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Inspired by the various applications of time fractional partial differential equation, in this work, we 
investigate the problem of recovering the temperature ( , )u x t  satisfying the following time - 
fractional diffusion equation: 

                          

( , )
( ) ( , ) 0, 0, 0, 0 1,

(1, ) ( ), 0,

lim ( , ) ( ,0) 0,

x

x

D u x t
a x u x t x t

Dt
u t g t t

u x t u x



 




     

  
  


                            (1) 

where ( )g t  is the given data and ( )a x  is a space – dependent diffusion coefficient such that 

0 ( )p a x q   , (0,1)   is the fractional order and 
( )D u t

Dt




denotes the Caputo fractional 

derivative with respect to t :  

0

( ) 1
( ) ( ) ,

(1 )

tD u t
t s u s ds

Dt




 
  

    

where   is the Gamma function: 
1

0

( ) p xp x e dx


    . 

The problem (1) in various cases has been studied by many scientists. As is known, the problem is 
ill – posed and a regularization is necessary. For example, in [5], Cheng and Fu considered the 
problem (1) in the homogeneous case, in the case ( ) 1a x  . The authors regularized the problem by 

using a new iteration method. Moreover, in [6, 7], Zheng and Wei considered the problem (1) in the 
case ( )a x a . The authors used a spectral regularization method and a new regularization method to 

deal with the problem. In the inhomogeneous case, Hoan and co-authors presented the truncation 
method to regularize this problem [8]. In addition, Tuan et al. considered the problem with constant 
coefficient in the case the source function is nonlinear [9, 10]. The authors used the quasi - boundary 
value method to solve this problem.  

Until now, to the best of our knowledge, the regularization results concerning for the time 
fractional diffusion equation with space dependent diffusivity coefficient are not much. Motivated by 
this reason, in this work, we propose three regularization methods for the problem and get the error 
estimates between the regularized solution and the exact solution under different conditions. 

The remainder of the present work is divided into three sections. In section 2, we will find the 
exact solution of the problem (1). In section 3, we prove the ill-posedness of the problem.  In section 
4, we give the main results of the regularization methods.  

2. The Solution of the Problem 

We denote the Fourier transform of a function:  
1ˆ( ) ( ) ,
2

itf f t e dt







   

and its inversion 

1 ˆ( ) ( ) .
2

itf t f e d 
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We define that ( , ) ( ) 0u x t g t   as 0.t   
By taking Fourier transform of the problem (1) with respect to t, we get 

ˆ ˆ( ) ( , ) ( ) ( , ) 0,

( )
ˆ ˆ( , ) ( , ) 0.

( )

d
i u x a x u x

dx

d i
u x u x

dx a x





  

 

 

 

 

Multiplying both sides with 0

1
( )

( )

x

i dr
a r

e
 

 , we get 

0 0

1 1
( ) ( )

( ) ( ) ( )
ˆ ˆ( , ) ( , ) 0.

( )

x x

i dr i dr
a r a rd i

e u x e u x
dx a x

    
 

   

Then we have 

0

0

0

1
( )

( )

1
( )

( )

1
( )

( )

ˆ ( , ) 0,

ˆ ( , ) ,

ˆ ( , ) .

x

x

x

i dr
a r

x

i dr
a r

i dr
a r

u x e

u x e C

u x Ce




















    
  







 

Since ˆ ˆ(1, ) ( )u g  , we obtain 
1

0

1
( )

( )
ˆ ( ) .

i dr
a r

C g e





  

Then we get 
( ) ( (1) ( ))ˆ ˆ( , ) ( ) ,i F F xu x g e

    
where 

0

1
( ) .

( )

s

F s dr
a r

   

By taking the inversion of the Fourier transform, we obtain the exact solution of the problem as 
following  

      

( ) ( (1) ( ))1
ˆ( , ) ( ) ,

2
i F F x itu x t g e e d

  







 
                 (2)

 

where ( )i  is given by 

( ) (( ) ) (( ) ),

(( ) ) cos ,
2

(( ) ) ( )sin .
2

i R i i I i

R i

I i sign
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Noting that ( )i   has the positive real part cos
2

   
 
 

, therefore ( ) ( (1) ( ))i F F xe
  tends to    

for (0,1)x  as    . So, a small change in the input data ( )g t  may result in a large change in 

the solution. This causes the instability and leads to the ill – posedness of the problem. Next, we will 
give an example to show the ill – posedness of the problem. 

3. The Ill – posedness of the Problem 

If we choose the exact data 0g   then we get the solution 0.u   

We choose the measured data ng  with the Fourier transform 

5/4

0, ,

ˆ ( ) .
, ,

n

n

g nn
n








 




   

We get the Fourier transform of the solution nu  corresponding to the measured data ng  

( ) ( (1) ( ))
5/4

0, ,

ˆ ( , ) .
, ,

n i F F x

n

u x nn
e n












 




  

The error between the measured data ng  and the exact data  g  is  
1/2

5/22 2

2
ˆ ˆ 0 .

3n n

n

n
g g g g d as n

n




 
       

 
  

The error between nu  and u  is  
1/2

2( ) ( (1) ( ))
5/22 2

ˆ ˆ .i F F x
n n

n

n
u u u u e d

 



 

     
 
  

Since 
1 1 1

(1) ( ) (0,1)
( )x

x
F F x ds x

a r q


     , we get  

(1 )
cos

2

2 2

2
ˆ ˆ .

3

n x

q

n n

e
u u u u as n

n

   
 
 

       

While the error of the input data tends to zero, the error of the solution tends to infinity. It follows 
that the solution is not stable and the problem (1) is ill – posed. Hence, the regularization is in order 
and in the next section we will give three methods to regularize the problem.  

4. Regularization Methods 

4.1. The Truncation Method 

We establish the regularized solution for the problem (1) as follows 
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( ) (1) ( ))1
ˆ( , ) ( ) ,

2

a
i F F x it

a

u x t g e e d
 

  






 
                                            (3)

 

where ( )a a   such that 
0

lim ( ) .a





 
 

Lemma 1.  (The stability of the regularized solution given by (3)) 

Let 2
1 2, ( )g g L  and 1 2( ), ( )u g u g   be two solutions corresponding to the final values 1 2, ,g g

respectively. Then we obtain
 

2 2

1
cos

2
1 2 1 2( ) ( )

( )( ,.) ( )( ,.) (0,1).
x

a
p

L L
u g x u g x e g g x

 

 

  
  

         
Proof. We have 

2 2

2 2

1 2 1 2( ) ( )
ˆ ˆ( ) ( ) ( ) ( )

L L
u g u g u g u g        

                                                    

22( ) ( (1) ( ))
1 2ˆ ˆ

a
i F F x

a

e g g d
 



 

 
                                                                                         

2| | cos ( (1) ( )) 22
1 2ˆ ˆ .

a F F x

a

e g g d
 


   
 



   

Then we get 

2 2

1
2 cos

2 22
1 2 1 2( ) ( )

( )( ,.) ( )( ,.) .
x

a
p

L L
u g x u g x e g g

 

 

  
  

    
   

It implies that 

         
2 2

1
cos

2
1 2 1 2( ) ( )

( )( ,.) ( )( ,.) .
x

a
p

L L
u g x u g x e g g

 

 

  
  

       
Suppose that ( , )exu x   is the exact solution of  the problem (1) corresponding to the exact data 

2 ( )exg L   and ( )( , )u g x    is the regularized solution given by (3) corresponding to the measured 

data 2 ( )g L   . Next, we give the error estimate between the regularized solution and the exact 

solution under different conditions. 

Theorem 1. Suppose that 2( ,.) ( )exu x L  , 2, ( )exg g L   such that 2 ( )ex L
g g    and 

2 ( )
(0,.)ex L

u A
 . Then we get  

2

1

( )

1 1
( )( ,.) ( ,.) ln 2 ln (0,1).

x x

p q

ex L
u g x u x A x  

 

 

                      
 

Proof.  
Applying the triangle inequality, we have 

 

2

2 2

( )

( ) ( )

( )( ,.) ( ,.)

( )( ,.) ( )( ,.) ( )( ,.) ( ,.) .

ex L

ex ex exL L

u g x u x

u g x u g x u g x u x

 

   



   



              (4)
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From lemma 1, we have 

 

              

2 2

1
cos

2

( ) ( )

1
cos

2

( )( ,.) ( )( ,.)

.

x
a

p
ex exL L

x
a

p

u g x u g x e g g

e







   





  
  

  

  
  

  

  



 

                            (5)

 

Using Plancherel ‘s theorem, we have 

2 2

2 2

( ) ( )

2 22( ) ( (1) ( )) 2( ) ( (1) ( ))

ˆ ˆ( ) ( )

ˆ ˆ .

ex ex ex exL L

a
i F F x i F F x

ex ex

a

u g u u g u

e g d e g d
 

 

  
 

 



  

  

 

 

Thus, we get 

2

2 2 22 (( ) )( (1) ( )) 2 (( ) )( (1) ( ))

( )

22 (( ) ) ( ) 2 (( ) ) (1)

ˆ ˆ( )

ˆ2 .

a
R i F F x R i F F x

ex ex ex exL
a

R i F x R i F
ex

u g u e g d e g d

e g e d

 

 

 


 

 



 
 








  



 





 

It implies that 

2

2

2 cos2 2 2 (( ) ) (1)2

( )

2 cos 22

( )

ˆ( ) 2

ˆ2 (0,.) .

x
a

R i Fq
ex ex exL

x
a

q
ex L

u g u e g e d

e u d

















    
 



   
 

 







 

Therefore, we obtain 

                             

2 2

cos
2

( ) ( )

cos
2

( ) 2 (0,.)

2 .

x
a

q
ex ex exL L

x
a

q

u g u e u

Ae











   
 

   
 

 



 

                                    (6) 

From (4), (5) and (6), we get 

2

1
cos cos

2 2

( )
( )( ,.) ( ,.) 2 .

x xa a
p q

ex L
u g x u x e Ae

  

  
              



 We choose 
1

1
ln ln

( ) .
cos

2

a






   
      
  

    

 

Then we obtain 
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2

1

( )

1 1
( )( ,.) ( )( ,.) ln 2 ln .

x x

p q

L
u g x u g x A  

 

 

                    
 

Theorem 2. Suppose that 2( ,.) ( )exu x L  , 2, ( )exg g L   such that 2 ( )ex L
g g    and 

2 cos 2 22 ˆ ( , )exe u x d B
  

 
 
 
 



 . Then we get  

2 ( )
( )( ,.) ( ,.) 2 (0,1).x p

ex L
u g x u x B x
         

Proof. Using Plancherel ‘s theorem, we obtain 

2 2

2 2

( ) ( )

2 2

ˆ ˆ( )( ,.) ( ,.) ( )( ,.) ( ,.)

ˆ ˆ( , ) ( , ) .

ex ex ex exL L

a

ex ex

a

u g x u x u g x u x

u x d u x d

 

   
 



  

  

 

 

Thus, we get 

2

2

( )

2 cos 2 cos 2 cos 2 cos2 22 2 2 2

2 cos 2 cos 2 cos22 2 2

( )( ,.) ( ,.)

ˆ ˆ( , ) ( , )

ˆ ( , )

ex ex L

a

ex ex

a

aa a

ex

u g x u x

e e u x d e e u x d

e e u x d e

   

 



          

     

   

 

                
       



        
    





 

 

 





2 cos 22 ˆ ( , ) .ex

a

e u x d
  

 
  

   
  

 

It implies that 

2

2 2

2

( )

2 cos 2 cos2 22 22 2

2 cos
22

( )( ,.) ( ,.)

ˆ ˆ( )( , ) ( )( , )

2 .

ex ex L

a a

ex ex

a

u g x u x

e e u g x d e e u g x d

e B

 





  
 



   
        
   

 

   
 



 



 



 

Therefore, we obtain 

2

cos
2

( )
( )( ,.) ( ,.) 2 .

a

ex ex L
u g x u x Be

 



   
                                         (7) 

From (5) and (7) we have 

2

2 2

( )

( ) ( )

1
cos cos

2 2

( )( ,.) ( ,.)

( )( ,.) ( )( ,.) ( )( ,.) ( ,.)

2 .

ex L

ex ex exL L

x
a a

p

u g x u x

u g x u g x u g x u x

e Be
 

 

   

 


            



   

 



   

We choose  
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1

1
ln

( )
cos

2

p
a






  
    
  
    

. 

Then we obtain 

2 ( )
( )( ,.) ( )( ,.) 2 .x p

L
u g x u g x B 
       

4.2. The Quasi Boundary Value Method 

We construct the regularized solution for the problem (1) as follows 

                                

( ) ( (1) ( ))

cos (1)
2

ˆ1 ( )
( , ) ,

2
1

i F F x
it

F

e g
v x t e d

e








 

 




 

 
   






                                  (8) 
where ( )  

 

such that 
0

lim ( ) 0.


 




 
Lemma 2. For (0,1)x ,  

( ) (1)( ) ( (1) ( ))
(1)

cos (1)
2

.

1

F x Fi F F x
F

F

e

e














 
 
 




 

Proof. In fact, we have 

cos ( (1) ( )) cos ( )
( ) ( (1) ( )) 2 2

(1) ( ) ( )
cos (1) cos (1)

(1) (1)2 2 cos (1) cos (1)
2 2

co

1 1

1

F F x F x
i F F x

F F x F x
F F

F FF F

e e e

e e
e e

e

 


 
 



  


     



   



           

   
               

   



 
    

    
      





(1) ( )

(1)s (1)
2

( ) (1)

(1) .

F F x

FF

F x F

F






  
  

  



 
 
  



 

Lemma 3. (The stability of the regularized solution given by (8)) 

 Let 2
1 2, ( )g g L  and 1 2( ), ( )v g v g   be two solutions corresponding to the final values 1 2, ,g g

respectively. Then we obtain 

2 2

( ) (1)

(1)
1 2 1 2( ) ( )

( ) ( ) (0,1).
F x F

F

L L
v g v g g g x  



       
Proof.  
From Lemma 2, we get 
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( ) ( (1) ( ))

1 2 1 2
cos (1)

2

( ) (1)

(1)
1 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

1

ˆ ˆ( ) ( ) .

i F F x

F

F x F

F

e
v g v g g g

e

g g







  
 



  



 
 
 



  



 

 
Using Plancherel‘s theorem, we obtain 

2 2

2

1 2 1 2( ) ( )

( ) (1)

(1)
1 2 ( )

ˆ ˆ( ) ( ) ( ) ( )

.

L L

F x F

F

L

v g v g v g v g

g g

   




  

 

 

  
Theorem 3. Suppose that 2( ,.) ( )exu x L  , 2, ( )exg g L   such that 2 ( )ex L

g g    and 

2
cos (1)

22 ˆ ( )
F

exe g d Q
 

 
 
 
  



. Then we get  

2 ( )
( )( ,.) ( ,.) (1 ) (0,1).

qx

p
ex L

v g x u x Q x      


 
Proof.  
Applying the triangle inequality, we have 

               

2

2 2

( )

( ) ( )

( )( ,.) ( ,.)

( )( ,.) ( )( ,.) ( )( ,.) ( ,.) .

ex L

ex ex exL L

v g x u x

v g x v g x v g x u x

 

   



   



  (9) 

From Lemma 2, we have  

         

 

2 2

( ) (1)

(1)

( ) ( )

( ) (1)

(1)

( )( ,.) ( )( ,.)

.

F x F

F
ex exL L

F x F

F

v g x v g x g g   

 





  



 

                                   (10)

 

We have 

             

( ) ( (1) ( ))
( ) ( (1) ( ))

cos (1)
2

ˆ ˆ ˆ ˆ( )( , ) ( , ) ( ) ( )

1

i F F x
i F F x

ex ex ex ex
F

e
v g x u x g e g

e









 
   






 
 
 

  



 

                                                      
( ) ( (1) ( )) cos (1)

2

cos (1)
2

ˆ ( )

1

i F F x F

ex
F

e
e g

e

 



 


 



 
 
 

 
 
 





 

( ) (1)
cos (1)

(1) 2

( )
cos (1)

(1) 2

ˆ ( )

ˆ ( ) .

F x F
F

F
ex

F x
F

F
ex

e g

e g









  

 

  
 
 

 
 
 





                                                 (11)
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Then we obtain: 

2

1
2 2( )

cos (1)
(1) 2

( )
ˆ ˆ ˆ( )( , ) ( , ) ( ) .

F x
F

F
ex ex exL

v g x u x e g d
 

     
 
 
 



 
  
 
 

  

Thus, from Plancherel’s theorem, we get 

2

( )

(1)

( )
( )( , ) ( , ) .

F x

F
ex ex L

v g x u x Q   


 
                                                (12) 

From (10), by choosing   , we have:  

2

( )

(1)

( )
( )( ,.) ( )( ,.) .

F x

F
ex L

v g x v g x    
  

From (9), (11) and (12), we obtain: 

2

( )

(1)

( )
( )( ,.) ( ,.) (1 ) .

F x

F
ex L

v g x u x Q    
  

Since 
0

1
( ) (0,1)

( )

xx x
F x ds x

p a r q
     , we get:  

                                     
2 ( )

( )( ,.) ( ,.) (1 ) .
qx

p
ex L

v g x u x Q    
                                           (13) 

Theorem 4. Suppose that 2( )( ,.) ( ) (0,1)ex

d
u x L x

dx
   , 2, ( )exg g L   such that 

2 ( )ex L
g g  

  and 
2 ( )

( ,.)ex
L

d
u x C

dx




. Then for (0,1)  there exists a 0x   such that  

2

1

2

( )

1
( )( ,.) (0,.) 2 ln .ex L

p
v g x u M

q   


        

 Proof.  
Applying the triangle inequality, we have: 

 

2 2 2( ) ( ) ( )
( )( ,.) (0,.) ( )( ,.) ( ,.) ( ,.) (0,.) .ex ex ex exL L L

v g x u v g x u x u x u                    (14)
 By applying the fundamental theorem of calculus, we get: 

                                        0

( , ) (0, ) ( , ) .
x

ex ex ex

d
u x t u t u s t ds

ds
    

Using Holder inequality, we obtain: 

2

2

2

( )
0

2

0

2 2

( ,.) (0,.) ( , )

( ,.)

.

x

ex ex exL

x

ex

d
u x u u s t ds dt

ds

d
x u s ds

ds

x C






 





 

  



N. Q. Huy / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 2 (2024) 56-69 66

Hence, we get: 

                                    
2 ( )

( , ) (0, ) .ex ex L
u x t u t Cx


 

                                              (15)
 From (13), (14) and (15), we get:  

                               

2 ( )
( )( ,.) (0,.) ,

qx

p
ex L

v g x u M x  
 

    
 



 
where  max 1 ,M Q C  .

 
For (0,1)  , there exists a unique 0x   such that 

qx

px  .
  

By using the inequality 
1

ln , 0x x
x

   , we obtain:   

2

1

2

( )

1
( )( ,.) (0,.) 2 ln .ex L

p
v g x u M

q   


        

 

4.3. The New Regularization Method (the Association of the Quasi – Boundary Value Method and the 
Truncation Method) 

We construct the regularized solution for the problem (1) as follows: 

                      

( ) ( (1) ( ))

cos (1)
2 2

ˆ1 ( )
( , ) ,

2
1

m i F F x
it

F
m

e g
w x t e d

e








 

 






 
   






                                              (16)

 

where ( )m m   such that 
0

lim ( )m





  .
  

Lemma 4. (The stability of the regularized solution given by (16)) 

Let 2
1 2, ( )g g L  and 1 2( ), ( )w g w g   be two solutions corresponding to the final values 1 2, ,g g

respectively. Then we obtain 
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It implies that 

2 21 2 1 2( ) ( )
( )( ,.) ( )( ,.) .

qx

p

L L
w g x w g x g g       

 



N. Q. Huy / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 2 (2024) 56-69 67

Theorem 5. Suppose that 2( ,.) ( )exu x L  , 2, ( )exg g L   such that 2 ( )ex L
g g  
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From lemma 2, we get: 
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It leads to 
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 On the other hand, we get: 
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From (17), (18), (19) and (20), it implies that 
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5. Conclusion 

In this work, we regularized the problem of finding the temperature from the given data for a time 
fractional diffusion equation with space - dependent coefficient in the homogeneous case. We propose 
the truncation method, the quasi boundary value method and a new method to establish the regularized 
solution and get the error estimate of the regularization. Further, we will consider problems in the 
nonlinear case with the perturbed space dependent coefficient.  
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