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Abstract: We studied an inverse problem for a time fractional diffusion equation with space -
dependent diffusivity coefficient in the nonhomogeneous case. This problem is ill — posed in
Hadamard’s sense. So, a regularization is essential. Using three regularization methods, we get the
estimation of the error between the regularized solution and the exact solution
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1. Introduction

Fractional derivaties were introduced in the 17" century and since then, they have become more
popular because they can be used to model natural and engineering phenomena that integer derivatives
can not be used. Fractional mathematical models have been studied much due to their wide range of
applications in various fields such as in biology, physics, chemistry, medical imaging, control theory,
finance, population dynamics, ecology, engineering, signal processing, etc.

Time - fractional diffusion equation is commonly used to describe anomalous diffusion such as in
flow of viscoelastic fluid, movement of some kinds of biological individuals, diffusive phenonmenon
of substances causing the pollution in the environment.

Inverse problem for time fractional diffusion equations has been considered much by many
mathematicians in previous studies [1-4].

* Corresponding author.
E-mail address: huyng@hcmute.edu.vn

https//doi.org/10.25073/2588-1124/vnumap.4898
56



N. Q. Huy / VNU Journal of Science: Mathematics — Physics, Vol. 40, No. 2 (2024) 56-69 57

Inspired by the various applications of time fractional partial differential equation, in this work, we
investigate the problem of recovering the temperature u(X,t) satisfying the following time -

fractional diffusion equation:
D”u(x,t)
Dt”
ULt = g(t), t20, ©
JLYHC u(x,t)=u(x,0)=0,

+a(x)u,(x,t)=0, x>0,t>0,0< g <1,

where g(t) is the given data and a(x) is a space — dependent diffusion coefficient such that

i
O<p<a(x)<qg,Be(0,1) is the fractional order and D7u(t) denotes the Caputo fractional
Dt”
derivative with respecttot :
D”u(t) 1 P
= = [(t- ds,
Dt” F(l—ﬂ)-([( 9T (s)as

where T is the Gamma function: T'(p) = J. x" e *dx.
0

The problem (1) in various cases has been studied by many scientists. As is known, the problem is
ill — posed and a regularization is necessary. For example, in [5], Cheng and Fu considered the
problem (1) in the homogeneous case, in the case a(x) =1. The authors regularized the problem by

using a new iteration method. Moreover, in [6, 7], Zheng and Wei considered the problem (1) in the
case a(x)=a. The authors used a spectral regularization method and a new regularization method to

deal with the problem. In the inhomogeneous case, Hoan and co-authors presented the truncation
method to regularize this problem [8]. In addition, Tuan et al. considered the problem with constant
coefficient in the case the source function is nonlinear [9, 10]. The authors used the quasi - boundary
value method to solve this problem.

Until now, to the best of our knowledge, the regularization results concerning for the time
fractional diffusion equation with space dependent diffusivity coefficient are not much. Motivated by
this reason, in this work, we propose three regularization methods for the problem and get the error
estimates between the regularized solution and the exact solution under different conditions.

The remainder of the present work is divided into three sections. In section 2, we will find the
exact solution of the problem (1). In section 3, we prove the ill-posedness of the problem. In section
4, we give the main results of the regularization methods.

2. The Solution of the Problem

We denote the Fourier transform of a function:

f©=7= ] 1oe ™

and its inversion

f(t) =% [ fede.
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We define that u(x,t) =g(t)=0 as t <O0.
By taking Fourier transform of the problem (1) with respect to t, we get

(i) G(x,&) + a(x)ia(x, £)=0,

Lo+ 09" 4%, &) =0.

a(x)
(Ié)ﬁfﬁdr
Multiplying both sides with e , We get
(|E)ﬂj—dr (ig)ﬂjﬁdr i£)/
—G(x,§)+e e (i) G(x, &) =0.
dx a(x)
Then we have
iy j

G(x,&)e a0 -0,

X

X

1

) [
a(x,&e ° =C,
—(If)ﬂjidr
U(x,&)=Ce “
Since G(L &) =g (&), we obtain
(né)ﬁja—dr
C=g@e *.
Then we get
G(x,&)=4§ (éz)e(if)”(F(l)—F(X)),
where

F(s) = j—dr

By taking the inversion of the Fourier transform, we obtain the exact solution of the problem as
following
(i) (FO-F()gite £

g(é)
J_ fs @

u(x,t) =

where (i£)” is given by
(i£)” =R((i£)") +i1((&)"),

R((2)") =]’ cos[ﬁ—z”j,

1)) = | sign(;)sin[ﬂ—;j.
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pr

Noting that (i&)” has the positive real part |&|” cos| 2= |, therefore [0 F®-F| tends to +oo
2

for x€(0,1) as & — +o0. So, a small change in the input data g(t) may result in a large change in

the solution. This causes the instability and leads to the ill — posedness of the problem. Next, we will
give an example to show the ill — posedness of the problem.

3. The I — posedness of the Problem

If we choose the exact data g =0 then we get the solution u = 0.
We choose the measured data g, with the Fourier transform

0, E<n,
§.(&)=1n neN.
F , E>n,
We get the Fourier transform of the solution u,, corresponding to the measured data g,
0, s<n,
0, (6 8)=1 Y _eyieren 0 nel.
55/4 e ! g >N,

The error between the measured data g, and the exact data g is

1/2
A on 2
||gn—g||2=||gn—g||2=(1—§5,2d¢j ~JEsomnsn

n

The error between u, and u is

+00

1/2
o el =6~ ] B0 g
n G
1-x

1
Since F(1)-F(x) = I%ds ZT vx € (0,1), we get
MCOS(@)
2
lu, —ul, =], ~ ], |2 & S wasn >,

3 n

While the error of the input data tends to zero, the error of the solution tends to infinity. It follows
that the solution is not stable and the problem (1) is ill — posed. Hence, the regularization is in order
and in the next section we will give three methods to regularize the problem.

4. Regularization Methods
4.1. The Truncation Method

We establish the regularized solution for the problem (1) as follows
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u,(x,t) = )eli9) FO-F(gitsg &

1 7.
E[\Q(f

where a =a(&) such that Iirg a(g) = +oo.
£

3)

Lemma 1. (The stability of the regularized solution given by (3))
Let 9,,0, € L?(R)and u,(g,),u,(g,) be two solutions corresponding to the final values g,, g,,

respectively. Then we obtain

aﬂcos[ﬂ—;j[ﬂJ
u_(9,)(x,.)—u,(g,)(X, .)||L2(R) <e P9, - 92||L2<R> vx e (0,1).

Proof. We have

2
L*(R)

|@1_Qz|2 dé

U, (9)) =, ()] s, =[6..(9) -0 (9,)

|

—a

i) (F (1)—
(i) (F)-F(x)

al g |ﬂcosﬁ( @O-FN|, A A
- [le” 7 Jrwe 16, -G, de&.
Then we get
) 2a” cos[ﬁ—zﬁj[%] 2
U, (8,)(6) U, (8,) (%)} ) <€ 9. - Gl -
It implies that
aﬂcos[%)[l_—xj
U, (91)(%) =Y, (8)(%, )] e, <€ "9 =92y

Suppose that u,, (x,&) is the exact solution of the problem (1) corresponding to the exact data
0. € L (R) and u,(g,)(x,&) is the regularized solution given by (3) corresponding to the measured

data g, L?(R) . Next, we give the error estimate between the regularized solution and the exact
solution under different conditions.
Theorem 1. Suppose that U, (X,.) € ’(R),d,,d,, € L*(R) such that

|u..(0..)

g, - geX”Lz(R) <¢ and

2@ S A. Then we get

—X

2wy S g(ln (EDP +\/§A(In (ED T vxe 0,1).
& &
Proof.

Applying the triangle inequality, we have
U, (9.)0%) = Ug 062
U (9,)06) = U, (9o )06 o oy +

U, (9.)(X,) = U (X;.)

<

U, (80X ) ~Up (X, sy - @
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From lemma 1, we have

)(X,.) (R P _gex||L2(R)
a/’cos(ﬂ—zﬂ)(ﬂ)
<e Ple. (5)
Using Plancherel ‘s theorem, we have
) uex|||_2(R) ) uex|||_2(R)
B B 2
_ J‘ p2(€) (F(M-F () |gex| df*‘J. 2(i8) (FW-F () |gex| dée.
Thus, we get
B B 2
) u,, LZ(R) _ J' ezR((é) )(F(1)-F(x)) |gex| d‘f"'_[ 2R((|§) )(F (1)-FE(x)) |gex| d§
SZI p 2R IF(X0) |gex| p2R(£)F( 1)d§
It implies that
—0 P\ X
2 —2a’cos| £= 1= 2 oR(GEYE (L
o) — Uy LZ(R)SZJ-e (2}q|gex| e ((i5)") ()d§
Zaﬁcos(ﬁ ]q
Sze || EX(O ) LZ(R) §
Therefore, we obtain
—af cos| 27 X
)_uex”Lz(R) <2e ( i Jq "uex ©, ')”LZ(R)
—al’cos(ﬂ”]
< q
NEYY: ©)

From (4), (5) and (6), we get

<o NS e TR

e L (R)
We choose
1
Vi
In (In (ln
&
a(e)=| ———==
C0S ['Bﬁj
2

Then we obtain
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177)( —

('HJ " +\/§A(|n£lD;.

Theorem 2. Suppose that U, (X,.) € L’(R),d,,d,, € L*(R)such that

Ju.(9.)(%..) ~u(g)(x..)

<& and

gex

*(R)

'HCOS ﬂ
Iezym [ ]| a, (x, §)| d& < B?. Then we get

—©

X p
,) = U, (X,. LZ(JR)SE ++/2B&™ Vvxe(0,1).
Proof. Using Plancherel ‘s theorem, we obtain

(%) U (6 )y =

)%= U %, )
= Ilﬁex(x,é>|2d§+ [ 16, (x. &) d&.

Thus, we get

)(X,.) = Uy (%,

L*(R)

2 _23)&f cos pr 271¢)° cos 25 cos pr 2y|¢l cos
e R g xpfaes Je el g oo

—00

—Zya/jcosﬁ —a 2y|¢|” cos| 2;/a cos o 2y|&[” cos
<7 T ppage e 1 T g, o

o a

It implies that

)(X,.) = Uy (X, )||§<R)

—2ya’ cos

—2ya” cos Pr)n 21 A 2
<e j e o afdzre U e o, o) e

<6 —2ya’ cos[ﬁ ]

Therefore, we obtain

BZ

)(X! ) - uex (X! )

—ya? cos(&]
2 S J2Be 2/,

()
From (5) and (7) we have

- e\ M2 ()
)(%,)]|2 )(%2:) = U (X )2
o’ cof| 7 —-ya’ cos
<e (2)( ]g+\/_Be [ﬁZJ

We choose
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a(e) =

Then we obtain

0,(0,)(%,) ~U(@)(X, )]s & +2B&"".

4.2. The Quasi Boundary Value Method

We construct the regularized solution for the problem (1) as follows
1 % el FO-FIG ()

v (x,t)= e e,
‘ N2 A \z;\ﬂ cos(ﬂ—;JF(l) g
1+ oe
where 6 = §(¢g) such that Iirrg o(e)=0.
&
Lemma 2. For xe(0,1),
e(ig)ﬂ(F(l)—F(x)) ‘ F(X)-F@)
<S F ()
‘ Lis & cos[%”jF(l) ‘
+ o€
Proof. In fact, we have
L -re) emﬂcos(%)(F(l)—F(x)) e_‘é‘ﬁcos[%]F(X)
= <
o oo 2 ) et cof 7 JF ) PN - PN
1+de 2 1+ e 2 el cos| TPy | FO el cos PX|F@) | FD
S+e (%) S+e (%)
1
<
= F)-F (0
e cos 27 |F ) FO
F(x)-F()
<5 F(@)

Lemma 3. (The stability of the regularized solution given by (8))

63

®)

Let 0,,0, € L?(R)and v.(9,),v,(9,) be two solutions corresponding to the final values g,, g,,

respectively. Then we obtain
F(x)-F@®)

Proof.
From Lemma 2, we get

Vg(gl)_vg(QZ)”LZ(R) 35 Fo ||gl_92|||_2(R) VXE(O’]')
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ieyf -
el (F-F()

‘Iél(f) -§,(2)|

Pr
\g\ﬂcos £ F(l)‘
‘1+ oe ( 2 ]
F()-F1)

<6 o |Ql(§)_gz(§)|

Using Plancherel‘s theorem, we obtain
Vg (gl) _Vg (92)||L2(R) =

\75(91) _\75 (92)|:

\75 (gl) - Os (gZ)”LZ(R)

F()-FQ)

<o o "gl_gZ

C®)°

Theorem 3. Suppose that U, (X,.) € L’(R),d,,d,, € L*(R)such that

9.~ Geclzry <€ and

2
\f\ﬂ cos(ﬂ—zﬂ)F(l) R
(]

g, (&)| d& <Q?. Then we get

ax

e SO+ Q)e® ¥xe(0,1).

v (9.)(%) =ug (x,.)

Proof.
Applying the triangle inequality, we have

v, (9,)(%,.) =, (X,)

L (R)

< V(8006 =V (@000 Mgy + Ve (800 ) =X Ny g
From Lemma 2, we have
F(Q-F()
Vg(gg)(xi')_Vg(gex)(x")”Lz(R) 9 o gg N gex *(R)
F)-F@)
FO
<J £ (10)
We have
A A e(ig)ﬂ(F(l)—F(x)) R (2 (FO-F () &
Vg(gex)(x’f) —UeX(X,§)| - M/’cos(ﬁ]':(l) gex (5) ¢ gex (g)
‘1+ se L2
UV FWFO) o oo B Je) @)
- et eos 2 JF ) S
1+ oe
F(x)-F (1) Br
< 5T5ewws(7jp(1)é (é‘)‘
(11)
F) €os| Yl
<5FO e“f‘ﬁ [2 ]F(l)gex(cf)‘.
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Then we obtain:

£ \f\/’cos( jF(l) P
)6 E) =0y ()] o <8 V| [le” 12 G,(&)] dé
R

Thus, from Plancherel’s theorem, we get

F(x)

F(D)

)(Xlé:)_uex (X’(:;E) LZ(Q)S Q5 . (12)
From (10), by choosing 0 = &, we have:
F(x)

)(Xv')”LZ(R) < gF(l).
From (9), (11) and (12), we obtain:

F(x)

<(1+Q)ef®,

T Mex

1" LZ(R)
1 X

Since = > F(x)= j—ds>— Vvx e (0,1), we get:
p a(r q

0

1" LZ(R) _(1+Q)gp

T Hex

(13)
d
Theorem 4. Suppose that d—(uex)(x,.) e ’(R)vxe(0,)),9,,d., €L*(R)such that
X
d
9; ~ Geull 2y < € and ‘&uex(x, ) <C.Then for ¢ € (0,1) there exists a x, >0 such that
L(R)
_t
p 13} 2
c1+) T U \Ys e L2 (R) SZM \/%(ln(;}j .
Proof.
Applying the triangle inequality, we have:
—U, (0,.)] Uy (%) 2 gy U (%) = U (0, 2 ”

By applying the fundamental theorem of calculus, we get:
U, () —u,, (0,t) = | 94, (s, t)ds.
o ds
Using Holder inequality, we obtain:

"uex (X1 ) — Uy (O, )

+o0

2 —
@) .f

X

2
j Lex(s,t)ds dt
ds

X 2

|

SXCZ.

uex (S
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Hence, we get:
e, O ) = Uy (0,1)] 2 ) < C

From (13), (14) and (15), we get:

Vé‘(gg)(x") —Ug, (O")”LZ(R) <M [gp + XJ’

(15)

where M =max {1+Q,C}.
%
For & €(0,1), there exists a unique x_ >0 suchthat x=¢" .

By using the inequality In x > —1, x>0, we obtain:
X

V. (0.)06) ~Un (0] sy S 2M F ('”(EDZ
q &

4.3. The New Regularization Method (the Association of the Quasi — Boundary Value Method and the
Truncation Method)

We construct the regularized solution for the problem (1) as follows:
1 M e(i;)ﬂ(F(l)—F(x))@(éa)

27 myy sfze‘é‘ﬁcos(%jm

where m =m(&) such that Iirrol m(g) = +oo.
£

W (x,t) = e"ed¢,

(16)
Lemma 4. (The stability of the regularized solution given by (16))

Let 0,,0, € L?(RR) and w,(9,),w,(g,) be two solutions corresponding to the final values g,,d,,
respectively. Then we obtain

%
W, (9,)(X,.) =W, (g,)(X, ')||L2(R) <gf ||gl - gz”,_z(R) vxe(0,1).

Proof.

We have:
m (i&)’ (F()-F (x))

N ~ 2 e A ~ 12
|Ws(gl)_ws(g2)||L2(R) = J. \é\”COS(ﬁ]F(l) |gl_gz| d‘f
M1+ ce 2
m F()-FQ) ,
= J.g e |g1_g2| dé.

-m

It implies that

ax
W, (92)0%) =W, (9,) 06 Mooy <€ ° 01— Golli -
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Theorem 5. Suppose that U, (X,.) € L’(R),q,,d,, € L*(R) such that

g, - gex||Lz(R) <& and

T ‘(1+§2)Gex(X,§)rd§ < N?. Then we get:

Wg(gg)(xl') _uex (X,) 2(R) < gx +\/§ng}/ VX (S (0,1)

Proof.
Using Plancherel’s theorem and the triangle inequality, we have:

W, (9,)(X,.) = Uy (X..)

L*(R)
<[, (9.)0) =W (@) Ny + W ()6 ) o KMy 1
From lemma 2, we get:
F(O-F@)
w.(9,)(%,.) —w. (g, )(x,.) ) S€ FO g, —g,, 2(®)
ax
<g’. (18)
We have:
W, (0 (%) = Uy, (6. )]
= W, (G0 ) (%, ) = Gy (%)
= [ 1%.(8.)(x,.) -0, (x s+ [ [, (x.Hfdg + []6, (x.H)de.
It leads to - E :
J 1%, (9.) (%) =G (x, &) d&

-m
2

= '[ : l,jex (Xif)_aex (ng)

Se\f\ﬁ cos(%jF @)

dg

2

0, (x, )] d&

\g\ﬂ cos[/%”]F @)

=I —&€

1 \5\’3 cos(%jF(l)
+ &€

2

dg

ce Ug, (X,E)

]n. \é\ﬂ cos(ﬂ—zﬁ)F(l) R

< 5% [ |4 £, (x ) 0
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2mf
<Nig% ° . (19)
On the other hand, we get:

[l ofde+ [ |, xofde

- [ @ e |ar i, afde+ | @ ey|ar e, (o de

2N?
<—r
m (20)
From (17), (18), (19) and (20), it implies that
f 2N

<8 +Ngep

ex

1
. p, (1))
By choosing m = Eln = || ,we get:
&

wotuanl33f )]

-2

where max 1N( j \/_N( J

L*(R)

[N
|
N

5. Conclusion

In this work, we regularized the problem of finding the temperature from the given data for a time
fractional diffusion equation with space - dependent coefficient in the homogeneous case. We propose
the truncation method, the quasi boundary value method and a new method to establish the regularized
solution and get the error estimate of the regularization. Further, we will consider problems in the
nonlinear case with the perturbed space dependent coefficient.
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