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1. Introduction* 

Let consider the monotone inclusion of finding the zero points of the sum of a maximal monotone 

operator 𝐴 and a monotone, 𝐿-Lipschitz operator 𝐵, acting on a real Hilbert space ℋ, i.e., 

 find 𝑥‾ ∈ ℋ such that 0 ∈ (𝐴 + 𝐵)𝑥 ‾ . (1) 

Throughout this work, we assume that a solution 𝑥‾ exists. This inclusion arises in numerous problems 

of fundamental importance in monotone operator theory, variational inequalities, convex optimization, 

equilibrium problems, image processing, and machine learning; see [1-4] and the references therein. 

For solving problem (1), Tseng [5] proposed an algorithm called forward-backward-forward, namely: 

𝛾 ∈]0, +∞[, {
𝑦𝑘 = 𝐽𝛾𝐴(𝑥𝑘 − 𝛾𝐵𝑥𝑘),

𝑥𝑘+1 = 𝑦𝑘 − 𝛾𝐵𝑦𝑘 + 𝛾𝐵𝑥𝑘 .
 

where 𝐽𝛾𝐴 denotes the resolvent of 𝐴, i.e. 

𝐽𝛾𝐴 = (Id + 𝛾𝐴)−1, 
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where Id is identity operator on ℋ. A limitation of this method is that at each iteration step, one has to 

compute twice times the values of operator 𝐵. This issue was recently resolved in [6], the forward reflected 

backward splitting method was proposed, namely, 

𝛾 ∈]0, +∞[,  𝑥𝑘+1 = 𝐽𝛾𝐴(𝑥𝑘 − 2𝛾𝐵𝑥𝑘 + 𝛾𝐵𝑥𝑘−1). (2) 

A method related to method (2) was suggested in [7], called the reflected forward-backward splitting 

method: 

𝛾 ∈]0, +∞[,  𝑥𝑘+1 = 𝐽𝛾𝐴(𝑥𝑘 − 𝛾𝐵(2𝑥𝑘 − 𝑥𝑘−1)). (3) 

The convenience of method (2) and (3) is that in each iteration, we only need to calculate the value of 

operator 𝐵 once. 

In [8], Polyak introduced the so-called heavy ball method in order to speed up the classical gradient 

method. For a differential function 𝑓: ℋ → ℝ, the algorithm takes the following form: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1) − 𝛾𝑘∇𝑓(𝑥𝑘). 
This idea then employed and refined by some authors [9-13]. In [13], Lorenz and Pock proposed the 

following inertial forward- backward algorithm for monotone operators' algorithm: 

{
𝑦𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1),

𝑥𝑘+1 = 𝐽𝛾𝑘𝐴(𝑦𝑘 − 𝛾𝑘𝐵𝑦𝑘).
 

By using the inertial forward-backward algorithm above and the projection on a half space, in [10], 

the authors derived the strong convergence result of the proposed method. In this work, we propose a new 

method for solving problem (1). In our method a value of operator 𝐵 is also used in each iteration as 

method (2) and (3). We also used the inertial effect to improve the performance of the algorithm. Under 

standard conditions, we also obtained the convergence of the proposed method. In some examples, our 

method gives better convergence rate in comparison with Tseng's method and the methods in [5, 7]. 
The rest of this work is organized as follows. After collecting preliminaries needed in Section 2, we 

present the proposed method and prove the convergence of the method in Section 3. 

2. Preliminaries 

The scalar product and the associated norm of the real Hilbert space ℋ are denoted respectively by 

⟨⋅∣⋅⟩ and ∥⋅∥. 

The symbols ⇀ and → denote respectively weak and strong convergence. 

Let 𝐴: ℋ → 2ℋ be a set-valued operator. The domain of 𝐴 is denoted by dom (𝐴) that is a set of all 

𝑥 ∈ ℋ such that 𝐴𝑥 ≠ ∅. The range of 𝐴 is ran (𝐴) = {𝑢 ∈ ℋ ∣ (∃𝑥 ∈ ℋ)𝑢 ∈ 𝐴𝑥}. The graph of 𝐴 is 

denoted by gra (𝐴) = {(𝑥, 𝑢) ∈ ℋ × ℋ ∣ 𝑢 ∈ 𝐴𝑥}.  𝐴−1 stands for the inverse of 𝐴, i.e., 𝐴−1: 𝑢 ↦ {𝑥 ∣
𝑢 ∈ 𝐴𝑥}. The zero set of 𝐴 is zer (𝐴) = 𝐴−10. 

Definition 2.1 We say that operator 𝐴: ℋ → 2ℋ is (i) monotone if 

(∀(𝑥, 𝑢) ∈ gra (𝐴))(∀(𝑦, 𝑣) ∈ gra (𝐴)) ⟨𝑥 − 𝑦 ∣ 𝑢 − 𝑣⟩ ≥ 0. 
(ii) maximally monotone if it is monotone and there exists no monotone operator 𝐵: ℋ → 2ℋ such 

that gra (𝐵) properly contains gra (𝐴), i.e., there is no monotone operator that properly contains it. 

Definition 2.2 A mapping 𝑇: ℋ → ℋ is said to be L-Lipschitz continuous (𝐿 > 0) if 

∥ 𝑇𝑥 − 𝑇𝑦 ∥≤ 𝐿 ∥ 𝑥 − 𝑦 ∥  ∀𝑥, 𝑦 ∈ ℋ. 
Definition 2.3 For 𝐴: ℋ → 2ℋ, the resolvent of operator 𝐴 is 

𝐽𝐴 = (Id + 𝐴)−1, 
where Id denotes the identity operator on ℋ. 

Note that, when 𝐴 is maximally monotone, 𝐽𝐴 is an everywhere single-valued operator [14]. 
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3. Proposed Method and Convergence 

We propose the following method for solving problem (1). 

Algorithm 3.1. Let 𝛾 > 0, let 𝛼 ≥ 0. Let 𝑥−1, 𝑥0, 𝑥1 ∈ ℋ. Iterate (∀𝑘 ∈ ℕ) 

𝑥𝑘+1 = 𝐽𝛾𝐴 [𝑥𝑘 + 𝛼(𝑥𝑘 − 𝑥𝑘−1) − 𝛾 (
7

2
𝐵𝑥𝑘 − 4𝐵𝑥𝑘−1 +

3

2
𝐵𝑥𝑘−2)] . (4) 

Let us give some comments on the above algorithm. 

i) In (4), in each iteration, we have to calculate three forward values. However, in the next iteration, 

we can use two forward values of the previous iteration. Therefore, we actually only compute one forward 

value in every iteration; 

ii) When 𝛼 = 0, 𝐵 = 0, Algorithm 3.1 becomes the proximal point algorithm as in [15]. 

To prove the convergence of Algorithm 3.1, we have the following lemma. 

Lemma 3.2.  Suppose that (𝑥𝑘)𝑘∈ℕ is the sequence generated by Algorithm 3.1. Then for 𝑥 ∈ zer (𝐴 + 

𝐵), we get 

∥∥𝑥𝑘+1 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘 − 𝑥∥∥2 + 2𝛾𝑡𝑘+1 + (1 − 𝛼 −
5𝛾𝐿

2
) ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2 

≤ ||𝑥𝑘 − 𝑥||2 − 𝛼||𝑥𝑘−1 − 𝑥||2 + 2𝛾𝑡𝑘 + (2𝛼 + 𝛾𝐿)||𝑥𝑘 − 𝑥𝑘−1||2 +
3𝛾𝐿

2
||𝑥𝑘−1 − 𝑥𝑘−2||2, 

where 𝑡𝑘 = ⟨𝐵𝑥𝑘−1 − 𝐵𝑥𝑘 ∣ 𝑥𝑘 − 𝑥⟩ +
3

2
⟨𝐵𝑥𝑘−1 − 𝐵𝑥𝑘−2 ∣ 𝑥𝑘 − 𝑥⟩. 

Proof. From (4), we get 

𝑥𝑘 + 𝛼(𝑥𝑘 − 𝑥𝑘−1) − 𝑥𝑘+1

𝛾
− (

7

2
𝐵𝑥𝑘 − 4𝐵𝑥𝑘−1 +

3

2
𝐵𝑥𝑘−2) ∈ 𝐴𝑥𝑘+1. (5) 

For 𝑥 ∈ zer (𝐴 + 𝐵), then −𝐵𝑥 ∈ 𝐴𝑥. Hence, 

⟨
𝑥𝑘 + 𝛼(𝑥𝑘 − 𝑥𝑘−1) − 𝑥𝑘+1

𝛾
−

7

2
𝐵𝑥𝑘 + 4𝐵𝑥𝑘−1 −

3

2
𝐵𝑥𝑘−2 + 𝐵𝑥|  𝑥𝑘+1 − 𝑥⟩ ≥ 0 

which implies 

⟨
𝑥𝑘 − 𝑥𝑘+1 + 𝛼(𝑥𝑘 − 𝑥𝑘−1)

𝛾
|  𝑥𝑘+1 − 𝑥⟩ 

                                         ≥ ⟨
7

2
𝐵𝑥𝑘 − 4𝐵𝑥𝑘−1 +

3

2
𝐵𝑥𝑘−2 − 𝐵𝑥|  𝑥𝑘+1 − 𝑥⟩.           (6) 

For the left-hand side of (6), we have 

⟨𝑥𝑘 − 𝑥𝑘+1 + 𝛼(𝑥𝑘 − 𝑥𝑘−1) ∣ 𝑥𝑘+1 − 𝑥⟩

 = ⟨𝑥𝑘 − 𝑥𝑘+1 ∣ 𝑥𝑘+1 − 𝑥⟩ + 𝛼⟨𝑥𝑘 − 𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩ + 𝛼⟨𝑥𝑘 − 𝑥𝑘−1 ∣ 𝑥𝑘 − 𝑥⟩

 =
1

2
(∥∥𝑥𝑘 − 𝑥∥∥2 − ∥∥𝑥𝑘+1 − 𝑥∥∥2 − ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2) −

𝛼

2
(∥∥𝑥𝑘−1 − 𝑥∥∥2 − ∥∥𝑥𝑘 − 𝑥∥∥2 − ∥∥𝑥𝑘−1 − 𝑥𝑘∥∥2)

    

       +𝛼⟨𝑥𝑘 − 𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩.                               (7) 

Using the monotonicity of 𝐵, we estimate the right-hand side of (6) as: 
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⟨
7

2
𝐵𝑥𝑘 − 4𝐵𝑥𝑘−1 +

3

2
𝐵𝑥𝑘−2 − 𝐵𝑥|  𝑥𝑘+1 − 𝑥⟩

 = ⟨
7

2
𝐵𝑥𝑘 − 4𝐵𝑥𝑘−1 +

3

2
𝐵𝑥𝑘−2 − 𝐵𝑥𝑘+1|  𝑥𝑘+1 − 𝑥⟩ + ⟨𝐵𝑥𝑘+1 − 𝐵𝑥 ∣ 𝑥𝑘+1 − 𝑥⟩

 ≥ ⟨𝐵𝑥𝑘 − 𝐵𝑥𝑘+1 ∣ 𝑥𝑘+1 − 𝑥⟩ +
5

2
⟨𝐵𝑥𝑘 − 𝐵𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥⟩

 −
3

2
⟨𝐵𝑥𝑘−1 − 𝐵𝑥𝑘−2 ∣ 𝑥𝑘+1 − 𝑥⟩

 = ⟨𝐵𝑥𝑘 − 𝐵𝑥𝑘+1 ∣ 𝑥𝑘+1 − 𝑥⟩ +
3

2
⟨𝐵𝑥𝑘 − 𝐵𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥⟩

 +⟨𝐵𝑥𝑘 − 𝐵𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩ + ⟨𝐵𝑥𝑘 − 𝐵𝑥𝑘−1 ∣ 𝑥𝑘 − 𝑥⟩

 −
3

2
(⟨𝐵𝑥𝑘−1 − 𝐵𝑥𝑘−2 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩ + ⟨𝐵𝑥𝑘−1 − 𝐵𝑥𝑘−2 ∣ 𝑥𝑘 − 𝑥⟩)

 

= 𝑡𝑘+1 − 𝑡𝑘 + ⟨𝐵𝑥𝑘 − B𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩ −
3

2
⟨𝐵𝑥𝑘−1 − 𝐵𝑥𝑘−2 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩.             (8) 

Hence, from (6), (7) and (8), we deduce 

(∥∥𝑥𝑘 − 𝑥∥∥2 − ∥∥𝑥𝑘+1 − 𝑥∥∥2 − ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2) − 𝛼(∥∥𝑥𝑘−1 − 𝑥∥∥2 − ∥∥𝑥𝑘 − 𝑥∥∥2 − ∥∥𝑥𝑘−1 − 𝑥𝑘∥∥2)

 ≥ 2𝛾𝑡𝑘+1 − 2𝛾𝑡𝑘 + 2𝛾⟨𝐵𝑥𝑘 − 𝐵𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩ − 3𝛾⟨𝐵𝑥𝑘−1 − 𝐵𝑥𝑘−2 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩
 

        −2α⟨𝑥𝑘 − 𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩.                                  (9) 

Using Cauchy-Schwarz inequality and the Lipschitz property of 𝐵, we have 

{

2|⟨𝐵𝑥𝑘 − 𝐵𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩| ≤ 𝐿(∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2 + ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2)

2|⟨𝐵𝑥𝑘−1 − 𝐵𝑥𝑘−2 ∣ 𝑥𝑘+1 −  𝑥𝑘⟩| ≤ 𝐿(∥∥𝑥𝑘−1 − 𝑥𝑘−2∥∥2 + ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2)

2|⟨𝑥𝑘 − 𝑥𝑘−1 ∣ 𝑥𝑘+1 − 𝑥𝑘⟩| ≤ ∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2 + ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2

 

Therefore, (9) implies that 

(∥∥𝑥𝑘 − 𝑥∥∥2 − ∥∥𝑥𝑘+1 − 𝑥∥∥2 − ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2) − 𝛼(∥∥𝑥𝑘−1 − 𝑥∥∥2 − ∥∥𝑥𝑘 − 𝑥∥∥2 − ∥∥𝑥𝑘−1 − 𝑥𝑘∥∥2)

 ≥ 2𝛾𝑡𝑘+1 − 2𝛾𝑡𝑘 − 𝛾𝐿(∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2 + ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2) −
3𝛾𝐿

2
(∥∥𝑥𝑘−1 − 𝑥𝑘−2∥∥2 + ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2)

 −𝛼(∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2 + ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2)

 

which is equivalent to 

∥∥𝑥𝑘+1 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘 − 𝑥∥∥2 + 2𝛾𝑡𝑘+1 + (1 − 𝛼 −
5𝛾𝐿

2
) ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2

 ≤ ∥∥𝑥𝑘 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘−1 − 𝑥∥∥2 + 2𝛾𝑡𝑘 + (2𝛼 + 𝛾𝐿)∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2 +
3𝛾𝐿

2
∥∥𝑥𝑘−1 − 𝑥𝑘−2∥∥2

 

The proof is completed. ◻ 

We have the result of the convergence of Algorithm 3.1. 

Theorem 3.3.  Let (𝑥𝑘)𝑘∈ℕ be generated by Algorithm 3.1 with 𝛼 ∈ [0,
1

3
[, and 

𝛾 <
1 − 3𝛼

5𝐿
. (10) 

Then (𝑥𝑘)𝑘∈ℕ converges weakly to 𝑥‾ ∈ zer (𝐴 + 𝐵). 

Proof. For 𝑥 ∈ zer (𝐴 + 𝐵), using Lemma 3.2, we obtain 
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∥∥𝑥𝑘+1 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘 − 𝑥∥∥2 + 2𝛾𝑡𝑘+1 + (2𝛼 +
5𝛾𝐿

2
) ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2 +

3𝛾𝐿

2
∥∥ 𝑥𝑘 − 𝑥𝑘−1 ∥2

 ≤ ∥∥𝑥𝑘 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘−1 − 𝑥∥∥2 + 2𝛾𝑡𝑘 + (2𝛼 +
5𝛾𝐿

2
) ∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2 +

3𝛾𝐿

2
∥∥𝑥𝑘−1 − 𝑥𝑘−2∥∥2

 

             −(1 − 3𝛼 − 5𝛾𝐿)∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2.       (11) 

We denote 

𝑆𝑘 = ∥∥𝑥𝑘 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘−1 − 𝑥∥∥2 + 2𝛾𝑡𝑘 + (2𝛼 +
5𝛾𝐿

2
) ∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2 +

3𝛾𝐿

2
∥∥𝑥𝑘−1 − 𝑥𝑘−2∥∥2. 

we rewrite (11) as 

𝑆𝑘+1 ≤ 𝑆𝑘 − (1 − 3𝛼 − 5𝛾𝐿)∥∥𝑥𝑘+1 − 𝑥𝑘∥∥2. (12) 

We prove that (∀𝑘 ∈ ℕ), 𝑆𝑘 ≥ 0. Indeed, from the formula of 𝑡𝑘, using Cauchy-Schwarz inequality 

and the Lipschitz property of 𝐵, we get 

2|𝑡𝑘| ≤ 𝐿(∥∥𝑥𝑘−1 − 𝑥𝑘∥∥2 + ∥∥𝑥𝑘 − 𝑥∥∥2) +
3𝐿

2
(∥∥𝑥𝑘−1 − 𝑥𝑘−2∥∥2 + ∥∥𝑥𝑘 − 𝑥∥∥2). 

Hence 

𝑆𝑘 ≥ ∥∥𝑥𝑘 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘−1 − 𝑥∥∥2 + (2𝛼 +
5𝛾𝐿

2
) ∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2

 −𝛾𝐿(∥∥𝑥𝑘−1 − 𝑥𝑘∥∥2 + ∥∥𝑥𝑘 − 𝑥∥∥2) −
3𝛾𝐿

2
∥∥𝑥𝑘 − 𝑥∥∥2

 ≥ (1 −
5𝛾𝐿

2
) ∥∥𝑥𝑘 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘−1 − 𝑥∥∥2 + 2𝛼∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2

 = (1 − 2𝛼 −
5𝛾𝐿

2
) ∥∥𝑥𝑘 − 𝑥∥∥2 + 𝛼(2∥∥𝑥𝑘 − 𝑥∥∥2 + 2∥∥𝑥𝑘 − 𝑥𝑘−1∥∥2 − ∥∥𝑥𝑘−1 − 𝑥∥∥2)

 

                ≥ (1 − 2𝛼 −
5𝛾𝐿

2
) ∥∥𝑥𝑘 − 𝑥∥∥2 ≥ 0 .      (13) 

By combining (11), (12), and the condition (10), we get 

{
lim

𝑘→+∞
 ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥ = 0,

∃ lim
𝑘→+∞

 𝑆𝑘 = 𝜉 ∈ ℝ.
(14) 

It follows from (13) and (14) that (𝑥𝑘)𝑘∈ℕ is bounded and 

lim
𝑘→∞

 𝑆𝑘 = lim
𝑘→∞

 (∥∥𝑥𝑘 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘−1 − 𝑥∥∥2) = 𝜉.  

Let 𝑥⋆ ∈ ℋ be a weak sequential cluster point of (𝑥𝑘)𝑘∈ℕ. Then there exists a subsequence (𝑥𝑘𝑛
)

𝑛∈ℕ
 

that converges weakly to 𝑥⋆. 

From (5), we have 

𝑥𝑘 + 𝛼(𝑥𝑘 − 𝑥𝑘−1) − 𝑥𝑘+1

𝛾
− (

7

2
𝐵𝑥𝑘 − 4𝐵𝑥𝑘−1 +

3

2
𝐵𝑥𝑘−2) + 𝐵𝑥𝑘+1 ∈ (𝐴 + 𝐵)𝑥𝑘+1 

which is equivalent to 

𝑥𝑘 − 𝑥𝑘+1

𝛾
+

𝛼(𝑥𝑘 − 𝑥𝑘−1)

𝛾
− (𝐵𝑥𝑘 − 𝐵𝑥𝑘+1) −

5

2
(𝐵𝑥𝑘 − 𝐵𝑥𝑘−1) 

                                                                                 +
3

2
(𝐵𝑥𝑘−1 − 𝐵𝑥𝑘−2) ∈ (𝐴 + 𝐵)𝑥𝑘+1 .     (15)  
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Using the Lipschitz condition of 𝐵 and lim𝑘→∞  ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥ = 0, one can see that the left-hand side 

of (15) converges strongly to 0 . Using [3, Corollary 24.4], the sum 𝐴 + 𝐵 is maximally monotone, and 

hence, its graph is closed in ℋweak × ℋstrong [3, Proposition 20.33]. Therefore 𝑥⋆ ∈ zer (𝐴 + 𝐵). 

Assume that (𝑥𝑘𝑛
)

𝑛∈ℕ
⇀ 𝑥, (𝑥𝑙𝑛

)
𝑛∈ℕ

⇀ 𝑦. Then we have that 

 −(∥∥𝑥𝑘 − 𝑥∥∥2 − 𝛼∥∥𝑥𝑘−1 − 𝑥∥∥2) + (∥∥𝑥𝑘 − 𝑦∥∥2 − 𝛼∥∥𝑥𝑘−1 − 𝑦∥∥2)

 +(∥ 𝑥 ∥2− 𝛼 ∥ 𝑥 ∥2) − (∥ 𝑦 ∥2− 𝛼 ∥ 𝑦 ∥2) = 2(⟨𝑥𝑘|𝑥 − 𝑦⟩ − 𝛼⟨𝑥𝑘−1|𝑥 − 𝑦⟩).             (16)
 

Choosing 𝑘 = 𝑘𝑛 and 𝑘 = 𝑙𝑛 then taking limit both sides of (16) when 𝑛 → ∞, we get 

∥ 𝑥 − 𝑦 ∥2− 𝛼 ∥ 𝑥 − 𝑦 ∥2= 0, 

which implies 𝑥 = 𝑦. Therefore (𝑥𝑘)𝑘∈ℕ converges weakly to a point in zer (𝐴 + 𝐵). The proof is 

completed. 

Next, we consider some simple examples to illustrate the effectiveness of our method. We compare 

our method (P) to two methods: Tseng's method (T) and the forward-reflected-backward method (FRB) 

in [11]. The first example shows that in a particular case, with suitable initial values, our method is better 

than Tseng's and the forward-reflected-backward method even in the optimal case. 

Example 1: We consider problem (1) with ℋ = ℝ𝑛, 𝐴𝑥 = 0, 𝐵𝑥 = 𝑥 and the initial values 𝑥0 ∈

ℝ𝑛, 𝑥1 =
𝑥0

3
, 𝑥2 =

𝑥0

9
 for all three methods. Note that 0 is the unique solution of (1) and the operator 𝐵 is 

1 -Lipschitz. 

Tseng's method (T): 𝑥𝑘+1 = (1 − 𝛾 + 𝛾2)𝑥𝑘 for 𝛾 < 1. The optimal stepsize is 𝛾 =
1

2
 which gives a 

rate of 
3

4
. 

FRB method: 𝑥𝑘+1 = (1 − 2𝛾)𝑥𝑘 + 𝛾𝑥𝑘−1 for 𝛾 <
1

2
. The optimal stepsize is 𝛾 ≈

1

2
 which gives a 

rate of 
1

√2
. 

Proposed method (P): We Choose 𝛼 = 0, 𝛾 =
2

15
, then (4) becomes 

𝑥𝑘+1 =
8

15
𝑥𝑘 +

8

15
𝑥𝑘−1 −

1

5
𝑥𝑘−2. 

The proposed method is 𝑥𝑘+1 =
𝑥0

3𝑘 which gives a rate of 
1

3
. We see that 

1

3
<

1

√2
<

3

4
, therefore the 

proposed method converges faster than Tseng's method and FRB method in [11] for this particular 

problem. 

The convergence of the three methods are illustrated in Figure 1. Note that, in this case, Tseng's and 

FRB methods are optimally selected, i.e., the stepsize is equal 
1

2
 is optimal. 

Example 2: Consider problem (1) with ℋ = ℝ2, 𝐴(𝑧1, 𝑧2) = (0,0), 𝐵(𝑧1, 𝑧2) = (−𝑧2, 𝑧1). The 

convergence of Tseng's method, FRB method and Algorithm 3.1 are illustrated in Figure 2 and Figure 3. 

We see that the convergence of our method is the same FRB method and faster than Tseng's method. 

To illustrate the effectiveness of the inertial techniques, we consider the following simple example. 

Example 3: We consider problem (1) with ℋ = ℝ, 𝐴𝑥 = 0, 𝐵𝑥 = 𝑥. The convergence of Algorithm 

3.1 for different values of 𝛼 is illustrated in Figure 4 with 𝛾 = 1/21 and Figure 5 with 𝛾 = 1/15. 
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Figure 1. Convergence of the iteration  

of three methods. 

 

Figure 2. Convergence of the iteration  

of three methods. 

 

Figure 3. Convergence of the iteration  

of three methods. 

 

Figure 4. Convergence of proposed method. 

 

 

Figure 5. Convergence of proposed method. 
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4. Conclusions 

We have proposed an inertial splitting method for finding a zero point of a sum of two operators, in 

which 1 is maximally monotone and 1 is monotone-Lipschitz. Under some conditions of the parameters, 

we have proved the weak convergence of the algorithm. In some special cases, the proposed method 

converges faster than some known methods. 
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