8+ 18508) dzd A (11)
A

R

By substituting equations (6) and (7) into equations (9) through (11), then applying Hamilton's
principle and integrating by parts, we obtain the Euler-Lagrange equations for composite plates resting
on an elastic foundation as follows [31]:
ON ON o*u 0 0w

x + Ty _ [0 0 +Jl ¢z _61]3 0 , (12&)
or Oy ot? ot* ozot®
ON_ ON o° o’ o

o Yy _ IO Y +J1 ¢Z/ —01]3 Yo , (12b)
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with:
h
2
1= [ peded =1 ~cl, K, =1,-2¢1, +c1,,(i = 0t06) (13)
h

The force resultants in terms of Airy’s stress function f (:U, Y, t) as:
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The geometrical compatibility equation for the plates is defined as:
2.0 42,0 2.0 T LU
agm+6gy_8;/zy: 5% _awoﬁwo (15)
ay2 81’2 &vay axay 8x2 ayQ

Substituting the strain components from Eq. (7) and the stress function into Eq. (15) to obtain:

* * * * * 83¢T
Au A22 (AGG A12) 28 2 (D2161 Dgse = By +366)ax6?2
. a‘*¢ . O . NG
+(Bu _Duct)g (D1261+D &~ By _BGG) 8:52(3yy + (D2201 - B, )j (16)
2
. o0 . 0 . o o o*w, 6
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By substitution Eq. (14) into Egs. (12) results in:
w.  — d'w

X, (w )+ X, (8,)+ X, (2,)+ X))+ X, (w,, £) = 1T, 5t20 + 4! 6x2622

i dy 28t i Py “5f dy at2’

_82¢ _ a3w

X (w)+X (¢)+X. (6 )+X, (f)=7—2+57 —L, (17b)

21( o) 22( z) 23( u) 24( ) 2 5152 2 8:176152

52¢ — o'w
X31 (w()) + X32 (¢1) + X33 (¢y) + X34 (f) = ]3 5t + f ayat(]g ’ (17C)
where X_ (z =1t03,j =1to 4) , E(k =1to3,p=1to 4) are presented in Appendix.

The boundary condition can be shown as follows:
w,=v,=w =¢ =N =0N =N _ atz=0a

0 0 Y Y Yy 0 (18)

w,=uU, =w, =¢ :Nzy =0,Ny :Nyoat y=0,b

The study assumes a plate with all edges as simply supported (SSSS). Using the Galerkin method,
approximate solutions of deflection and rotations satisfying the SSSS boundary conditions is derived.
This numerical approach is employed to solve partial differential equations by selecting a suitable set of
basic functions and subsequently determining coefficients to represent the solution as a linear
combination of these functions. This procedure leads to the transformation of the partial differential
equation into a system of algebraic equations [32]:

w, (:L’, y,t) W(t)sin azxsin By
P, (a:, Y, t) =D, (t) cos ax sin By (19)
¢y (a:, v, t) (Dy (t) sin axcosfy
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in which, ¢« =mnz /a,=nx /b, and W(t),CDw (t),(by (t) are time dependent displacement and
rotation amplitudes, respectively.
The solution form of the stress function f (a;, Y, t) can be obtain by satisfying the boundary condition

and the geometrical compatibility equation [32]:

f(x, v, t) = F cos2ax + F, cos 2y + F, sin ax sin Sy + %N_wa (20)
in which,
1 B 2 1 o 2 F E, E,
1 250/‘)14:1 W(t) vy =§ﬂ2A:1 W(t) oy =?:W(t)+icbz (t)—l_F::(Dy (t)’

E, =(a’e D}, - apeD, +ape D, -a'B, +ap’B, - ap’B,),

1711

F, = (aQﬂch; - e D, +a’ e D, —a’ BB, + B, - a?ﬁBg6),

3

E, =c (D' + &’ B'D;, - a*f'D, - D, p* +2a° ﬂQD;G),

3

F,=(Aa' —24,0’8 + 4B + 4,0’ F).

4. Buckling and Free Vibration Analysis

Substituting the solutions from equations (19) and (20) into equations (15) to obtain the resulting
equations, and then applying the Galerkin method, we obtain:

(7 + N Y)W (1) + 2w (1) + YW (1) + Y (1) + V)@, (1) + Ve, (1) W (1)

2 o 2 A2 a2 (21a)
o (w(1)=1, )T e ) Zz(t) ~Fal qa’;(t) ) q;;(t),
o2 o
o) vw(of + o, (1) vto, () 12l P e
2 oA
YW (i) + YW (i) + Y00 (1) + Yo, (1) =/ 7o,() + ﬂ% (210)

ot

o’
where, Y,’ (i =1t03, j =1t08) can be found in the Appendix.
4.1. Buckling Analysis

In this section, we will discuss the results of the buckling load parameter of the composite plates
reinforced by aligned CNTs. The buckling load can be obtained from Egs. (21) without considering
inertial forces and the plates under axial compression with N = —F h:

(Yll +N Y* ) W+ Y2W? + VWP + V'O + YD + YO W +Y ® W =0 (22a)
i T Y T y
1 2 2 3 4
Y, W+, W* +Y)® +Y,d =0 (22b)

YW+ YW + V)0 +Y,'® =0 (22¢)
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Upon solving Egs. (22b) and (22c) to derive @, ch , and subsequently incorporating them into Eq.
(22a), the resulting equation for buckling analysis presents the following form:

F =L +LW+LW )
5(v1v/3 31 A ot
e
1 (R -y
I, :Y_i+ Y -ny) -y ‘nyﬁ)’—Yf(Y;l‘Y? -V Y)Y (R —ij;)’
K vy -y )
Ly W - )h - v

3 8 8 (v 314 4,3
Y, v (R -7

The buckling load can be achieved by solving the Eq. (24), in which the lowest value () is the
critical buckling load.

4.2. Free Vibration Analysis

The free vibration of the composite plates reinforced by CNTs can be determined using Egs. (21)
under no external loading (~ = 0). These equations can be rewritten as follows:

OW (1) + 0w () + 0w (1) + 0/, (1) + 0@, () + 0%, (t)W (¢

2 2 9 9 (24a)
w0, ()1, T F ) ) T TP
A2 -
cpﬂﬂ+@w@f+@@4g+q®Ag:g6i§”+gaagf) (24)
— 0D — oW
O (1) + 0w (1) +0'0 (1) +0/, (1) = 1. T(t) + jgﬂT(t) (24c)

The natural frequencies can be obtained by solving the Egs. (24) as eigenvalues, in which the lowest
value ( «, ) represents the fundamental frequency:

Ol +a? (I, +j (@ + 7)) O -'fia Of -ojip

1 2 -1 3 2 -2 4
O2+a)j_2a 0, +j, 0, _ =0 (25)
0, + @' j, 0; 0, + @],

5. Results and Discussion

Mechanical properties of SWCNT (10,10) reinforced polymer matrices are shown in Table 2 [5, 6].
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Table 2. The material properties of CNTs and matrix

Materials Moduli
EN" = 5.6466TPa , EJN" =17.087Pa , GO = 1.9445TPa.
SWCNT (10,10) v = 0.175’ o 1400(kg/m3)
PMMA E, =25GPa v, =0.34 o :1150(kg/m3)
PMPV E, =21GPa v, =034 p = 1150(kg/m3)
5.1. Validation

This section presents the outcomes of method verification in this study concerning buckling load
and fundamental frequency parameters for composite plates reinforced with CNTs. Table 3 provides a
. . _ F¥V . .
comparison of the buckling load parameter N = ﬁ for PmPV plates reinforced with CNTs under

m

axial loading with b /h =10,a =b=1. Tables 4 and 5 compare the dimensionless fundamental

frequency & = %% Puof composite plates reinforced with CNTs using PmPV and PMMA matrices,
\/ E

respectively (h /a=0.1,b=a)

Table 3. Comparison of dimensionless buckling parameter of CNTSs reinforced composite plates

CNT volume uUb FG-X

fraction Ref. [20] Present Ref. [20] Present
Viwr =0.11 13.9658 13.3377 16.5819 15.4660
Vir =0.14 14.8509 14.9671 18.1138 17.0176
Vier =0.17 22.0602 20.8645 24,5714 24.0020

Table 4. Dimensionless fundamental frequency of PmPV plates reinforced by CNTs

Cl\:r;(\:/t?(l;:]me Types of CNTs Ref. [21] Ref. [22] Present
ubD 13.532 13.735 12,9991

Vip =0.11 FG-X 14.616 14.873 13.9990
FG-O 11.550 11.675 10.9706

ubD 14.306 14.553 13.7271

Vi =0.14 FG-X 12.338 15.669 14.6384
FG-O 15.368 12.501 11.7092

ubD 16.815 16.832 16.0859

Vi =0.17 FG-X 18.278 18.377 17.3294
FG-O 14.282 14.563 13.6543
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Table 5. Comparison study of dimensionless fundamental frequency of CNTSs reinforced PMMA plates

a/h=10 a/h=50
CNT volume fraction

Ref. [23] Present Ref. [23] Present

Viy =0.12 14.181 12.8741 17.808 17.7120

ub Vir =0.17 17.562 16.0939 21.536 21.4436
Vir =0.28 20.343 19.8906 26.620 26.4271

Vip =0.12 15.734 13.9816 21.343 21.1589

FG-X Vip =0.17 17.656 17.5191 25.858 25.6591
Vpr =0.28 22.798 21.1687 32.167 31.6993

Viy = 0.12 11.576 10.7641 13.264 13.2235

FG-O Viy =0.17 14.202 13.3857 16.014 15.9818
Vip =0.28 16.737 15.6145 19.515 19.4582

5.2. Buckling Analysis

Tables 6 and 7 present the influence of CNT distribution and volume fraction on the buckling load
parameter of composite plates subjected to axial loading, using PMMA and PmPV matrices.
Furthermore, Figure 3 illustrates the mode shapes of composite plates reinforced by aligned CNTSs.

Three different CNT volume fractions are investigated v, = = (0.12, 0.17, 0.28) for PMMA plates

'NT

reinforced by CNTsand v . = (0.11,0.14, 0.17) for PmPV plates reinforced by CNTs. Gernally, for

2

. i _ Fb . .
both matrices, the buckling load parameter (N = Emh?’ ) increases as CNT volume fraction increases.

This can be explained by the rise in the volume fraction of CNTs, which leads to higher strength and an
elevated buckling load. This effect is due to the significantly greater stiffness of CNTs compared to that
of the polymer matrix.

Table 6. Dimensionless buckling parameter of CNTSs reinforced PMMA plates

CNT’s volume fraction ub FG-X FG-O
Vipr =0.12 13.2255 15.5962 9.2478
Vi =0.17 20.8882 24.7471 14.4533
Vip =0.28 27.4156 31.0455 20.1192

Table 7. Dimensionless buckling parameter of CNTSs reinforced PmPV plates

CNT’s volume fraction ubD FG-X FG-O
Vi =0.11 13.3377 15.4660 9.5023
Vi =0.14 14.9671 17.0176 10.8930
Vi =0.17 20.8645 24.0020 14.9077
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Figure 3. Mode shapes of CNTs reinforced composite plates.
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5.3. Free Vibration Analysis

Table 8 illustrates the effect of the aspect ratio on the dimensionless fundamental frequency of
polymer plates reinforced with UD CNTSs, using PMMA and PmPV matrices. The figures demonstrate
a decrease in the fundamental frequency parameter as the a/b ratio increases. It becomes evident that
when all other geometric parameters remain constant, an increase in the a/b ratio leads to a higher plate
aspect ratio resulting in reduced strength.

Table 8. The effect of a/b ratio on the dimensionless fundamental frequency
of composite plates reinforced by UD-CNTs (h/b=0.1)

PMMA PmMPV
a/b Viy =0.12 Vi =0.17 Vi =0.28 Viwr =0.11 Vir =0.14 Vi =0.17
1 12.8741 16.0939 19.8906 12.9991 13.7271 16.0859
15 7.3681 9.1737 10.5134 7.4839 7.9788 9.2857
2 5.1757 6.4813 7.3359 5.2192 5.5503 6.4790
25 4.1855 5.2872 5.8607 4.1604 4.3845 5.1728
3 3.6984 4.7066 5.1216 3.6267 3.7849 4.5169
Table 9. The effect of b/h ratios on the dimensionless fundamental frequency
of PMMA plates reinforced by CNTs (a/b=1)
b/h ratio CNT volume fraction ub FG-X FG-O
V.., =0.12 12.8741 13.9816 10.7641
b/h=10 Vi =0.17 16.0939 17.5191 13.3857
V.., =0.28 19.8906 21.1687 15.6145
Viyy =0.12 16.1590 18.6119 12.5275
b/h=20 Vi, =0.17 19.7857 22.8644 15.2715
Vir =0.28 23.6435 26.9620 18.3558
V.., =012 17.1338 20.1769 12.9738
b/h=30 V.., =0.17 20.8332 24.5946 15.7292
V.., =028 25.3710 29.8120 19.0613
Vi, =0.12 17.7120 21.1589 13.2235
b/h=50 V.., =017 21.4436 25.6591 15.9818
V.., =028 26.4271 31.6993 19.4582

Table 9 and Figure 4 illustrate the impact of CNT distribution and width-to-thickness ratio on the
fundamental frequency parameter of CNT reinforced composite plates with PMMA and PmPV matrices,
respectively. An important observation is that the fundamental frequency parameter in the case of FG-
X distribution is higher than the that in the case of UD and FG-O distributions. This phenomenon arises
due to the variation in CNT volume fraction along the plate’s mid-plane region. FG-X exhibits the
highest CNT volume fraction in this area, where stress tends to approach zero, while FG-O shows the
lowest CNT volume fraction. As a result, in the case of FG-O, the increased CNT volume fraction in
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this region remains underutilized since stress levels are negligible. Consequently, the plate’s strength is
lower in the FG-O case, resulting in a reduced fundamental frequency and buckling load parameter
compared to the FG-X distribution.

‘ ‘ ‘ ‘ ‘
——UD, Vi =11% —#—UD,V  =14% —e—UD,V_ .=17%

_____ FG-X, Vg = 1% —=FG-X, V= 14% —-6-=FG-X, V1 = 17%
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<
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553
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o

W
3t

The dimensionless fundamental frequency

10 15 20 25 30 35 40 45 50

Figure 4. Effect of CNT’s distribution and volume fraction on the fundamental frequency parameter
of PmPV plates (a/b=1).

6. Conclusion

In this work, we investigated the buckling and free vibration behavior of polymer plates reinforced
with aligned carbon nanotubes. We utilized an analytical approach using the third-order shear
deformation plate theory, incorporating von Karman's geometric nonlinearity to derive the governing
equations. Furthermore, we conducted an extensive parametric analysis to assess the influence of factors
such as CNT’s distribution, CNT’s volume fraction, and geometric parameters on the buckling and
fundamental frequency parameters of the plates. The results of this investigation are summarized as
follows:

- Elevated CNT volume fractions enhance the strength of composite plates, as well as increasing
buckling load and fundamental frequency parameters.

- The buckling load and fundamental frequency parameters of the composite plates increase as the
volume fraction of CNTSs increases from the middle layer to the outer layer of the plates. The strength
of polymer plates is highest when reinforced with FG-X CNTs and lowest in the case of FG-O
distribution.

- The effect of geometric parameters on buckling and free vibration analysis of CNTs reinforced
composite plates is discussed. It is observed that the strength of the plates decreases when aspect ratio
(a/b) is increased.

Acknowledgements

This research is funded by the Project number CN.22.11 of VNU Hanoi — University of Engineering
and Technology. The authors are grateful for this support.



40 P. D. Nguyen et al. / VNU Journal of Science: Mathematics — Physics, Vol. 39, No. 4 (2023) 26-43

Appendix
o'w, o'w, o'w, o*w, d*w, ,
(w) fo 050y +h ozt +f oy ~Js Py +f o _wa()+KpV Wy
op o’p e op o’p o’p
X =f—2+f —L4f —2 X — v o4 v oy y’
w(0) = h gt h g g Xa(B) = h g A

o'f of 9y &f o, &f Fw,  3f O,
X14(f):fl o~ th Tt L1 (o’f) 2 20_
0z 0y or oyt o0y~ Oz 0z0y Gacﬁy oz’ 6y
o’w o*w ow 62% 82¢T
21(w0) =m 8%8;2 P ;0 m, 8_0’ 22 (¢7> =y 8%2’ +m, ayé +m8¢.ﬂ
2 .
¢ o'f of O*w w  ow
Xy (¢y)= 5 527827 u(f) = 1%*’ 2 610y’ ) 31( o)zlo 81:260y+l7 ayso oa_yo’
2 2 2
é ¢ ) o'f o'f
X32 (¢¢)=lg ax@y, 33 (¢y):l4 d ; l5 21; l8¢y’ X34(f>_ll 8x28y+ 2@7
2712
P LT S,
h=7 = -l g =0 =¢ |, ——|
1 1 ( IO 176 1 1 4 IU

— JI) 5 (el - J? el J
= K, -2 = 2=, gy = | K, -2 | | L =
" ’ [()J g ( If) 1 4] ( IUJ ]3[ Io J

I = (c DA, —c¢D,A +c¢D,A —¢D,A QClD(jGAI:()‘)7 (chuA11 chHA;),

I = (C1D12A22 22141* ) ( 3¢C,, +3cc,E, +A, —c 044),

fk;) = (CIDIZBII CIDIIBQI + ClEll 2D12D11 + CQDHDQI IGII)

£, =2¢ (D, Dy, = Gy )+ ¢, (DB, = DBy, + By, )+ ¢ (DD, = G, = DD, ) +2¢,(E,, — DBy, ),

f
k

3

1727755

¢D,B, -cD,B, +cE, —¢D,D, +¢D, D, —cQG)

o0

177227712 177127722 127722

2c
g?)cc +3¢,6,E, + A —,Cy),

ot e
166 176666 66" 66
fm = ( ¢ D12D12 + CanDzz G o 4CZG + 462D66D66 - 2D22D11 + clezDzl G12)’
f =( 2D12D11+CDMD21 G ) fiz _( 2D22D12+02D12D22_CG )
fs = (A44 -¢c,C,—=3¢C,, + 30162E44) f, = (Arm —¢c,C, —3cC,, + 30102E55)
m = 12A|1 11A‘;1 - 01D12A|1 te DnAz )
m, 11A22 - 12A1*2 - BS6A6*6 - 11"422 +e D12A12 + ClD66A66)

127711 117721 17127711 171121 17711

¢B.D' +¢B.D. —cFE +cQDD - 2DD +c2G

177127711 17711721 17711 127711 11721

(
=
[BB - BB, +C, cDB +eD B —cE ]
= (-

—¢ B +¢B,D. + G, — D, Dy +C,, — BBl —cE, +cDB)

177667 66 66" 66 66 66 17766



P. D. Nguyen et al. / VNU Journal of Science: Mathematics — Physics, Vol. 39, No. 4 (2023) 26-43 41

C -B.B. —c B +cDB —-c FE +cBD +cQG —cQDD

66~ 66 66766 17766 17766 66~ 66

m=+BB BB+C’ CDB+CDB cE—cBD

127712 127712 17712 177127712 ’

2 2 2
+61B11D22 - C1E12 +¢ D12D12 -G D11D22 ¢ Gm

ot

-2¢E +2cB.D. +202G —202D D’ CleD +c¢B.D.

17766 17766 66 66~ 66 17711722

6 2 2 )
¢B, + C1D12D12 C1D11Dz2 +¢,G,

S
|

m, =(-¢B,D;, +B,D, — ¢, +cD,D, ~¢D,D, +cG, ),

11121 177127711 1121

m, =02044—A44+301(C’ -c B ) m, =c,C,, -4, +3c (C c, 44)

2744 44

ll = ( 22A11 B A‘ B()()Aoo 01D22A11 te D12A21 + CIDM)AO())’
l2 Bl AZZ BZZA'M CIDIZA + c DZZAll)
66 6(’ C E + ClD(’GBGG + BQZBM 312321 + C 1 ZZBll

l:s +01D12B21 G 12 clB2zD11 + 01B12D21 CIEIQ + 02D22D11 ’

2D12D21 + cQG —-c E + clB%D66 + CQG - 02D66D66

* 2 2 *

l4 (066 66 66 CE +CD66BG6 CE +CBGGD66+ClG66_ClD66D66)’
l 22 12 BlQBQQ + C —-c DQQBIQ +c D12B22 CIEQQ - CIBQQDIQ
* |\ +¢B,D,, —cE, + cQD D, —cID,D,, +cG,, ’
l 2clE66 + 201366D66 + 20 G 2012D66D —c, B D + 01312D21
6 clEm +¢'D,,D; 2D12D21 +G,, ’
I =¢ (D,B, - B,D;, - E, )+c2(D D, —D12D22+G22),
Iy = CZC( A + 3¢, (C= 02E55), y = C, C A?),) -3¢, (C2E55 + 055).

Y! = fF ﬂ+f2 a'+f 33/3 + [ @B+ fat [ B - fd - f K K (o + B,

YIQ 80:/3[ [LQ*‘F]%]J;Y?:_[ 0[4*+ﬂ4*]a
3 na’m FM A, A4, 164, 164,

Yf:(fF ‘B +fZ—Ot +f, ‘”,B -fa+ fa’ +faﬂj

34

Y7 = ( aﬂ+f 2ot v piep o +f/>’a]

'E, F, F,
Ylﬁ 32aﬂ 31 Y17 _32a,3 Ly Y8 B 1aba2,
3n7sz 3n7rmF 4

F, F. 8
Y21 - m7a3+m(,a/32+m1ia3+m2iaﬂ2_mqa 7Y22 = ﬁ*ml )
) F, F, ‘ 34 ab

34 34



42

P. D. Nguyen et al. / VNU Journal of Science: Mathematics — Physics, Vol. 39, No. 4 (2023) 26-43

2
34 34

. F E
VP = —{mll?“oz'3 +m, F—‘”aﬂQ +mga’ +m,f° —msj,

E E
V) =—|maf+m 2o’ +m,“Zap’ |,
By By
8al
L’ B+1LB +1 = a’B+1, Fyy —1B Y =—2,
( L F34ﬁ 7,7 9’3]3 340b
Y —aﬂl+l a/;’+l J ——[la +lﬂ —l+l aﬂ+l ”/)’]
( F’M F:M EM F;M
References
[1] C. F. Deng, D. Z. Wang, X. X. Zhang, Y. X. Ma, Damping Characteristics of Carbon Nanotube Reinforced

(2]

(3]

(4]

(5]
(6]

[7]

(8]

(9]

[10]

[11]

[12]

Aluminium Composite, Mater. Lett., Vol. 61, 2007, pp. 3229-3231, https://doi.org/10.1016/j.matlet.2006.11.073.
F. D. Borbdn, D. Ambrosini, Dynamic Response of Composites Sandwich Plates with Carbon Nanotubes Subjected
to Blast Loading, Compos. B. Eng., Vol. 45, 2013, pp. 466-73,
https://doi.org/10.1016/j.compositesh.2012.07.035.

G.J. Wang, Y. P. Cai, Y. J. Ma, S. C. Tang, J. A. Syed, Z. H. Cao, X. K. Meng, Ultrastrong and Stiff Carbon
Nanotube/Aluminum-Copper Nanocomposite via Enhancing Friction between Carbon Nanotubes, Nano Lett.,
Vol. 19, 2019, pp. 6255-62, https://doi.org/10.1021/acs.nanolett.9b02332.

S. Pal, P. N. B. Babu, B. S. K. Gargeya, C. S. Becquart, Molecular Dynamics Simulation-Based Investigation of
Possible Enhancement in Strength and Ductility of Nanocrystalline Aluminum by CNT Reinforcement, Mater.
Chem. Phys., Vol. 243, 2020, pp. 122593, https://doi.org/10.1016/j.matchemphys.2019.122593.

H. S. Shen, Nonlinear Bending of Functionally Graded Carbon Nanotube-Reinforced Composite Plates in Thermal
Environments, Compos. Struct., Vol. 91, 2009, pp. 9-19, https://doi.org/10.1016/j.compstruct.2009.04.026.

H. S. Shen, H. Z. Zheng, Buckling and Postbuckling Behavior of Functionally Graded Nanotube-Reinforced
Composite Plates in Thermal Environments, Comput. Mater. Contin, Vol. 18, 2010, pp. 155-182,
https://doi.org/10.3970/cmc.2010.018.155.

P. Kumar, J. Srinivas, Vibration, Buckling and Bending Behavior of Functionally Graded Multiwalled Carbon
Nanotube Reinforced Polymer Composite Plates using the Layer-Wise Formulation, Compos. Struct., Vol. 177,
2017, pp. 158-170, https://doi.org/10.1016/j.compstruct.2017.06.055.

R. Gholami, R. Ansari, Y. Gholami, Numerical Study on the Nonlinear Resonant Dynamics of Carbon
Nanotube/Fiber/Polymer Multiscale Laminated Composite Rectangular Plates with Various Boundary Conditions,
Aerosp. Sci. Technol., Vol. 78, 2018, pp. 118-129, https://doi.org/10.1016/j.ast.2018.03.043.

D. L. Shi, X. Q. Feng, Y. Y. Huang, K. C. Hwang, H. J. Gao, The Effect of Nanotube Waviness and Agglomeration
on the Elastic Property of Carbon Nanotube-Reinforced Composites, Compos. Struct., VVol. 63, 2004, pp. 305-313,
https://doi.org/10.1115/1.1751182.

P. Malekzadeh, M. Dehbozorgi, M. Monajjemzadeh, Vibration of Functionally Graded Carbon Nanotube-
Reinforced Composite Plates Under A Moving Load, Sci. Eng. Compos., Vol. 22, 2013, pp. 37-55,
https://doi.org/10.1515/secm-2013-0142.

L. W. Zhang, Z. X. Lei, K. M. Liew, Buckling Analysis of FG-CNT Reinforced Composite Thick Skew Plates
Using An Element-Free Approach, Compos. Part B: Eng., Vol. 75, 2015, pp. 36-46,
https://doi.org/10.1016/j.compositesh.2015.01.033.

L. W. Zhang, K. M. Liew, Postbuckling Analysis of Axially Compressed CNT Reinforced Functionally Graded
Composite Plates Resting on Pasternak Foundations using An Element-Free Approach, Compos. Struct.,
Vol. 138, 2016, pp. 40-51, https://doi.org/10.1016/j.compstruct.2015.11.031.


https://doi.org/10.1016/j.compstruct.2009.04.026

[13]

[14]

[15]

[16]
[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
(32]

P. D. Nguyen et al. / VNU Journal of Science: Mathematics — Physics, Vol. 39, No. 4 (2023) 26-43 43

J. Torabi, R. Ansari, R. Hassani, Numerical Study on the Thermal Buckling Analysis of CNT-Reinforced
Composite Plates with Different Shapes Based on the Higher-Order Shear Deformation Theory, Eur. J. Mech. A
Solids, Vol. 73, 2019, pp. 144-160, https://doi.org/10.1016/j.euromechsol.2018.07.009.

J. Peng, C. Zhiping, M. He, Z. Delin, G. Peng, Buckling Analysis of Thin Rectangular FG-CNTRC Plate Subjected
to Arbitrarily Distributed Partial Edge Compression Loads Based on Differential Quadrature Method, Thin-Walled
Struct., Vol. 145, 2019, pp. 106417, https://doi.org/10.1016/j.tws.2019.106417.

O. Civaleka, M. H. Jalaei, Shear Buckling Analysis of Functionally Graded (FG) Carbon Nanotube Reinforced
Skew Plates with Different Boundary Conditions, Aerosp. Sci. Technol., Vol. 99, 2020, pp. 105753,
https://doi.org/10.1016/j.ast.2020.105753.

M. Mirzaei, Y. Kiani, Thermal Buckling of Temperature Dependent FG-CNT Reinforced Composite Plates,
Meccanica., Vol. 47, 2015, pp. 1-17, https://doi.org/10.1007/s11012-015-0348-0.

Y. Kiani, Shear Buckling of FG-CNT Reinforced Composite Plates Using Chebyshev-Ritz Method, Compos Part
B: Eng., Vol. 105, 2016, pp. 176-187, https://doi.org/10.1016/j.compositesh.2016.09.001.

Y. Kiani, Thermal Post-Buckling of FG-CNT Reinforced Composite Plates, Compos. Struct., Vol. 159, 2017,
pp. 299-306, https://doi.org/10.1016/j.compstruct.2016.09.084.

Y. Kiani, M. Mirzaei, Rectangular and Skew Shear Buckling of FG-CNT Reinforced Composite Skew Plates using
Ritz Method, Aerosp. Sci. Technol., Vol. 77, 2018, pp. 388-398, https://doi.org/10.1016/j.ast.2018.03.022.

A. Hussain, Buckling Analysis of Functionally Graded Carbon Nanotubes Reinforced Composite (Fg-Cntrc) Plate.
Thesis, National Institute of Technology Rourkela, India, 2014.

P. P. Van, M. A. Wahab, K. M. Liew, S. P. A. Bordas, H. N. Xuan, Isogeometric Analysis of Functionally Graded
Carbon Nanotube-Reinforced Compositeoflates using Higher-Order Shear Deformation Theory, Compos. Struct.,
Vol. 123, 2015, pp. 137-149, https://doi.org/10.1016/j.compstruct.2014.12.021.

A. K. Singh, A. Bhar, Isogeometric FE Analysis of CNT-Reinforced Composite Plates: Free Vibration, SN Applied
Sciences, Vol. 1, 2019, pp. 1010, https://doi.org/10.1007/s42452-019-1027-X.

E. G. Macias, R. C. Triguero, E. I. S. Flores, M. I. Friswell, R. Gallego, Static and Free Vibration Analysis of
Functionally Graded Carbon Nanotube Reinforced Skew Plates, Compos. Struct., Vol. 140, 2016, pp. 473-490,
https://doi.org/10.1016/j.compstruct.2015.12.044.

Z. X. Lei, K. M. Liew, J. L. Yu, Free Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced
Composite Plates using the Element-Free Kp-Ritz Method in Thermal Environment, Compos. Struct., Vol. 106,
2013, pp. 128-138, https://doi.org/10.1016/j.compstruct.2013.06.003.

L. W. Zhang, W. C. Cui, K. M. Liew, Vibration Analysis of Functionally Graded Carbon Nanotube Reinforced
Composite Thick Plates with Elastically Restrained Edges, Int. J. Mech. Sci., Vol. 103, 2015, pp. 9-21,
https://doi.org/10.1016/j.ijmecsci.2015.08.021.

L.W. Zhang, Z. X. Lei, K. M. Liew, Free Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced
Composite Triangular Plates using the FSDT and Element-Free Imls-Ritz Method, Compos. Struct., Vol. 120, 2015,
pp. 189-199, https://doi.org/10.1016/j.compstruct.2014.10.009.

N. Fantuzzi, F. Tornabene, M. Bacciocchi, R. Dimitri, Free Vibration Analysis of Arbitrarily Shaped Functionally
Graded Carbon Nanotube-Reinforced Plates, Compos. Part B: Eng., Vol. 115, 2017, pp. 384-408,
https://doi.org/10.1016/j.compositesh.2016.09.021.

E. G. Macias, R. C. Triguero, M. 1. Friswell, S. Adhikari, A. Sez, Metamodel-Based Approach for Stochastic Free
Vibration Analysis of Functionally Graded Carbon Nanotube Reinforced Plates, Compos. Struct., VVol. 152, 2016,
pp. 183-198, https://doi.org/10.1016/j.compstruct.2016.05.019.

E. G. Macias, L. R. Tembleque, A. S&ez, Bending and Free Vibration Analysis of Functionally Graded Graphene
vs Carbon Nanotube Reinforced Composite Plates, Compos. Struct., VVol. 186, 2018, pp. 123-138,
https://doi.org/10.1016/j.compstruct.2017.11.076.

A. Karamanli, M. Aydogdu, Vibration Behaviors of Two-Directional Carbon Nanotube Reinforced Functionally
Graded Composite Plates, Compos. Struct., Vol. 262, 2021, pp. 113639,
https://doi.org/10.1016/j.compstruct.2021.113639.

J. N. Reddy, Mechanics of Laminated Composite Plates and Shells, CRC Press, 2004.

N. D. Duc, Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National
University Press, Hanoi, 2014.



