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Abstract: In this work, Strontium substituted hydroxyapatite (SrHA) coatings were successfully 

deposited onto etched titanium substrates in solutions of H2SO4 and HCl. The deposition was 

achieved by hydrothermal method by immersing the substrates in a solution containing 

Ca(NO3)2.4H2O, NH4H2PO4, and 5% Sr(NO3)2, followed by heating at 200°C for 12 hours. X-ray 

diffraction (XRD) analysis confirmed that all SrHA coatings exhibited a crystalline hydroxyapatite 

structure. Field-emission scanning electron microscopy (FE-SEM) revealed that the SrHA coatings 

exhibited microstructure. The reults of testing Bioactivity and in vitro biocompatibility of the SrHA-

coated titanium substrates using SBF solution and baby hamster kidney (BHK) cells showed good 

biological properties of the SrHA coatings. 

Keywords: Hydroxyapatite, Hydrothermal, Strontium substituted hydroxyapatite, Cell attachment, 

Implant.* 

1. Introduction 

In recent years, advancements in biomaterials have played a pivotal role in the development of 

biomedical devices, especially in the field of orthopedics and dental implants [1]. Titanium (Ti), 
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renowned for its good mechanical properties [2-4], high strength-to-weight ratio [3], good corrosion 

resistance [5], moderate biocompatibility [6]. Ti is a material of choice in biomedical implants because 

Ti is non-ferromagnetic and magnetic resonance imaging that can be performed on patients with titanium 

implant without risk [7].  However, challenges persist in optimizing the bioactivity of titanium implants 

to ensure successful osseointegration and long-term stability within the human body [8] as well as 

improving the corrosion resistance of the titanium [9, 10].  To address these issues, numerous research 

works have been done to improve the bioactivity of the titanium implants with surface modification 

being a key solution to overcome these problems [11-15]. 

Among the surface modification techniques with different coating layers, hydroxyapatite (HA), 

calcium phosphate compound has attracted interest due to its biocompatible and bioactive properties, 

making it be an ideal candidate for coating on implant surfaces [16-20]. Hydroxyapatite, with the general 

formula Ca5(PO4)3OH and unit cell formula Ca10(PO4)6(OH)2 [21] belongs to the family of calcium 

phosphate (CaP) ceramics with Ca/P molar ratio of 1.67, similar to that of natural bone and has favorable 

surface chemistry supporting bone development [9]. HA also acts as a protective coating for the titanium 

implants, improving the corrosion behavior of the implants which not only suppresses harmful ions that 

could be released from the surface of metallic implants but also extends their service life by preventing 

the failure of the implant that is being protected [22, 23]. Furthermore, the incorporation of strontium 

into hydroxyapatite introduces an intriguing dimension, as strontium has been reported to exhibit bone-

stimulating effects and enhance osteogenic activity, therefore stimulating bone formation, growth, and 

healing [24-28]. Moreover, it is also reported that the incorporation of strontium increases the adhesion 

strength of the HA coating to the implants [29, 30].  

In the pursuit of optimizing the biocompatibility of titanium implants, various coating methods have 

been explored to augment their interaction with the biological milieu such as physical vapor deposition 

[31, 32], sol-gel [33, 34], electrochemical deposition [35, 36], thermal spraying [37, 38] or hydrothermal 

[39-41]. Among the plethora of available methods, the hydrothermal approach emerges as a compelling 

choice for the deposition of strontium-substituted hydroxyapatite on titanium surfaces. The rationale 

behind this selection lies in the unique advantages offered by the hydrothermal method. Unlike other 

techniques, hydrothermal synthesis occurs under elevated temperatures and pressures in an aqueous 

environment, allowing for the precise control of particle size and crystallinity [42]. These factors are 

crucial in tailoring the coating to achieve optimal biological responses, ensuring a harmonious interface 

between the implant and the host tissue. 

HA coatings on etched titanium substrates have been synthesized successfully as seen in previous 

work [43]. To expand this direction, we report the synthesis of SrHA coatings on the etched Ti substrates 

by the hydrothermal method. Therefore, the aim of this study is to investigate the SrHA films which 

have been successfully coated on titanium substrates, focusing on their surface morphology and 

biocompatibility. 

2. Experiment Procedure 

2.1. Preparing Titanium Surface with Etching Solution 

Bare Ti plates with dimensions of 10101 mm3 (Merck, 99.5%) were used for etched. Prior to acid 

etching, Ti substrates have been polished by 800 grits of SiC papers. The polished Ti substrates were 

cleaned in an ultrasonic bath for 10 min and dried in air. Then, the cleaned Ti sheets were immersed in 

a mixed solution of 48% H2SO4 (Merck, 98%) and 37% HCl (Merck, 37%) at 60 oC for 60 minutes. The 

etched Ti sheets were then rinsed with distilled water followed by alcohol and dried in air [44]. 
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2.2. Creating Sr-doped HA Coating on the Surface of Etched Titanium 

Solution “a” was obtained by completely dissolving 4.72 grams of Ca(NO3)2.4H2O (Merck, 99.5%) 

and 7.45 grams of Na2EDTA.2H2O (Merck, 99%) in 35 ml of distilled water.  Solution “b” was obtained 

by completely dissolving 1.4 grams of NH4H2PO4 (Merck, 99%) in 35 ml of distilled water. Mixture of 

two solutions were then stirred continuously for about 30 minutes at room temperature. Finaly, 5% mol 

Sr(NO3)2 (Merck, 99%) denoted as 5SrHA were added into the mixture of solutions forstirring for  

30 minutes. 

The pH of the solution was adjusted to 9 by gradually adding NH4OH (Merck, 35%) into the 

solution, followed by thorough stirring. Etched titanium sheets were placed into 100 ml teflon vessels 

positioned within stainless steel chamber. Within the teflon vessels, HA solutions supplemented with 

Sr2+ ions were added to facilitate the hydrothermal reaction. The hydrothermal synthesis process was 

conducted at 200 oC for 12 hours, followed by drying the samples at 60 oC for 1 hour. For comparative 

analysis, control samples, including non-etched titanium samples, were also synthesized with Sr2+ 

supplemented HA. 

2.3. Surface Characterization and Biocompatibility Assessment 

X-ray diffraction (XRD, D8 Advance, Bruker, Germany) was carried-out to characterize the 

crystalline structures of the samples, using Cu-Kα radiation (λ = 1.54056 nm). The morphology of 

5SrHA was studied using digital optical microscopy (VHX-7000). Field emission scanning electron 

microscopy (FE-SEM, JEOL JSM-7600F device (Japan) was used to observe the surface morphology 

of SrHA. The bioactivity of the 5SrHA was evaluated using simulated body fluid (SBF) model. The 

5SrHA was immersed in the SBF solution and then placed in the furnace at a temperature of 37 °C for 

7 days. The specimens were then washed three times using ethanol followed by drying at 37 °C for 1 h. 

The formation of the bone mineral layer on the SrHA was examined using FE-SEM. Prior to test in vitro 

cells, the titanium substrate and SrHA coating were sterilized by autoclaving at 121oC for. Baby hamster 

kidney (BHK cells) was maintained in DMEM at 37 oC in humidified air and 5% CO2. Cell suspensions 

density of 2104 cell/ml were then seeded on the Ti and 5SrHA coating. Cell attachment was observed 

by confocal laser scanning microscopy (FV3000, Olympus, Japan). After culturing for 72 h, the BHK 

cells on the 5SrHA coating and the Ti were fixed in 4% paraformaldehyde in PBS for 10 min, washed 

in PBS, permeabilized with 0.1% Triton X-100 in PBS for 5 min, washed in PBS and stained with 

fluorescent phalloidin for 45 min. The BHK cell nuclei were labelled with DAPI for 5 min. The stained 

BHK cells attached on the samples were placed on a glass cover slide, and the cell attachment  

was observed. 

3. Results and Discussion 

3.1. Surface Characteristics 

In Fig. 1, SEM images depict the morphology of HA (Fig. 1a) and 5SrHA (Fig. 1b). It is observed 

that in the absence of Sr, the hexagonal rod-like structure of HA is clearly observed on the surface of 

etched titanium sheet. The length of the rods was of approximately 110 μm. 

In Fig. 2a, the FE-SEM image reveals a hexagonal diameter of approximately 4 μm. Several studies 

have indicated that as the concentration of Sr2+ ions increases in the HA synthesis solution, the size of 

the HA tubes decreases [24-26, 45]. In Fig. 1b, the size of the 5SrHA tubes is not clearly observed, 

suggesting a structural change in the tubes due to the substitution of Sr2+ for Ca2+ [45]. The rod-like 
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structure of the material layer on the 5SrHA sample (Fig. 2b) and the lenght of the 5SrHA rods is of 

approximately 500 nm, representing a reduction by 21 times compared to the hexagonal rod-like HA 

(Fig. 1a), with a proportional decrease in the diameter of the 5SrHA rods. 

 

 

Figure 1. Digital optical image of the (a) HA coating and (b) 5SrHA on the etched titanium substrate. 

 

Figure 2. FE-SEM images of (a) HA and (b) 5SrHA coating on etched Ti substrate.  

3.2 Chemical Composition Analysis 

Fig. 3 illustrates the X-ray diffraction patterns of two types of coatings: HA (Fig. 3a) and 5SrHA 

(Fig. 3b) deposited on etched titanium sheets. Interestingly, there is no noticeable difference in the XRD 

peak positions between Fig. 3a and Fig. 3b. This can be explained by the nature of pure HA, which is 

known to exist as the compound Ca10(PO4)6(OH)2 according to the standard reference JCPDS 09-0432. 

When Sr2+ replaces Ca2+ in this compound, it forms Ca10-xSrx(PO4)6(OH)2, where x ranges from 0 to 10. 

This new compound maintains a hexagonal structure similar to Ca10(PO4)6(OH)2. Additionally, since the 

ionic radii of Sr2+ and Ca2+ ions are quite similar, there is no significant peak shifting observed in  

Fig. 3. Consequently, there is no need to mark the positions of each compound in the X-ray diffraction 

patterns of the HA and 5SrHA samples. 
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Fig. 4 shows the EDS image of the 5SrHA sample regarding its chemical composition and the 

content of elements on the surface of the 5SrHA sample. The Sr content in the 5SrHA sample is 

relatively large at 16.3% by weight, resulting in a Sr/(Sr+Ca) ratio of 0.38. This explains the relatively 

high substitution of Sr2+ for Ca2+. 

 

  

Figure 3. XRD pattern (a) HA and (b) 5SrHA coating 

on the etched titanium. 

Figure 4. EDS of 5SrHA coating  

on the etched titanium. 

3.3. Bioactivity of 5SrHA Coating on Titanium 

Fig. 5 illustrates FE-SEM images of apatite minerals formed outside the 5SrHA crystals by 

immersing the 5SrHA sample in SBF solution at 37 °C for 7 days. These new bone minerals cover the 

surface of the rod-like HA crystals, altering their morphology. This demonstrates that the 5SrHA coating 

on titanium subjected to etching exhibits relatively good biological activity, facilitating the exchange of 

materials with the living environment, and resulting in the formation of a bonded bone mineral layer. 

 

Figure 5. FE-SEM images showing the bioactivity of 5SrHA coating on etched titanium immersion in SBF  

for 7 days with (a) 3k and (b) 40k magnification. 

3.4 Biological Compatibility Testing 

Fig. 6 depicts confocal laser scanning microscope (CLSM) images of BHK cell attachment on both 

Ti and 5SrHA coatings after 72 hours of culturing. As described in Fig. 6, cells on Ti and SrHA exhibit 
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normal fibroblastic cell morphology, with clear nuclei and cell membranes. However, the cell density 

on SrHA is significantly higher than that on Ti. This indicates that the SrHA coating on etched titanium 

is a biocompatible coating layer after hydrothermal processing, with potential for further investigation 

in implant materials. 

 

 

Figure 6. CLSM image showing the biocompatility of samples coating on etched titanium (a) Ti; (b) 5SrHA. 

4. Conclusion 

In this work, 5SrHA samples were successfully deposited onto etched Ti substrates by hydrothermal 

method. The HA coating exhibited a rod-like hexagonal morphology. Substituting Ca2+ with Sr2+ from 

Sr(NO3)2 solution in the HA crystal structure significantly reduced the dimensions of the SrHA structure, 

with a relatively high Sr content, and the Sr/(Sr+Ca) ratio was of 0.38. The 5SrHA coating was evaluated 

for its interaction with simulated body fluid (SBF) after 7 days, demonstrating good biological 

compatibility as evidenced by BHK cell attachment after 72 hours. 
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