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Abstract: In this work we explore the application of Markov chains in forecasting stock price trends. 

Markov chains let a stochastic process that transitions from one state to another are based on 

probabilities offer a valuable framework for analyzing sequential data such as stock prices. By 

modeling the state transitions of stock prices, we aim to predict future price movements and identify 

potential trends. Through empirical analysis and evaluation, we demonstrate the effectiveness of 

Markov chains in stock price trend forecasting across various stocks. This work is a contributionin 

the growing body of literature on quantitative methods in financial forecasting and provides insights 

into the practical application of Markov chains in the stock market domain. 

Keywords: Markov chain, stock price forecasting, time series. 

1. Introduction* 

Nowadays, the stock market has become an attractive destination, attracting numerous investors 

from individuals to institutions because of its high profits, but with hidden risks. Therefore, forecasting 

market trends is always a top priority for individuals and organizations analyzing securities. Machine 

learning techniques, with their ability to process big and complex data and make accurate forecasts, are 

becoming useful tools in forecasting stock market prices. In this work we aim to build a model 

that forecasts stock market trends, to assist investors and financial professionals in making 

smart investment decisions and optimizing returns. 

In the past, there have been many domestic and foreign researchers who have proposed different 

methods to improve the ability to forecast stock trends. Some results from recent research works can be 

listed as follows: 
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In a work [1] Sun and Zhao used machine learning models (multiple linear regression, random forest, 

and LSTM) to forecast closing prices based on NASDAQ ETF data and data of statistical factors. The 

author’s empirical process shows that the multiple linear regression model is consistent with stock price 

forecasts. 

Lv and Jiang [2] proposed a predictive model with the RBF multiview neural network. With this 

model, it is possible to take full advantage of both the internal information provided by the correlation 

between each mode and the distinctive characteristics of each mode to form independent sample 

information. Since then, the authors have also shown the feasibility of the model. 

Khoa et al., [3] used the Support Vector Regression (SVR) model on the CAPM platform to forecast 

profiting individual stocks and identify factors affecting the error in the forecast. Through the 

experimental process on the dataset collected from listed companies on the Ho Chi Minh City Stock 

Exchange from December 2012 to September 2020, the research also shows that the SVR model is more 

effective than CAPM. 

Markov chain is a model that can be effectively applied to stock price forecasting. This model has 

proven its efficacy across various fields such as economics, healthcare, etc. In the stock market, Markov 

chains have been widely used, showing following results: 

Wang and Theobald [4] used a Markov regime-switching model to study stock return expectations 

and variances in six emerging East Asian markets from 1970 to 2004. They found two-state transitions 

in Malaysia, Philippines, and Taiwan; and three-state transitions in Indonesia, South Korea, and 

Thailand. 

Hoa and Huong [5] applied a Markov-switching EGARCH model to examine the dynamic linkages 

between exchange rates and stock market volatility in ASEAN markets from 2005 to 2013. The authors 

showed a significant relationship between stock and foreign exchange markets, with stock return 

volatility responding asymmetrically to the foreign exchange markets. 

Dar et al., [6] analyzed and forecasted Tata Consultancy Services (TCS Ltd.) stock prices in the 

Indian market using a Markov chain model. Using data from 2020 to 2022, they identified long-term 

trends and predicted future market states, achieving relatively good results. 

Recognizing the high potential and applicability of the Markov model in the stock market, we will 

analyze, evaluate, and apply the Markov chain model to assess characteristics, predict trends, and 

forecast the closing prices of stocks listed on the Vietnamese stock market. 

2. Markov Chain Theory 

The primary focus of this work is the Markov chain. In this section, we present the essential theories 

of Markov chains to provide a foundation for their application in stock price forecasting. The knowledge 

presented here is referenced from [7-9]. 

2.1. Time Homogeneous Discrete Time Markov Chains 

Stochastic process is a set of random variables indexed by time, typically denoted as {𝑋𝑛}. The set 

of all possible values that these random variables can take is called the state space. Furthermore, if 𝑛 =
0, 1, 2, … then we have a discrete time stochastic process, whereas if 𝑛 ∈ [0, ∞) and a continuous time 

stochastic process. 

Consider a discrete time stochastic process {𝑋𝑛, 𝑛 = 0, 1, 2, … } with a state space 𝑆 that is countable. 

This process is called a Markov chain if it satisfies the Markov property, which means that the 

conditional distribution of the future state of the process depends only on the current state of the process 

and is independent of the past: 
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𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0) = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) ≔ 𝑝𝑖𝑗 , 

for all 𝑖, 𝑗, 𝑖0, … , 𝑖𝑛−1 ∈ 𝑆 và 𝑛 ≥ 0. The transition probabilites of the Markov chain satisfy the 

following conditions: 

0 ≤ 𝑝𝑖𝑗 ≤ 1, ∀𝑖, 𝑗 ∈ 𝑆; 

∑ 𝑝𝑖𝑗

𝑗∈𝑆

= 1, ∀𝑖 ∈ 𝑆. 

If 𝑝𝑖𝑗 does not depend on 𝑛, we call the Markov chain time homogeneous. In this paper, we only 

consider time homogeneous Markov chains. The matrix 𝑷 = (𝑝𝑖𝑗) is called the transition probability 

matrix. 

The probability that the Markov chain will be in state 𝑗 at the 𝑛𝑡ℎ step starting from state 𝑗 is given by 

𝑝𝑖𝑗
(𝑛)

= 𝑃(𝑋𝑛 = 𝑗|𝑋0 = 𝑖). 

Then, the matrix 𝑷(𝑛) = (𝑝𝑖𝑗
(𝑛)

) is called the 𝑛-step transition probability matrix. 

Theorem 2.1. (Chapman-Kolmogorov equation) Let {𝑋𝑛} be a Markov chain with state space 𝑆 

and transition matrix 𝑷. Then, for non-negative integers 𝑛, 𝑚, we have 

𝑝𝑖𝑗
(𝑛+𝑚)

= ∑ 𝑝𝑖𝑘
(𝑛)

𝑝𝑘𝑗
(𝑚)

𝑘∈𝑆

, (1) 

or, in matrix notation, 𝑷(𝑛+𝑚) = 𝑷(𝑛)𝑷(𝑚). 

From the theorem above, we can easily prove that 𝑷(𝑛) = 𝑷𝑛. 

2.2. State Distributions 

The state distribution of the chain at time 𝑛 is given by the formula 

𝛼𝑗
(𝑛)

= 𝑃(𝑋𝑛 = 𝑗);  𝑛 = 0,1,2, … ;  𝑗 ∈ 𝑆. 

Let 𝜶(𝑛) = (𝛼𝑗
(𝑛)

, 𝑗 ∈ 𝑆), then 𝜶(0) is called the initial distribution of the chain. 

Theorem 2.2. For every 𝑛, the distribution 𝜶(𝑛) sastifies  

𝜶(𝑛) = 𝜶(0)𝑷(𝑛). (2) 
2.3. Classification of States 

2.3.1. Communicating States and Class Structure 

We say state 𝑗 is accessible from state 𝑖, written as 𝑖 → 𝑗, if 𝑝𝑖𝑗
(𝑛)

> 0 for some 𝑛. If 𝑖 → 𝑗 and 𝑗 → 𝑖,  

we say 𝑖 communicates with 𝑗 and write 𝑖 ↔ 𝑗.  

Communication is an equivalence relation. That is, it has the following properties:  

− reflexive: 𝑖 ↔ 𝑖, for all 𝑖;  

− symmetric: if 𝑖 ↔ 𝑗 then 𝑗 ↔ 𝑖;  

− transitive: if 𝑖 ↔ 𝑗 and 𝑗 ↔ 𝑘, then 𝑖 ↔ 𝑘.  

Therefore, the states of a Markov chain can be partitioned into communicating classes such that only 

members of the same class communicate with each other. That is, two states 𝑖 and 𝑗 belong to the same 

class if and only if 𝑖 ↔ 𝑗. 

If the entire state space 𝑆 is one communicating class, we say that the Markov chain is irreducible. 
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2.3.2. Periodicity 

We say that a state 𝑖 ∈ 𝑆 has period 𝑑𝑖, where 

𝑑𝑖 = gcd {𝑛 ∈ {1, 2, … }: 𝑝𝑖𝑖
(𝑛)

> 0} . 

If 𝑑𝑖 = 1, then 𝑖 is called aperiodic. 

Theorem 2.3. All states in a communicating class have the same period. In other words, if 𝑖, 𝑗 ∈ 𝑆 

are such that 𝑖 ↔ 𝑗, then 𝑑𝑖 = 𝑑𝑗. 

2.3.3. Recurrence and Transience 

We say that a state 𝑖 is recurrent if  

𝑃(𝑋𝑛 = 𝑖 for infinitely many 𝑛) = 1. 
We say that 𝑖 is transient if  

𝑃(𝑋𝑛 = 𝑖 for infinitely many 𝑛) = 0. 
We can easily show that every state is either recurrent or transient.  

Theorem 2.4. Let 𝑖, 𝑗 ∈  𝑆 be such that 𝑖 ↔ 𝑗. If 𝑖 is recurrent, then 𝑗 is also recurrent; while if 𝑖 is 

transient, then 𝑗 is also transient. 

For this reason, we can refer to a communicating class as a “recurrent class” or a “transient class”. 

If a Markov chain is irreducible, we can refer to it as a “recurrent Markov chain” or a “transient Markov 

chain”. 

The first passage time to state 𝑖 is defined as follows 

𝑇𝑖 = inf{𝑛 ≥ 1: 𝑋𝑛 = 𝑖}. 
We then have the expected return time to state 𝑖: 

𝜇𝑖 = 𝐸(𝑇𝑖|𝑋0 = 𝑖). 
Consider a recurrent state 𝑖. The state 𝑖 is said to be positive recurrent if 𝜇𝑖 < ∞, or null recurrent 

if 𝜇𝑖 = ∞. The following facts can be proven: 

In a recurrent class, either all states5 are positive recurrent or all states are null recurrent. 

An irreducible Markov chain with a finite number of states is positive recurrent. 

2.4. Invariant Distributions 

Let 𝝅 = (𝜋𝑖) be a distribution on 𝑆, in that 𝜋𝑖 ≥ 0 for all 𝑖 ∈ 𝑆 and ∑ 𝜋𝑖𝑖∈𝑆 = 1. We call 𝝅 an 

invariant distribution if 

𝜋𝑗 = ∑ 𝜋𝑖𝑝𝑖𝑗

𝑖∈𝑆

 for all 𝑗 ∈ 𝑆, 

or, equivalently, if 𝝅 = 𝝅𝑷. The invariant distribution is also called equilibrium distribution or 

stationary distribution. 

Theorem 2.5. An irreducible Markov chain has a unique invariant distribution 𝝅 if and only if it is 

positive recurrent. Moreover, this distribution satisfies 

𝜋𝑖 =
1

𝜇𝑖
, for all state 𝑖, 

where 𝜇𝑖 is the expected return time to state 𝑖. 

2.5. Convergence to Equilibrium 

We shall investigate the limiting behaviour of the 𝑛-step transition probabilities 𝑝𝑖𝑗
(𝑛)

 as 𝑛 → ∞. The 

following is one of the main results in Markov chains theory. 
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Theorem 2.6. (Convergence to equilibrium) Let {𝑋𝑛} be an irreducible and aperiodic Markov 

chain. Then for any initial distribution 𝝀, we have that 𝑃(𝑋𝑛 = 𝑗) →
1

𝜇𝑗
 as 𝑛 → ∞, where 𝜇𝑗 is the 

expected return time to state 𝑗. In particular:  

Suppose {𝑋𝑛} is positive recurrent. Then the Markov chain has a unique invariant distribution 𝝅 

given by 𝜋𝑖 =
1

𝜇𝑖
, so 𝑃(𝑋𝑛 = 𝑗) → 𝜋𝑗 for all 𝑗.  

Suppose {𝑋𝑛} is null recurrent or transient. Then 𝑃(𝑋𝑛 = 𝑗) → 0 for all 𝑗. 

2.6. Ergodic Theorem 

The previous theorem delves into the asymptotic behavior of 𝑃(𝑋𝑛 = 𝑗) which signifies the 

probability of the Markov chain occupying state 𝑗 at some distant time 𝑛. Also, one can analyze the 

long-run amount of time spent in state 𝑗, effectively averaging its behavior over the long haul. In 

mathematical jargon, the term "ergodic" encapsulates notions pertaining to the long-term proportion of time. 

Denote by 𝑉𝑖(𝑛) the number of visits to 𝑖 before 𝑛: 

𝑉𝑖(𝑛) = ∑ 1{𝑋𝑘 = 𝑖}

𝑛−1

𝑘=0

. 

      Then 
𝑉𝑖(𝑛)

𝑛
 is the proportion of time before 𝑛 spent in state 𝑖, and its limiting value (if it exists) is the 

long-run proportion of time spent in state 𝑖. 
Theorem 2.7. (Ergodic theorem) Let {𝑋𝑛} be an irreducible Markov chain. Then for any initial 

distribution 𝝀, we have 

𝑃 (
𝑉𝑖(𝑛)

𝑛
→

1

𝜇𝑖
 as 𝑛 → ∞) , 

where 𝜇𝑖 is the expected return time to state 𝑖.  

2.7. Estimating the Transition Matrix 

If we have the transition probability matrix of the Markov chain, we can perform various analyses. 

However, in practice, we often do not know this matrix in advance, so we need to estimate it based on 

observations of the process under study. Suppose we are studying a Markov chain with 𝑚 states. In that 

case, the parameters that we need to estimate are the 𝑚2 elements 𝑝𝑖𝑗 of the matrix 𝑷, where 

𝑝𝑖𝑗 = 𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖). 

Suppose we have observed a random sample (𝑥0, 𝑥1, … , 𝑥𝑛). These are realizations of the random 

variables (𝑋0, 𝑋1, … , 𝑋𝑛). Using the maximum likelihood estimation (MLE) method, we obtain the 

following maximum likelihood estimate: 

𝑝̂𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗𝑗
, 

where 𝑛𝑖𝑗 is the number of transitions from 𝑖 to 𝑗 in (𝑥0, 𝑥1, … , 𝑥𝑛). 

When estimating the transition matrix, it's possible that some transitions do not occur in our data, 

leading to some estimate being zero or divisions by zero during the computation process. To overcome 

this, we use Laplace smoothing method by adjusting the estimate as follows: 

𝑝̂𝑖𝑗 =
𝑛𝑖𝑗 + 𝛼

∑ 𝑛𝑖𝑗𝑗 + 𝑚𝛼
, 
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where 𝛼 is smoothing parameter. In this work, we choose 𝛼 = 0.001 as it provides a balance between 

maintaining the integrity of the original data and preventing zero probabilities or divisions by zero. This 

small value of 𝛼 introduces only a slight adjustment to the estimates, ensuring that the resulting transition 

matrix remains as accurate as possible. In practice, 𝛼 can be chosen as any small number, such as 0.001 

or 0.003, depending on the specific needs of the analysis. The key is to select a value that provides 

sufficient smoothing without overly distorting the original data. 

3. Methodology 

To utilize the Markov chain model, we make the following assumptions about the stock market: 

Daily stock prices follow a Markov process, meaning that future stock prices depend only on the 

current price and are independent of past prices. 

This process is time homogeneous, implying that the transition probabilities between states do not 

depend on the timing of the transition. 

In reality, due to the complexity and randomness of the stock market, these assumptions are difficult 

to satisfy. However, numerous studies have demonstrated the effectiveness of Markov chains in 

modeling stock prices. Therefore, these assumptions are necessary for us to apply this model. 

The result of this work is presented as a web application using the Streamlit package in the Python 

programming language. Users of the application will select stock tickers of companies in Vietnam by 

industry groups (banking, securities, petroleum, etc.) and a model for stock price forecasting (currently 

including Markov chain and ARIMA model). The application will provide information such as historical 

data, line charts, candlestick charts, etc., and utilize the selected model to forecast prices, offering useful 

insights to users during the investment process. 

3.1. Data Collection 

We collected stock data from Yahoo Finance. The data was collected from January 2022 to real-

time during the application's runtime. Some stock tickers only have data from around 2023. This data is 

divided into training set and test set in an 8:2 ratio. 

Based on this data, two Markov chain models will be constructed to address two problems: 

Problem 1: Investigating the trends (upward, downward, flat) of stock prices. 

Problem 2: Forecasting the closing price of stocks in the next trading session. 

3.2. Problem 1: Investigating the Trends of Stock Prices 

First, we define the states. Following the method in [10, 11], the states regarding price trends are 

determined based on the closing price difference between two consecutive days. Let 𝑦𝑖 be the closing 

price on day 𝑖. Let 𝑑𝑖 = 𝑦𝑖 − 𝑦𝑖−1. Then, the closing price of a particular day will be assigned the state 

up if 𝑑𝑖 > 0, flat if 𝑑𝑖 = 0, and down if 𝑑𝑖 < 0. Consider the Markov chain consisting of these 3 states. 

The transition probability matrix 𝑷 will be estimated from training data using MLE method.  

After estimating 𝑷, we carry out the following tasks: 

Checking properties of the Markov chain: irreducibility, aperiodicity, recurrence. 

Forecasting the trends (states) for the next few days. 

Calculating invariant distribution of the chain. 

Calculating the following quantities of the chain: expected return times, expected hitting times, 

expected numbers of visits. 
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3.3. Problem 2: Forecasting the Closing Price of Stocks in the Next Trading Session 

3.3.1. Defining States 

Similar to the method in [12], in this problem, we define states based on ranges of the daily return rate: 

𝑟𝑡 =
𝑦𝑡 − 𝑦𝑡−1

𝑦𝑡−1
=

𝑦𝑡

𝑦𝑡−1
− 1. 

The return rate is used instead of price difference as in problem 1 because relative quantities are 

often more intuitive and common in finance. Importantly, the states will not be affected by the trend of 

stock prices over time. 

For each stock ticker, we find the minimum daily return rate 𝑟𝑚𝑖𝑛 and the maximum 𝑟𝑚𝑎𝑥 from the 

training data. We divide each interval [𝑟𝑚𝑖𝑛; 0) and [0;  𝑟𝑚𝑎𝑥] into 3 equal-length sub-intervals. Then, 

we will have 6 intervals corresponding to 6 states. There are 3 increasing states labeled as U1, U2, U3 

and 3 decreasing states labeled as D1, D2, D3. In this notation, U=Up (increase), D=Down (decrease), 

and the number following indicates the magnitude (small, medium, large). The states U3 and D3 are 

extended to infinity to accommodate data from the test set outside of [𝑟𝑚𝑖𝑛;  𝑟𝑚𝑎𝑥]. An example of states 

for the stock code BID of Joint Stock Commercial Bank for Investment and Development of Vietnam - 

BIDV is presented in the table below, which has 𝑟𝑚𝑖𝑛 = −7.49% and 𝑟𝑚𝑎𝑥 = 6.53%. 

Table 1. Definition of states based on the daily return rate (%) of stock ticker BID 

D3 D2 D1 U1 U2 U3 

(−∞; −4.98) [−4.98; −2.49) [−2.49; 0) [0; 2.17) [2.17; 4.34) [4.34; ∞) 

3.3.2. Sliding Window Method 

To predict the closing price for the next trading session, we use the sliding window method. The 

idea is to predict the price for day 𝑛, we will use data from the previous 𝑚 days to estimate the transition 

probability matrix 𝑷. The size of the window 𝑚 is a hyperparameter of the model and will be selected 

through blocked cross-validation. To predict for the next day 𝑛 + 1, the window will shift by one day, 

leading to an update of the transition probability matrix.  

Based on the state of the previous day (today), we can predict the state of the next day (tomorrow) 

using the formula 

𝜶(1) = 𝜶(0)𝑷, 

where the vector 𝜶(0) has a value of 1 at the position corresponding to today's state, and all other 

positions are 0. The predicted state for tomorrow is the state with the highest probability (position with 

the largest element in vector 𝜶(0)). In case multiple states have equal probabilities, one of them is 

randomly chosen. Then, based on the definition of this state and the closing price of today, we can 

calculate the closing price range for tomorrow. The final predicted value is the midpoint of this range. 

3.3.3. Choosing Window Size 

To determine the optimal window size for prediction, we used the blocked cross-validation method 

(similar to [12]). For each stock ticker, we tested window sizes from 5 to 30. This process was carried 

out on the training dataset following these steps (illustrated with a window size of 5): 

i) The transition probability matrix 𝑷 was estimated based on data from day 1 to day 5; 
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ii) With matrix 𝑷, a price prediction for day 6 was made. This prediction was saved for evaluation 

at the end of the procedure; 

iii) The sliding window was shifted to contain data from day 7 to day 11 (excluding day 6 already 

used for validation) and continued to predict for day 12; 

iv) These steps were repeated until the end of the training set; 

v) The predictions were evaluated using the Root Mean Squared Error (RMSE) index: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

, 

where 𝑦𝑡 and  𝑦̂𝑡 are the actual price and the predicted price of the day being validated at time 𝑡. 

During the process, each data point was only used once, either for training or for validating. The 

optimal window size 𝑚𝑠 for each stock ticker is the size with the lowest RMSE index. 

4. Results and Discussion  

4.1. Data Visualization 

As mentioned, the results of this work have been presented in a web application built using the 

Python programming language, accessible at the following address: https://stock-price-forecasting-web-

app.streamlit.app 

The interface of the web app comprises a sidebar and a main page. Within the sidebar, users can find 

selection boxes to choose the industry group, stock ticker, and model for forecasting stock prices. The 

current version of our web application includes the following stock tickers:  

Table 2. List of stock tickers (categorized by industry group) 

Industry 

Group 
Banking Securities Electronics Petroleum 

Public 

Investment 
Steel 

Stock 

Tickers 

BID AGR BTP ASP C47 DTL 

VCB APG CHP CNG CII HMC 

TCB BSI DRL  CTD HPG 

CTG  CAV  CTI HSG 

 

On the main page, there are two tabs: The Data tab displays historical data and charts, while the 

Forecast tab is for model predictions.  

From here on, unless stated otherwise, the results presented are based on the BID stock ticker. In the 

Data tab, besides historical data, we display several charts to help users grasp the trends and movements 

of the current stock price. First, we plot a line chart of the closing price along with the moving  

average line - a popular method for smoothing out price fluctuations, enabling better observation of 

market trends. 

 

https://stock-price-forecasting-web-app.streamlit.app/
https://stock-price-forecasting-web-app.streamlit.app/
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Figure 1. Basic interface of the web application. 

 

Figure 2. Line chart of closing price with moving average. 

We use candlestick charts to represent key stock price information for each trading session, 

including the opening, high, low, and closing prices. 

 

Figure 3. Candlestick chart of stock prices. 
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Next, we create a bar chart to display the trading volume of stocks for each session. This bar chart 

illustrates the market activity level for each day, providing insights into the fluctuation and nature of 

trading volume. 

 

Figure 4. Bar chart of trading volume. 

4.2. Stock Price Forecasting 

For the Forecast tab, we will utilize the user-selected model to provide valuable insights and 

forecasts regarding the stock price in the upcoming sessions. 

4.2.1. Markov Chain Model 

Problem 1: Investigating the trends of stock price 

To estimate the transition matrix for the Markov chain, we calculate price differences and assign 

states to each day as outlined earlier. With the help of the pydtmc library in Python, we obtain the Markov 

chain from the training data and visualize it as follows: 

 

Figure 5. Markov chain of  stock price trends. 

Looking at the graph, we can easily observe the transition probabilities of the chain. For instance, 

the probability of the stock price being in an increasing trend today and transitioning to a decreasing 
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trend tomorrow is 0.56. Next, we examine the important properties of the Markov chain and obtain the 

results as follows: 

Table 3. Results of checking some properties of the Markov chain 

Irreducibility Aperiodicity Recurrent states Transient states 

True True Up, Flat, Down  

 

So, the Markov chain we just estimated has some very "nice" properties: it's irreducible, aperiodic, 

and recurrent. Moreover, because it has a finite number of states, the chain is positive recurrent. Now 

we try using this Markov chain to predict states for some future days and compare with actual data from 

the test set. 

 

Figure 6. Predicted price trends for the next 10 days. 

Here, each day's prediction is based on the state with the highest probability. We notice that 

prediction accuracy isn't very high. From the second day onwards, the Down state has the highest 

probability (around 0.48), but it's not significantly different from the Up state (probability 0.45). 

Additionally, probabilities stabilize over time due to the irreducibility and aperiodicity of the Markov 

chain, leading transition probability rows to converge to the invariant distribution (equilibrium 

distribution). Consequently, the Down state becomes the predominant prediction after several days. 

Thus, we advise users not to solely rely on the final prediction. Instead, consider state probabilities and 

additional information provided for well-informed investment decisions. 

According to the Ergodic theorem, the invariant distribution is the long-run proportion of time the 

chain spends in each state: 

Table 4. Invariant distribution of the Markov chain 

Up Flat Down 

0.4547 0.0597 0.4855 



H. T. Bac et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 47-63 58 

In the long run, we expect approximately 45% of the time the chain will be in the Up state, 6% of 

the time in the Flat state, and 48% of the time in the Down state. We will compare this prediction with 

the actual time proportions in the test data. 

 

Figure 7. Comparison of long-run proportion of time between forecast and actual data. 

The model's predictions closely match the actual data, aiding investors in decision-making for 

various stocks. Long-run time proportions help identify industries or companies with growth potential 

for effective investment. Next, we present additional characteristics of the BID stock price calculated 

using the Markov chain model: 

Table 5. Expected return times 

Up Flat Down 

2.1951 16.0714 2.0737 

 

Here, investors can expect that the closing price will increase again about 2 days after the last price 

hike. The relatively high average time to return to the Flat state (around 16 days) reflects the random 

nature and continuous fluctuations of the stock market. Moreover, the Down state also has a return time 

of about 2 days, indicating that stock prices are likely to alternate between increases and decreases in 

consecutive trading sessions. 

Table 6. Expected hitting times 

 Up Flat Down 

Up 0 17.5096 1.8366 

Flat 1.8856 0 2.3146 

Down 1.9173 17.7063 0 

Starting from the Up state, the chain transitions to the Down state take place during 1 to 2 days, and 

to the Flat state, during approximately 17-18 days. Flat exhibits a longer time to reach, whereas Up and 

Down have shorter times, further reinforcing the market's quick response to continuous price trend 

reversals. 
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Table 7. Expected numbers of visits in 5 days 

 Up Flat Down 

Up 2.208 0.3114 2.4806 

Flat 2.349 0.4009 2.2501 

Down 2.3345 0.2992 2.3662 

Table 7 indicates that, starting from the Up state, over a 5-day period, the stock price tends to stay 

in the Up state for around 2.208 days, in the Flat state for approximately 0.3114 days, and in the Down 

state for roughly 2.4806 days. Over 5 days, which can be understood as a trading week, the number of 

times the stock price increases and decreases is almost equal. In our analysis of other bank stocks, we 

observed comparable outcomes: the prevalence of Up and Down states, each comprising roughly 45% 

in the long run. This equilibrium is reflected in other metrics for these states, portraying a market 

characterized by randomness and volatility, with stability being a rare occurrence. 

Let's explore the attributes of firms in the electricity sector, using BTP from the Ba Ria Thermal Power 

Joint Stock Company as an example. Other companies within the sector exhibited comparable metrics. 

Table 8. Expected return times of BTP ticker 

Up Flat Down 

2.7255 3.8611 2.6731 

Table 9. Expected hitting times of BTP ticker 

 Up Flat Down 

Up 0 3.8456 2.8783 

Flat 2.8768 0 2.7192 

Down 2.9766 3.7863 0 

Table 10. Expected numbers of visits in 5 days of BTP ticker 

 Up Flat Down 

Up 1.8834 1.2903 1.8264 

Flat 1.8279 1.2862 1.8859 

Down 1.7912 1.3056 1.9031 

In contrast to the banking sector, metrics across states in the electricity sector appear more evenly 

distributed. Expected return times and numbers of visits to each state  Up, Flat, and Down  show 

minimal variation. This suggests that the electricity stock market may exhibit relatively more stability 

and less volatility compared to banking. Notably, the Flat state is expected to occur at least once within 

a trading week, indicating a period of market stability before potential shifts. This frequent occurrence 

of the Flat state may imply the influence of stabilizing factors, such as risk management policies or 

external factors, in maintaining market stability in the electricity sector. 

The model's predictions generally align with reality. Banking stocks tend to be highly volatile due 

to their sensitivity to economic and financial fluctuations, including global market conditions, interest 

rates, exchange rates, and credit risks. Conversely, the electricity sector exhibits greater stability, driven 

by the essential nature of electricity services. This stability in demand leads to steadier revenue and 

profits for electricity companies, which typically operate with larger capital structures and face less 

volatility compared to banks. 

Problem 2: Forecasting the closing price of stocks in the next trading session 
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To assess the model's effectiveness, we plot a line chart comparing predicted prices with actual 

prices and calculate evaluation metrics. In addition to Root Mean Squared Error (RMSE), we also utilize 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡
|

𝑛

𝑡=1

, 

with 𝑦𝑡 representing the actual closing price and  𝑦̂𝑡 denoting the predicted closing price for the 𝑡-th 

testing day, we present the results for several stock tickers below. 

 

Figure 8a. Ticker BID - Joint Stock Commercial Bank for Investment and Development of Vietnam 

 

Figure 8b. Ticker APG - APG Securities Joint Stock Company. 

 

Figure 8c. Ticker ASP - An Pha Petroleum Group Joint Stock Company. 

Figure 8. Model performance for some stock tickers. 
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The optimal window size typically falls within the range of 20 - 30 days, this is meaning that the 

model needs data from the previous 20 - 30 days to make predictions for the next day. The model's 

predictions are relatively accurate with an average deviation of about 2-3%.  

For comparison, our web app also integrates popular time series models, including ARIMA built 

using the Auto ARIMA method and Facebook Prophet. The performance of these models on some stock 

tickers is shown in the table below: 

Table 11. Comparison of the performance of different models on the test set 

Model 
Multi-day 

Prediction 

MAPE for some stock tickers 

BID APG ASP BTP DTL 

Markov 

Chain 
No 1.85% 2.86% 1.79% 1.83% 2.67% 

Auto 

ARIMA 
Yes 5.07% 14.79% 5.80% 6.34% 18.24% 

Facebook 

Prophet 
Yes 7.49% 10.63% 10.07% 14.77% 6.59% 

We observe that the Markov chain model has significantly lower MAPE compared to the other two 

models. Both the ARIMA and Facebook Prophet models have the capability to predict multiple days 

ahead, which allows investors to plan long-term investments and make strategic decisions for the future. 

The step-by-step forecasting process works by initially predicting the value for the next day using the 

model trained on historical data. This predicted value is then added to the current dataset, and the updated 

data, including the new prediction, is used to forecast the subsequent day. This iterative process 

continues, generating forecasts for the desired number of days. This feature is particularly valuable for 

investors who are strategizing for long-term investment opportunities. By leveraging these models, 

investors can make informed decisions about future market trends, plan investment strategies, and 

manage their portfolios with a longer-term perspective. The ability to project several days ahead 

provides a comprehensive view that aids in identifying potential opportunities and risks over extended 

periods. Nevertheless, it is important to note that the accuracy of these multi-day forecasts will diminish 

as the forecast horizon extends. This decrease in accuracy arises from the compounding of forecast 

errors over time. In volatile markets such as the stock market, where conditions can change rapidly and 

unpredictably, these errors can accumulate, leading to less reliable predictions. This inherent limitation 

means that while ARIMA and Facebook Prophet are useful for short to medium-term forecasts, their 

predictions may become less dependable as they project further into the future. 

In contrast, the Markov chain model is designed to provide forecasts for only the next day. This 

limitation constrains its usefulness in long-term trading and investment strategies, as it does not account 

for longer-term trends or shifts in market conditions. However, this does not render the Markov Chain 

model obsolete because we partially address this by providing insights into the long-run stock 

characteristics, as discussed in Problem 1. With the sliding window approach, the model updates its data 

daily, thereby minimizing the impact of historical discrepancies and reducing bias. By focusing on the 

most recent data, the sliding window approach ensures that the model remains responsive to current 

market conditions and provides relatively accurate predictions for the next trading session. While it 

cannot offer long-term forecasts, this method enhances the Markov chain model’s reliability in predicting 

short-term movements and provides valuable insights into the immediate future of stock prices. 

The Markov chain model can be employed to analyze the behavior of stock markets [4], assess the 

impact of various factors on market volatility as in [5] and examine transitions between different market 

states to evaluate future potential [6]. These are very valuable characteristics, yet they require investors 

to have a certain level of knowledge to effectively apply them in strategic planning and making informed 
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investment decisions. While this study provides similar insights to those found in existing research, we 

go a step further by offering specific predictions for stock prices. This approach provides a more intuitive 

basis for decision-making, particularly for novice investors who may lack experience. By giving them 

concrete projections, our research helps bridge the gap between complex market analysis and practical, 

actionable investment strategies.  

Besides the limitation of predicting only one day ahead, the Markov chain model's reliance on states 

for price prediction restricts its flexibility in capturing complex market dynamics. To enhance this, 

increasing the number of states could be beneficial, but it must be balanced with available data. Too 

many states may lead to issues related to data scarcity. If some states are only represented in a few data 

points, the model's generality and effectiveness will be reduced. We've opted for 6 states in our Markov 

chain to maintain this balance. 

Some of our future research directions include: 

- Enhancing state definitions in the Markov chain model by increasing the number of states or 

changing the variables used, to better capture market complexities. 

- Exploring Markov chain extensions like the Markov Regime-Switching model, which models 

market changes over different periods. 

- Incorporating additional features such as trading volume, market sentiment from news, and 

macroeconomic factors to enrich the model. 

- Evaluating the model's generalizability by conducting studies across various financial markets  

and sectors. 

4. Conclusion  

In this work, we studied the theory of Markov chains and applied the Markov chain model to forecast 

stock prices. We conducted experiments on data from several stock tickers listed on the Vietnamese 

stock market and evaluated the results. The Markov chain model provided valuable insights into stock 

price state probabilities and transitions. We estimated the transition probability matrix and calculated 

key metrics like the invariant distribution, mean return time, mean hitting time, and mean number of 

visits per state. These metrics help investors understand both short-term and long-term stock price 

behaviors for informed investment decisions. Using daily return-based states, the Markov model 

predicted the next session's closing prices with a promising error margin of about 2-3% through a sliding 

window approach. However, there are some limitations included predicting only one day ahead and 

lacking flexibility in capturing complex market dynamics, that we aim to address in future research. 
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