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Abstract: In this work we studied investigates the nonlinear vibrations of a rectangular saturated 

porous functionally graded (FG) plate on elastic foundations in thermal environment. The 

mechanical properties of the saturated porous material vary smoothly with the thickness in three 

different distributions of porosity including uniform, symmetrically irregular, and asymmetrically 

irregular. The basic equations are employed by the Reddy’s higher order shear deformation theory, 

incorporating the geometrically nonlinear von Kármán strain-displacement relationship, stress-strain 

relations based on the elastic theory for porous materials by Biot, and an analytical solution obtained 

through the Galerkin method and Airy’s stress function for the simply supported plate. The influence 

of the geometrical and material parameters, elastic foundations and temperature increment on the 

nonlinear vibrations of the saturated porous FG plate were specifically evaluated through numerical 

investigations.   

Keywords: Vibration; saturated porous plate; thermal environment; elastic foundations; Biot theory. * 

1. Introduction 

Porous functionally graded materials with cellular structures are among the advanced types of 

advanced composite materials. Possessing excellent energy absorption capabilities, lightweight 

properties, low thermal and electrical conductivity coefficients, along with several other distinctive 

features, porous materials have potential applications in creating energy and sound absorption systems, 

porous electrodes, electromagnetic shielding, and medicine. Static and dynamic analyses of beam, plate, 

and shell structures made of porous materials under the influence of various loads consistently attract 

the interest of the research community. Xue et al., [1] investigated the free vibration behaviors of 
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functionally graded porous cylindrical panels and shells by utilizing the first order shear deformation 

theory in conjunction with Hamilton’s principle. Chaabani et al., [2] presented an effective approach to 

investigating the buckling and post-buckling behavior of porous FGM plates using higher order shear 

deformation theory. Further, He et al., [3] delved into the nonlinear vibration characteristics and 

response of a doubly curved shallow shell made of laminated carbon fiber reinforced resin, which had a 

porous microcapsule coating. This investigation was conducted within a hygrothermal environment and 

was grounded in the principles of the first-order shear deformation theory; Yang et al., [4] investigated 

the mechanical properties of FG-GNPRC annular plates with voids in hot and humid environments 

applying the Newmark method. Recently, Do et al., [5] enhanced the mixed interpolation of tensorial 

components in triangular elements by employing the edge-based smoothed finite element method to 

analyze the vibrations of piezoelectric functionally graded porous plates under dynamic loads.     
In practice, functionally graded porous structures often exist in a saturated state, where solid-liquid 

interactions must be considered, and this significantly affects the mechanical behaviors of the structures. 

When dealing with porous materials, aside from the primary design factors such as the distribution of 

porosity types and the porosity coefficient, the nature of the fluid within the pores is characterized by 

the Biot modulus. The Biot modulus is defined as the ratio of the average local pressure within the 

porosity to the overall pressure acting on the entire structure. Biot's linear elastic theory for saturated 

porous materials relies on two fundamental assumptions: i) An increase in internal pressure leads to the 

expansion of porosity, and ii) Compressing the porosity results in elevated pressure within these pores. 

This theory is frequently applied to investigate the bending, vibration, and stability characteristics of 

beam and plate structures constructed from saturated porous materials. Civalek et al., [6] examined the 

nonlinear stability characteristics of saturated porous nanobeams incorporated within an elastic 

foundation. The restrained nanobeam was represented using geometrical nonlinear equations along with 

the constitutive law of saturation. Yuan et al., [7] presented a new formulation of smoothed particle 

finite element method for dynamic problems in two phase saturated porous media. In a work of Zhao et 

al. [8], the authors developed a mathematical model for the one-dimensional transient response of single-

layer saturated porous media, incorporating general boundary conditions, arbitrary initial conditions, 

and arbitrary vertical loads. This model was based on Biot's fundamental equations for wave propagation 

in saturated porous media. Besides, Babaei et al., [9] focused on the dynamic behavior of functionally 

graded saturated porous rotating thick truncated cone using the Biot poroelastic law. Ba et al., [10] 

introduced a dynamic stiffness matrix approach to study the dynamic response of a multi-scale layered 

saturated porous half-space caused by a seismic dislocation source, in accordance with Biot's theory of wave 

propagation in fluid-saturated porous solids.    

This paper investigates the nonlinear vibration of saturated porous functionally graded plate 

subjected to the combination of mechanical and thermal loadings. Three different distributions of 

porosity are considered. Based on the Biot and higher order shear deformation theories, the vibration 

characteristics including natural frequency, deflection amplitude – time curves and relation between 

frequency ratio and amplitude of the saturated porous plate are determined.  

2. Modelling of Saturated Porous FG Plate 

Consider a rectangular saturated porous plate with dimensions as follows: thickness h , length a , 

and width b , as depicted in Fig. 1. We assume that the plate rests on elastic foundations characterized 

by Winkler coefficients 1k  and Pasternak coefficients 2k . The Oxyz  Cartesian system, including the xy  

plane coincides with the central surface, and origin O  is located at the corners of the plate. 
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Figure 1. Schematic representation of the saturated porous functionally graded plate on elastic foundations. 

The material properties of saturated porous materials vary continuously with the thickness of the 

plate in three different distributions of porosity as [8-10] 
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in which 0e  is the porosity coefficient, 1 1,E G  and 0 0,E G  are Young's modulus and shear modulus at 

/ 2z h  and / 2z h , respectively. 

3. Basic Equations 

The strain field at the mid-plane of the saturated porous functionally graded plate using Reddy's 

higher order shear deformation theory are expressed as [12] 
22
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where , ,u v w  are the displacement components of a point on the mid-plane in the ,x y , and z  directions, 

respectively. ,x y   are the rotation angles of the normal vector of the mid-plane around the y  and x  

axes, respectively.  

The strain components at the mid-plane within a distance of z  are determined as 
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(5)
 

For saturated porous materials, the stress-strain relationship follows linear elastic theory of Biot as [13] 

2 3 , , 1,2,3ij ij u ij ij u s ijG p K T i j             (6)
 

where x y z       is the volumetric strain, T  is the temperature change from the initial 

temperature, s  is the thermal expansion coefficient of the original material under constant pore 
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pressure;   is the Biot coefficient of effective stress, p  is the pore fluid pressure; u  the Lamé 

parameter. These coefficients are determined by 
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with   is the variation of fluid volume content, M  is Biot's modulus defined as the increase of the 

amount of fluid, 0.5u    is undrained Poisson's ratio, 0 1B   is the Skempton coefficient 

reflecting the compressibility of the fluid, f  is the thermal expansion coefficient of the liquid phase 

within the pore, 0  is the thermal expansion coefficient of the homogeneous plate material. 

For saturated water plate ( 0  ) and a plane stress problem ( 0z  ), Eq. (6) can be rewritten in 

matrix form as 
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By integrating the stress components along the thickness direction, we obtain the internal force and 

moment components as follows 
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where coefficients    , 1,2,3,4,5,6,7 , 1,2,4ij kI i j k    are expressed in Appendix A. 
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The motion equations of the saturated porous FG plate are expressed as [12]: 
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with q  is an external pressure uniformly distributed on the surface of the porous plate and 
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The geometrical compatibility equation is expressed as follows: 
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and the stress function is defined as: 
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Substituting Eqs. (4), (10) and (11) into Eq. (11), we have 
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In this paper, we assume that all four edges of the saturated porous FG plate are subjected to simple 

support conditions. The boundary conditions are 
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with / , / ;m nm a n b       is imperfection parameter and , ,x yW    are time dependent 

amplitudes. 

Introducing Eq. (19) into Eq. (16), we have the system of basic differential equations as 
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where  
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and the coefficients    , 1,2,3,4 , 1,9ij kd i j n k   are given in Appendix B. 

The natural frequency of the saturated porous FG plate is obtained by following equation:
 

2 2 2
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2 2
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     (23) 

Using the harmonic balance method, the frequency ratio – amplitude relation of free vibration is as 

follows: 
1/2

28 3
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(25) 

and the coefficients ( 1,2; 1,4)ijg i j   are expressed in Appendix C.  

4. Results and Discussion  

To verify the precision and dependability of our current approach, we calculated the dimensionless 

frequency  
2

/ /b h D     with  3 2/ 12 1D Eh v  
 

 of the porous isotropic plate and 

compared it against the numerical findings of Xue et al., [11], which were derived from a higher order 

shear deformation theory. The data in Table 1 show a strong alignment between the obtained results and 

those of Xue et al., [11], showcasing a maximum discrepancy of just 1.12%. This outcome solidifies the 

credibility of our method. 

Table 1. Comparison of the dimensionless frequency of the porous isotropic plate 

Porosity distribution 

types 
Source 0e

 
0.2 0.3 0.4 0.5 

Symmetric distribution 

Present 1.9372 1.9051 1.9283 1.9334 

Xue et al., [11] 1.9228 1.9210 1.9220 1.9269 

Error 0.74% 0.82% 0.32% 0.33% 

Asymmetric distribution 

Present 1.8962 1.8459 1.8142 1.7456 

Xue et al., [11] 1.8754 1.8424 1.8050 1.7612 

Error 1.12% 0.19% 0,5% 0.88% 

Evenly distribution 

Present 1.8541 1.8222 1.7858 1.7439 

Xue et al., [11] 1.8656 1.8285 1.7877 1.7423 

Error 0.61% 0.34% 0.1% 0.1% 
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Table 2 illustrates the influences of elastic foundation coefficients, temperature increment and /b h  

ratio on the natural frequency ( / )rad s  of a saturated porous FG plate. Three values of the temperature 

increment, three values of the /b h  ratio and five values of the elastic foundation coefficients are 

considered. Evidently, as the moduli of the elastic foundation, 
1 ( / )k GPa m  and 

2 ( . )k GPa m , increase, 

the natural frequency of the saturated porous FG plate also increases. This phenomenon can be attributed 

to the positive support provided by the elastic foundations, which enhances the structural stiffness of the 

plate and consequently raises the natural frequency. Conversely, an increase in both the temperature 

increment and /b h  ratio results in reduced plate stiffness, leading to a corresponding decrease in the 

natural frequency. 

Table 2. Effects of the elastic foundation coefficients, temperature increment and /b h  ratio on the natural 

frequency of a saturated porous FG plate 

 T K  /b h  
 1 2,k k  

 0.1,0.05   0.15,0.05   0.2,0.05   0.2,0.08   0.2,0.1  

0 

10 5780.974 5791.340 5801.687 6273.643 6569.546 

15 3060.003 3079.781 3099.467 3487.629 3723.979 

20 2051.418 2080.837 2109.992 2428.081 2618.748 

200 

10 5374.343 5385.523 5396.758 5901.193 6214.765 

15 2707.146 2729.516 2751.640 3182.542 3439.923 

20 1749.178 1783.691 1817.519 2178.717 2389.383 

400 

10 4934.340 4946.607 4958.720 5503.450 5838.424 

15 2300.834 2327.086 2353.026 2844.926 3130.223 

20 1382.365 1425.786 1467.882 1896.873 2135.505 

Table 3. Effects of the /b a ratio, pore coefficient 
0e  and Skempton coefficient B  on the natural frequency  

of a saturated porous FG plate 

/b a  B  
0e

 
0.1 0.4 0.7 

0.5 

0.2 6449.601 5925.496 5206.558 

0.5 6466.146 5985.421 5298.264 

0.8 6482.202 6043.125 5380.609 

1 

0.2 2921.195 2764.069 2531.435 

0.5 2925.302 2782.213 2562.431 

0.8 2929.316 2799.299 2590.476 

1.5 

0.2 2248.428 2157.162 2011.069 

0.5 2250.375 2167.814 2031.348 

0.8 2252.280 2177.878 2049.758 

Table 3 indicates the effects of the /b a  ratio, pore coefficient 
0e  and Skempton coefficient B  on 

the natural frequency of a saturated porous FG plate. The findings indicate a substantial decrease in the 

natural frequency of the plate when either the porous coefficient or the /b a  ratio is increased. This 
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phenomenon can be explained by the concurrent reduction in the stiffness of the plate and elastic 

modulus resulting from these increases. Conversely, a slight increase in the natural frequency of the 

plate is observed with the augmentation of the Skempton coefficient.  

 

Figure 2. Effect of temperature change of graphene on the deflection amplitude – time relation  

of the saturated porous FG plate.  

Figures 3 and 4 illustrate the effects of porosity coefficient on the relationship between deflection 

amplitude and time as well as frequency ratio and amplitude, respectively. The temperature change is 

200T K   and the Skempton coefficient is 0.5B  . As previously noted, the structural stiffness of 

the saturated porous FG plate diminishes as the porosity coefficient value rises. Consequently, elevating 

the porosity coefficient value will lead to an augmentation in both the plate's deflection amplitude and 

frequency ratio. 

 

Figure 3. Effect of porosity coefficient on the on the deflection amplitude – time relation  

of the saturated porous FG plate. 
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Figure 4. Effect of porosity coefficient on the on the frequency ratio – amplitude  

of the saturated porous FG plate. 

Figure 5 presents the influence of Skempton coefficient on the on the frequency ratio – amplitude 

of the saturated porous FG plate subjected to the combination of mechanical and thermal loadings. Three 

Skempton coefficient values 0.2, 0.5B   and 0.8  are under examination. It becomes evident that as 

the Skempton coefficient rises, the pressure of water or gas within the pores increases, resulting in a 

reduction in the frequency ratio when considered alongside the amplitude of the vibration. 

 

Figure 5. Effect of Skempton coefficient on the on the frequency ratio – amplitude  

of the saturated porous FG plate. 

Figure 6 shows the frequency ratio – amplitude of the saturated porous FG plate in thermal 

environment with three different types of porosity distribution. The porosity coefficient is taken to be 

0 0.5e  . Clearly, when the amplitude is held constant, the saturated porous plate with porosity 

monotonous distribution type will exhibit the highest frequency ratio value, while porosity 

nonsymmetric distribution type will show the lowest frequency ratio. 
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Figure 6. Effect of three different porosity distribution types on the on the frequency ratio – amplitude  

of the saturated porous FG plate. 

5. Conclusions 

In summary, in this work we investigated the nonlinear vibration characteristics of an imperfect 

saturated porous FG plate on elastic foundations. The set of nonlinear differential equations for this 

system are derived using the Biot theory and Hamilton's principle. Several noteworthy insights emerge 

from the numerical findings: 

- The increase in the porosity coefficient leads to a decrease in the natural frequency while 

simultaneously causing an increase in both deflection amplitude and the frequency ratio of the saturated 

porous plate. 

- Although the Skempton coefficient exerts a relatively minor influence, it positively affects the 

stiffness of the saturated porous plate. Consequently, an increase in the Skempton coefficient raises the 

natural frequency and reduces the frequency ratio of the saturated porous plate. 

- The presence of elastic foundations providing support to the porous plate during load-bearing 

operations enhances the values of its natural frequency through this supportive mechanism. 

- As the temperature change is increased, the natural frequency of the porous plate experiences a 

significant reduction, while the deflection amplitude shows an increase. This phenomenon can be 

attributed to the adverse impact of temperature on the stiffness and elastic modulus of the saturated 

porous plate. 

- Porosity monotonous distribution type will result in the saturated porous plate having the highest 

frequency ratio value, while porosity nonsymmetric distribution type will lead to the lowest frequency 

ratio. 

- The nonlinear vibration characteristics of the porous plate are significantly influenced by geometric 

parameters. 
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