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Abstract: In this work we found an interesting analogy between Gross-Pitaevskii theory for Bose-

Einstein condensate at zero temperature and Newton equation of classical particle in the classical 

physics. Although this analogy is a pure phenomenology, it brings a new perspective to physics in 

general, in particular to quantum physics, as well as to many-body physics.    
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1. Introduction    

* It is well-known that a Bose-Einstein condensate (BEC) is formed as the temperature of the bosonic 

system lowered to the critical temperature [1]. Below the critical temperature, the greater number of 

condensate atoms are, the lower temperature is [2]. Theoretically, all of atoms are condensed at zero 

temperature. This implies that a phase transition from the normal (non-condensate) phase to the 

condensate phase takes place at a critical temperature. The condensation phase transition has been 

observed in experiments [3] after 70 years since the prediction of Einstein [4]. 

In the condensed phase, state of all of atoms are described as a whole by a wave function, which is 

the solution of the Gross-Pitaevskii (GP) equation [1, 2]. In case of the stationary potential, the GP 

equation is the time-independent equation, which is a nonlinear Schrodinger equation. Mathematically, 

the wave function is a function of the coordinates, whereas it expresses statistically the probability of a 

finding particle in its own space. It is well-known that the time-independent GP equation has no 
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analytical solution. Except some special cases, the solution of time-independent GP equation only can 

be solved numerically. 

In non-relative classical mechanics, the state of a particle is described by the equation of motion, 

which shows the state of the particle in space-time. Particularly, the equation of motion expresses 

coordinates of particle as a function of time. The most important thing in establishing the equation of 

motion is to find the acceleration of the particle. As known that the acceleration can be found by solving 

second Newton equation [5].  

Mathematically, both time-independent GP and the second Newton equation are of the second-order 

differential equations. In this contribution we introduce a phenomenological analogy between these 

equations, which will bring a useful insight.   

2. Interface of a Two Component Bose-Einstein Condensates Confined Between Two Parallel Plates  

In this Section we will explore some analogies between GP theory for BEC and Newton equation 

for classical mechnics. To begin with, we first recall relevent knownledge about Newton equations. It is 

well-known that a particle of mass m will be accelarated when there is a force F acting on.  The Newton 

equation shows the relation between the acting force and accelation a  via the vector equation [5] 

 .ma F  (1) 

The instantaneous velocity and accelation is defined as the first- and second-order derivative of the 

coordinate with respect to time, respectively 
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in which ( , , ).r x y z  For a simplest case, a particle moves in one-dimensional projectile, a 

combination of Eqs. (1) and (2) allows us to rewrite Newton equation along one axis, let's say z: 
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with Fz being the projection of the force into z-axis. Assuming that at the initial state, the particle is 

moving through the position 0z  and velocity 0 .v  Double integrals Eq. (3) over time one can find the 

time-dependence of the coordinate in form 

 0 0( , , ).z z z v t  (4) 

Eq. (4) is sometime called the equation of motion.  

We now consider the BEC, which is freely moving in (x,y)-derections, i.e the translational symmetry 

is satisfied along Ox and Oy axes. Along Oz-axis, the atoms can move in semi-infinite space because a 

hard-wall is located at 0z   and perpendicular to Oz-axis. Experimentally, a hard-wall can be created 

the magnetic force [6], both magnetic and optical force [7] or the optical lattice [7, 8]. Theoretically, at 

zero temperature all of bosonic atoms with mass of m occupy the same state, which is ground state. The 

system is considered as a whole and described by the Lagrangian density without external potential [1]: 
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where ( , )r t   is the wave function - a function of both the coordinate and time,  is the chemical 

potential, is reduced Planck constant. The coupling constant can be expressed as 
24 /sg a m  

with sa being s-wave scattering length. Here we consider the case with repulsive interaction, i.e. 0.sa   

From Lagrangian density (5) one has the time-independent GP equation: 
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where the wave function of the ground state is ( ) ( , ) exp( )
i

z z t t     [8]. We now employ the 

idea of Joseph et. al. [9,10], in which the phenomenological analogy was applied for a two-component 

Bose-Einstein condensate within framwork of the density functional theory,  to examine the 

phenomenological analogy between (3) and (6) in the dynamic point of view thoughout this work. It is 

easily seen that these equations have the same mathematical form, this allows us to interpret the GP 

equation (6) as the Newton equation (3), which describes a particle with “mass”of 
2 / 2m  moving 

under of acting force:  

 
2( ) ( ) .zF z g z      (7) 

The acting force in (7) consists of two components, namely, the first term represents a resistant force 

and the remaining is the pulling force. In this regard, the motion of this particle is determined by the 

“coordinate” ( )z  in “time” .z   

   For more detail, we should transform the GP equation (6) into the dimensionless form. To do so, 

we introduce the reduced wave function and dimensionless coordinate: 
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in which 0n is the particle density in bulk, the healing length is defined as 
0/ 2 .mgn   In mean-

field theory the chemical potential is 0.gn   Consequently, GP equation (6) has the dimensionless 

form: 
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Phenomenologically, the dimensionless GP equation (8) described motion of particle with “mass” 

of 1m   along  -“axis” in “time” .z  With the presence of the hard-wall at origin 0,z   the Dirichlet 

boundary condition is invoked: 

 (0) 0, ( ) 1.     (9) 

The well-known solution of Eq. (8) with constraint condition (9) is [1, 2]: 

 ( ) tanh .
2

z
z


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 (10) 

The “equation of motion” (10) shows the “time” z -dependent of the “coordinate”    of the particle 

with unity “mass” by dimensionless acting force: 
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Figure 1. The evolution of the “coordinate”   and “velocity” /d dz  versus “time” z . 

Figure 2. The evolution of the kinetic energy and potential as functions of “time” .z  

 
3.F      (11) 

In dynamic point of view, which is equivelent to Eq. (4) of the dynamic mechanics.  Figure 1 shows 

graphically the evoluation of (10), in which the solid and dashed lines correspond to “coordinate”   

and “velocity” /d dz  versus “time” z . In dynamic point of view, one can examine as folows: 

   

 

 

 

 

 

 

 

 

 

 

 

 

- At the initial state, the particle passes the “coordinate” 0   and “velocity” / 0.707.d dz   

- The wave function is normalized to the bulk density therefore the reduced wave function is always 

smaller than unity. This implies that the resultant force (11) is always negative, which plays the role of 

the resistant force. As a consequence, the motion is the slowing down, the “velocity” decreases and the 

“coordinate” approaches unity. When “time” z  is large enough, the “velocity” vanishes and the particle 

stops.  

 

 

 

 

 

 

         

 

 

 

 

 

Now we investigate in energy point of view. Multiplying Eq. (8) by /d dz and then integrating 

over z  from z  to infinity one has 
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Let K and U respectively be the kinetic energy and potential of the particle, Eq. (12) can be 

rewritten in form 
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in which the kinetic energy is 
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and the potential has the form 
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U


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Eq. (12) or (13) is called “constant of motion”, which shows that the energy of the particle is 

conserved. The behaviors of the kinetic energy and potential are sketched in Fig. 2 respectively by solid 

and dashed lines. In good agreement with Fig. 1, as the “time” z  increases, the kinetic energy decreases 

whereas the potential increases. Furthermore, the total energy of particle is unchanged and always takes 

value 1/2 (dotted line).  Phenomenologically, like in mechanics, one can think of the trasformation 

energy from the kinetic energy to potential. When the “time” z  is large enough, the kinetic energy 

vanishes and total energy is in form of the potential. This potential is said to create the surface energy 

of Bose gas [5]. 

4. Conclusion  

In forgoing section, the phenomenological analogies between GP theory and Newton equation for 

the nonrelative classical mechanics have been considered. In GP theory, the state of BEC is described 

as a whole by the wave function of the ground state. The absence of external field, the wave function is 

real and dependent of the coordinate. In these analogies, the wave function and coordinate take the part 

of the coordinate and time in Newton equation for the classical mechanics. 

Although this analogy is purely mathematical and phenomenological, it provides a new insight into 

the physics of condensed matter, in particularly in quantum matter. It can be applied for the multi-

component Bose-Einstein mixtures.  
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