
VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 2 (2024) 42-48 

 42 

 

Original Article 

Analytical Expressions for Bulk Modulus of Fullerene C60 in 

Case of Nonlinear Volumetric Deformations  

Nguyen Van Thang1,*, Nguyen Hoang Oanh1, Bui Huy Kien1,  

Vu Duc Luong2, Pham Duc Hung1  

1VNU Vietnam Japan University, Luu Huu Phuoc, Nam Tu Liem, Hanoi, Vietnam 
2VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam 

Received 9 November 2023 

Revised 01 February 2024; Accepted 22 April 2024 

Abstract: The aim of this work is to establish the bulk modulus expressions of fullerene C60 in both 

linear and nonlinear deformation cases. The Lennard-Jones potential energy is used to calculate the 

bonding forces between carbon atoms. The research results reveal a formula demonstrating the 

dependence of the bulk modulus on the volume of the fullerene in the case of significant volume 

deformation (nonlinear case). Consequently, the bulk modulus of fullerene C60 can be determined 

basing on the volume deformation ratio. A comparison between the bulk modulus in general case 

(large deformation - nonlinear) and specific case (small deformation - linear) has been made. The 

results obtained through the Finite Element Method (FEM) and Density function theory (DFT) have 

affirmed the accuracy of the research results. 

Keywords: Fullerene C60, bulk modulus, nonlinear deformation, linear deformation, expression of 

the bulk modulus. 

1. Introduction* 

Fullerene C60 has a geometrically perfect structure, consisting of multiple interconnected rings, 

forming a closed cage (cage like fused-ring), with 60 vertices and 32 faces, comprising 20 hexagonal 

and 12 pentagonal faces. Each carbon atom serves as a vertex of these polygons, and the bonds represent 

the edges of these polygons. Due to its small size, the determination mechanical properties of fullerene 

C60 through experimental methods has a significant challenge in modern physics. In case of impractical 

experiments, simulations methods become a useful solution. The simulations method is primarily used 
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with nanostructures through molecular dynamics (MD) [1, 2]. Numerous publications have been done 

for the molecular dynamics simulations for fullerene [3, 4]. Additionally, other methods, such as finite 

element analysis and density function theory, have been used to determine the mechanical characteristics 

of fullerene [5]. Although the simulations methods offer a means to overcome many limitations of the 

experiments, they are not fully optimized yet. Specifically, the results of the simulations method demand 

scrutiny regarding their accuracy. In this case, analytical expressions serve as a important base for 

comparison with the simulation results [6]. 

Fullerene possesses noble properties, however, under actions of significant external forces, it can 

undergo relatively large deformations. Carbon atoms in fullerene not only vibrate in proximity to their 

equilibrium positions but also exhibit relatively large amplitudes (compared to the lengths of fullerene's 

edges). However, the analytical results about the bulk modulus have been limited to small deformations 

(linear case) [6, 7]. This work presents a formula for the bulk modulus of fullerene C60 in the case of 

nonlinear deformation. The bulk modulus of fullerene is defined as the ratio of the pressure applied to 

the fullerene to the relative volume change [6]. In the case of linear deformation, analytical expressions 

that demonstrate the relationship between the bulk modulus of fullerene C60 and parameters such as 

bond stiffness, bond length, etc. have also been established [7]. In the cases of large deformations, the 

bulk modulus of fullerene C60 is not stationary, but exhibits volume-dependent function that is 

demonstrated in sections bellow. 

2. Linear Volume Deformation of Fullerene C60 

Authors in [7] successfully obtained the relationship between the bulk modulus and the bond 

stiffness, as well as the geometric characteristics of C60 fullerene when it takes small deformation: 

 0

0
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where N = 60 is the number of carbon atoms in fullerene, α represents the angle between the external 

force and the direction of the bond with cos α = 0.202, and S0 is the surface area of the fullerene in the 

non-deformed state (S0 = 0.424 nm², calculated from the areas of all the polygonal surfaces). The bond 

length a0 = 0.1433 nm. The authors calculate the value of the bulk modulus with different bond stiffness 

values, k, obtained from [4]. The results are listed in table below. 

Table 1. Bond stiffness and bulk modulus of fullerene C60, [7] 

Bond stiffness k, N/m Bulk modulus B, GPa 

762 887 

708 824 

672 782 

660 768 

635 739 

 

In article [7], the author only provided an approximate method for calculating the bulk modulus of 

fullerene in a linearly deformed state with a value of (V0/V) ≈ 1, hence the bulk modulus in equation (1) 

is treated as a constant for volume deformation. However, when large non-linear deformation occurs, 

the bulk modulus of C60 will deviate significantly from the calculated results in the linear deformation 

state. This issue has not been clarified in article [7]. 
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3. Non-linear Volume Deformation of Fullerene C60 

Non-linear volume deformation of fullerene C60 is considered. Assum that, the bond reaction force 

generated by the potential energy interaction between carbon atoms, U, and the pressure created by 

external forces, F, acting on all carbon atoms directed towards the center of the molecule C60, as seen in 

Fig. 1. 

 

 

Figure 1. Molecule fullerene C60 is deformed under the external forces. 

Therefore, the equilibrium equation for any atom with a projection along the direction of the external 

force is as follows: 

 3 '( )cosα 0,F U r   (2) 

where r is the distance between neighboring atoms in fullerene. The calculation involves the Lennard-

Jones potential energy. 
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In this formula, D is bond energy, which is defined by the difference between the energy at the 

bottom of the well and the energy at infinity. Replacing the expression of the Lennard-Jones potential 

energy into equation (2) with the value of the constant 2

0 / 72D ka , we obtain: 
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 (4) 

Therefore, one can obtain the expression of the pressure acting on the surface of the fullerene 

molecule according to the following formula: 
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where P is the pressure. Using the following approximate formulas to represent the relationship between 

pressure and the volume deformation ratio: 
1

3
0 0( / )r a V V , 

2

3
0 0( / )S S V V , where S, V are the 

equivalent surface area and the equivalent volume of the deformed state of the fullerene, respectively. 

V0 is the initial volume of the fullerene. Therefore, formula (5) can be modified: 
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Denote the volumetric strain: 0 01 ( / ) /V V V V   ; ΔV is the mean volume decrease. After 

substituting this expression into formula (6), we obtain: 
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The bulk modulus of fullerene is defined as the proportion of the pressure acting on a node of the 

fullerene and the volumetric strain: 
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Where B is the bulk modulus of the deformed state of the fullerene. It can be observed that the bulk 

modulus of C60 fullerene is a monotonically increasing function of the volume deformation ratio, V0/V. 

In the case of small deformations, with the value V0/V ≈ 1, substituting this approximation into Eq. (8), 

yielded results similar to Eq. (1). 

4. Result and Discussion 

For fullerene C60, we have corresponding geometric values N = 60, S0 = 0.424 nm2, cosα = 0.202, a0 

= 0.143 nm. The different values of the bond stiffness k, are taken from Table 1; The volume deformation 

ratio, V0/V is given from 0.9 to 1.1. The dependence of the bulk modulus on the volume deformation 

ratio with different values of the bond stiffness are demonstrated on the Fig. 2. 

 

 

Figure 2. The dependence of the bulk modulus on the volumetric deformation ratio  

in the nonlinear deformation state. 

The bulk modulus increases when the bond stiffness increases. This is coincided with the physical 

aspect and is also shown in the analytical results of Eq. (8). Besides, it is observed that, when the 

fullerene volume changes by 5% - 10% compared with the original volume, the value of the bulk 
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modulus has a significant deviations compared with its value in the small deformation case. This can be 

observed clearer in Fig. 3. In which, Bs is the bulk modulus in the nonlinear deformation case (large 

deformation), B0 is the bulk modulus in the linear deformation case (small deformation). 

 

Figure 3. The difference of the bulk modulus in the linear and nonlinear deformation cases. 

In Fig. 3, when nonlinear volumetric deformation occurs, the deviations of the bulk modulus is quite 

large compared with the case of linear deformation (up to 54% when the fullerene volume is compressed 

by 10% compared to the original volume). In addition, this error is not related to the value of the bond 

stiffness k. 

In the linear deformation state (V0/V ≈ 1), the bulk modulus is compared with the results reported in 

[5]. In this work, the bulk modulus value of fullerenes C60 was determined by the density function theory 

(DFT) method B1 equaled 874 GPa (Table 2). Similarly, the comparison with the result determined by 

the finite element method (FEM) B2 is equal to 819 Gpa (Table 3). 

Table 2. The comparison of bulk modulus fullerene C60 with the result determined  

by the density function theory (DFT) 

The bond stiffness k, 

N/m 

The bulk modulus in the 

linear deformation case 

B0, GPa 

The bulk modulus 

determined by DFT 

method B1, GPa 

1 0

1

.100, %
B B

B



 
762 887 874 1.49 

708 824 874 5.72 

672 782 874 10.53 

660 768 874 12.12 

635 739 874 15.44 

 

From Tables 1, 2 it is observed that, the deviations of the bulk modulus of fullerene between the 

results of this study and the results determined by other methods FEM and DFT in the case of small 

deformation is less than 10%. This proves the reliability of the research results. In addition, when the 

bond stiffness increases, the error is also increased. Besides, some atomistic structural mechanics 

methods, which are based on the exclusive use of spring elements [8], and based on the beam elements 

[9], are developed. As senn in [8, 9] the values of bulk modulus obtained were similar to the results 

obtained in present study. 
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Table 3.The comparison of bulk modulus fullerene C60 with the result determined  

by the finite element method (FEM) 

The bond stiffness k, 

N/m 

The bulk modulus in the 

linear deformation case 

B0, GPa 

The bulk modulus 

determined by FEM 

method B2, GPa 

2 0

2

.100, %
B B

B



 
762 887 819 8.30 

708 824 819 0.61 

672 782 819 4.52 

660 768 819 6.23 

635 739 819 9.77 

5 Conclusion 

In this work, the case of nonlinear volume deformation of fullerene C60 under pressures created by 

external forces, which are acting on all carbon atoms in the structure of fullerene C60, is considered. By 

analytical methods, the bulk modulus obtained in this case is a monotonic function depending on the 

volume deformation ratio V0/V, in formula (8). Therefore, it is possible to determine the value of the 

bulk modulus based on the volume deformation of fullerene C60. Besides, results of this work also show 

the large deviations of the values of the bulk modulus in two cases of nonlinear deformation and linear 

deformation. These deviations are up to 54% when the volume is compressed by 10% compared to the 

original volume. The results of the bulk modulus in the linear deformation state are also compared with 

the values, which have been calculated in [5], with the error from 1.42% - 15.44% compared to the result 

in the case of the quantum mechanical method and 0.61 % - 9.77% compared to the result in the case of the 

finite element method. These comparisons also confirm the correctness of the obtained results in our work. 

Further, the linear and nonlinear volumetric vibrations of fullerene C60 will be considered, thenthe 

bond stiffness of the molecules fullerenes will also be interpolated from the response of their vibration 

process. 
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