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Abstract: In this work we proposed a simple method to determine the coordinate of interface of 

two-component Bose-Einstein condensates (BECs) in double parabola approximation (DPA) under 

Neumann boundary conditions. Based on this idea, the static properties of BECs have been 

investigated totally in DPA.  
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1. Introduction* 

It is well-known that the ground state of a two-component Bose-Einstein condensate (BECs) is 

determined by coupled Gross-Pitaevskii (GP) equations [1, 2]. In case of an immiscible BECs, an 

interface is formed and a phase of separation is established [3].  
The interface of BECs is characterized by several quantities, such as, thickness, position, penetration 

length, etc. These characteristics strongly affect to both statistical and dynamic properties of the system. 

We start here with the simplest quantity of the interface, which is the position. A question arises naturally 

is that how to determine the position of the interface of BECs? In a homogeneous BECs, which is 

recently created by a uniform (flat-bottom) optical-box traps [4], the position of interface can be easily 

chosen at the origin. In case of inhomogeneous BECs, for example, BECs in the finite [5] or semi-

infinite space [6], the position of interface becomes a difficult problem.  
The reason for this fact is that the GP equations cannot be solve analytically. The first solution to 

this problem is numerical computation [7, 8]. The disadvantages of this method are, of course, we cannot 

obtain an equation for position of the interface and therefore other quantities is also calculated 
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numerically. Two noticeable approximate approaches were proposed to deal with this problem, namely, 

interpolation [9] and double parabola approximation (DPA) developed by Joseph et al., [10]. However, 

position of the interface was only determined for the symmetric case. In general case, the numerical 

computation was invoked. In this work, we introduced a simple way to find position of the interface 

within DPA under Neumann boundary condition. 

2. Research Content 

To begin with, we consider a system of BECs confined between two parallel plates. These plates are 

separated at distance 2h perpendicular to z-axis. Along to (x, y)-directions, system is translational 

invariance (Fig. 1).  

 

Figure 1. Two hard walls 1 2,W W  are located at z h  and the interface at 0 .z z  

The stable criterion requires that the area A of each plate is very large compared with square 

of the distance between plates, i.e., 24A h: [11]. As mentioned above, at zero temperature and without 

external field, the ground state can be described by coupled GP equations [2], 
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in which h  is reduced Planck constant, jm  and j are mass and chemical potential of component ,j  

respectively. The coupling constants are defined as 
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with 'jja being the s -wave scattering length between components j and 'j  ( , ' 1,2j j  ).  

Let origin be at the middle point between two plates, boundary condition for wave function is 

imposed: 

- At hard wall 1  z h   
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2 ( h) 0.    (3b) 
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- At hard wall 2  z h   

1( h) 0,    (3c) 
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To seek simplification, we introduce dimensionless coordinate 
1

z
z


% with 

j j jj j0/ 2m g n  h

healing length, 0jn is bulk density of component j. The reduced order parameter 
j j j0/ n   , 

2 1/     are used.  

At the two-phase coexistence, pressure in bulk of both components is equal, so that interspecies 

interaction can be characterized by a control parameter 

12 11 22K g / g g  
(4) 

Using Eqs. (2) and (4) one can rewrite GP equations (1) in dimensionless form 
2 3 2
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in which % 1h h /  . 

Now we solve this problem in DPA. The condensate 1 is assumed to occupy the right half space and 

the remainder for component 2. Two components of condensate are separated by the interface locating 

at 0.z At this stage, we recall results for wave functions of ground state, which have found in [5]. Within 

DPA, Eqs. (5) have the form 
2 2
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in the right-hand side and in the left-hand side 
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in which 2, K 1    . It is obvious that Eqs. (7) and (8) are not couple. Solutions for Eqs. (7) 

with constraint of the boundary condition (6) have the form 
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Similarly, Eqs. (8) gives  
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Note that 1 2 1, ,A A B and 2B  in Eqs. (9) and (10) are integral constants. In principle, these constants 

can be evaluated by request that both the wave functions and their first derivatives to be continuous at 

0z%. The results are shown in Appendix. 

We now focus on herein main objective, which is how to determine position of the interface. No 

later than proposed, the DPA has been widely applied to investigate BEC(s) in both homogenous and 

inhomogeneous systems. In the homogenous BECs, the interface can always be chosen at the origin 

[10]. In a semi-infinite system of Bose gases, the position of interface was studied in both GP theory 

[12] and DPA [6]. In our previous work [5], this position was pointed out by solving numerically the 

coupled GP equations (5). It is obvious that those problems were not thoroughly solved. A simple 

method is proposed by Joseph et al., [13]. In this method, the wave functions are requested to be the 

same at thematching point 0z%, 

1 20 0(z ) (z ). % %  (11) 

Plugging Eqs. (9) and (10) in to (11) one arrives at 
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Using Eq. (12) we can investigate the dependency of the interface location on the system parameters 

such as the K interaction constant and the characteristic length ratio .   

 

Figure 2. (Color online). The dependence of 
0z%  on the value K  with h 10 . The red, blue and green lines 

correspond to 1.5,1.0 and0.8.   
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Figure 3. (Color online). The dependence of 
0z%on the value  at K 3,h 10.  The blue 

and red lines correspond, respectively, to Neumann and Dirichlet BCs. 

Figure 2 and 3 tell us that:  

- Position of the interface depends weakly on the coupling constant K . 

- Position of the interface depends strongly on the characteristic length ratio  . 

- Position of the interface depend on boundary conditions which we consider.  

- The symmetric case: this case is defined by unity value of the healing length ratio. The solid curve 

in Figure 2 shows that the interface locates at the middle with 0 0.z %  

- The asymmetric case: this happens for 
1 2   the interface moves to the half-space corresponding 

to the component with smaller healing length. 

3. Conclusion 

In forgoing section, the ground state of two-component BECs is totally determined by DPA with 

Neumann boundary conditions. A progress is archived by DPA is that the position of interface by 

requiring that at the matching point, not only the wave functions and their first derivative are continuous, 

but also the wave functions are the same value. By this way, the ground state of a two-component BECs 

can be completely considered by DPA. Comparing with the same problem investigated before where 

the position of interface was investigated by numerical computation, our work can be seen as an 

achievement. By the way, we should note that in our previous work, the position of interface was found 

by numerical calculation, in which the particle number is fixed, i.e. the canonical ensemble was 

employed, whereas only grand canonical ensemble was invoked in this work.  

In this work, we investigated the location dependence of the interface on system parameters such as 

the K interaction constant, the  characteristic length ratio, boundary condition. These results allowed 

us to investigate in detail the wetting transition of the system. 
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Appendix: Integral constants 

The continuity of the wave functions and their first derivative is 
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Substituting Eqs. (9a, 9b, 10a, 10b) into Eqs. (A1, A2) we finds 
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