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Abstract: In this work we studied theoretically the thermodynamics and magnetization process of 

this bilayer honeycomb spin lattice structure for the transverse field case using the transverse Ising 

model (TIM) [1] and mean field approximation (MFA). Theoretical investigations of the 

magnetization process in the AF bilayer honeycomb spin lattice with FM order in each layer using 

the Ising spin model in longitudinal and transverse fields have been shown. The obtained results 

show that the AF exchange interaction coupling has the effect of decreasing the critical fields and 

magnitude of the longitudinal susceptibility of the film. 
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1. Introduction* 

Among two-dimensional (2D) layered magnetic materials, the bilayer honeycomb lattices have 

attracted a significant amount of interest due to their interesting magnetic properties [2-4]. The magnetic 

properties of bilayer honeycomb lattices depend on the stacking of the layers and are different from 

those of a monolayer lattice [5]. More interestingly, these properties can be controlled by using strain, 

doping, and external fields [6-8]. These behaviors have important implications for fundamental research 

and possible applications. Therefore, the bilayer honeycomb lattices have become the subject of 

numerous experimental and theoretical studies. 
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We have studied the magnetization process of the AA-stacked bilayer honeycomb spin lattice with 

an applied longitudinal field and the competition between two different kinds (antiferromagnetic: AF, 

or ferromagnetic: FM) of intra-layer and inter-layer spin exchange couplings. 

This work is to extend theoretical works about the magnetization process in honeycomb spin lattice 

[9]. Our aim is to investigate the thermodynamic properties and the magnetization process of two 

ferromagnetic honeycomb AA-stacking spin layers under applied transverse fields. 

The paper is organized as follows: In Section 2, we define the Ising model in longitudinal and 

transverse fields, the mean field approximation is used. In Section 3, the numerical results for 

magnetization, susceptibility, and free energy are discussed in detail. Finally, conclusions are given in 

Section 4. 

2. Method of Calculation 

We consider the Ising model on a honeycomb lattice consisting of two spin layers and N spins in 

every layer (Fig. 1). The spins of each layer are distributed equally in two triangular a and b spin sub-

lattices. The system described by Hamiltonian:  

𝐻 = − ∑ (ℎ0𝑠𝑛𝜈𝒋
𝑧 + 𝛺0𝑠𝑛𝜈𝒋

𝑥 )
𝑛𝜈𝒋

−
𝐽

2
∑ (𝑠𝑛𝑎𝒋

𝑧 𝑠𝑛𝑏,𝒋+𝜟
𝑧 + 𝑠𝑛𝑏𝒋

𝑧 𝑠𝑛𝑎,𝒋−𝜟
𝑧 ) −

𝑛,𝒋,𝜟

𝐽′

2
∑ 𝑠𝑛𝜈𝒋

𝑧 𝑠𝑛𝜈𝒋+𝝆
𝑧

𝑛,𝜈,𝒋,𝝆
 −𝐽𝑃 ∑ 𝑠1𝜈𝒋

𝑧 𝑠2𝜈𝒋
𝑧

𝜈𝒋
           (1)                                                                                                      

Here n = 1, 2 is the number of layers. h0 (𝛺0) is the external magnetic field perpendicular and parallel 

to the monolayer spin plane and given in energy unit. J, J” are nearest neighbors (NN), second nearest 

neighbors (2nd NN) inplane exchange interaction couplings between spins, respectively. Jp is the 

exchange coupling between the spin NN pair at different layers but belonging to the same sub-lattice. 

The in-plane position of a spin in the  𝜈–sub-lattice is indicated by two-dimensional lattice vectors 

j. 𝑠𝑛𝜈𝒋
𝛼  (𝛼 = 𝑥, 𝑦, 𝑧) denote the components of a spin operator in the crystallographic xyz frame.  

A spin at site j has three inter-sublattice nearest neighbors of the different type and six intra-

sublattice second nearest neighbors of the same type. The position of the NN spins are denoted by 

vectors  0
1: 3 3

2

a
, ,Δ Δ  0

2 3 3
2

a
, , Δ  3 0 1 0a , Δ  and the position of the 2nd NN spins are 

denoted by vectors :ρ   0
1 43 3

2

a
, ,  ρ ρ  0

2 53 3
2

a
, ,   ρ ρ   3 0 0 3a , ρ 6 . ρ  a0 is the 

length of the hexagonal edge.  

The spin operators   𝑠𝑛𝜈𝒋
𝛼  can be written in form  𝛿𝑠𝑛𝜈𝒋

𝑧 = 𝑠𝑛𝜈𝒋
𝑧 − 𝑚𝑛𝜈𝑧, 𝛿𝑠𝑛𝜈𝒋

𝑥 = 𝑠𝑛𝜈𝒋
𝑥 − 𝑚𝑛𝜈𝑥 , where 

𝛿𝑠𝑛𝜈𝒋
𝑧    is the spin fluctuation operator. 

In the mean field approximation as zero approximation, by neglecting fluctuation operators we can 

write Hamiltonian (1) in the form: 

𝐻0 =  3𝑁 ∑ [𝐽𝑚1𝑎𝑧𝑚2𝑏𝑧 + 𝐽′(𝑚𝑛𝑎𝑧
2 + 𝑚𝑛𝑏𝑧

2 )]𝑛 + 𝑁𝐽𝑝 ∑ 𝑚1𝜈𝑧𝑚2𝜈𝑧𝜈 − ∑ (ℎ𝑛𝜈𝑠𝑛𝜈𝒋
𝑧 + 𝛺0𝑠𝑛𝜈𝒋

𝑥 )𝑛𝜈𝒋      (2)                                                                                                                      

  ℎ1𝑎(1𝑏) = ℎ0 + 3𝐽 𝑚1𝑏𝑧(1𝑎𝑧) + 6𝐽′ 𝑚1𝑎𝑧(1𝑏𝑧) + 𝐽𝑝𝑚2𝑎𝑧(2𝑏𝑧), 

ℎ2𝑎(1𝑏) = ℎ0 + 3𝐽 𝑚2𝑏𝑧(2𝑎𝑧) + 6𝐽′ 𝑚2𝑎𝑧(2𝑏𝑧) + 𝐽𝑝𝑚1𝑎𝑧(1𝑏𝑧)                                                        (3) 

Where 𝑚𝑛𝜈𝑥, 𝑚𝑛𝜈𝑧 (the index  ѵ takes values a or b ) are thermodynamic average of the spin moment 

components per site. For example, 𝑚𝑛𝜈𝑧 = 〈𝑠𝑛𝜈
𝑧 〉 and 〈. . . 〉 = 𝑇𝑟[exp(−𝛽𝐻). . . ]/ 𝑇𝑟[exp(−𝛽𝐻)], 

and 𝑚𝑛𝜈 = √𝑚𝑛𝜈𝑥
2 + 𝑚𝑛𝜈𝑧

2  . 

ℎ𝑛𝜈 and Ω0 are the longitudinal and transversal components of the total field 𝛾𝑛𝜈 = √ℎ𝑛𝜈
2 + 𝛺0

2  

acting on the ѵ-sub-lattice spin. Hamiltonian H0 can be diagonalizable by the unitary transformation: 
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       𝑠𝑛𝜈𝒋
𝑥 =

ℎ𝑛𝜈

𝛾𝑛𝜈
𝑆𝑛𝜈𝒋

𝑋 +
𝛺0

𝛾𝑛𝜈
𝑆𝑛𝜈𝒋

𝑍 , 𝑠𝑛𝜈𝒋
𝑧 = −

𝛺0

𝛾𝑛𝜈
𝑆𝑛𝜈𝒋

𝑋 +
ℎ𝑛𝜈

𝛾𝑛𝜈
𝑆𝑛𝜈𝒋

𝑍  .                                                                     (4) 

Hamiltonian of the system in new form:        

𝐻0 = 3𝑁 ∑ [𝐽𝑚1𝑎𝑧𝑚2𝑏𝑧 + 𝐽′(𝑚𝑛𝑎𝑧
2 + 𝑚𝑛𝑏𝑧

2 )]𝑛 + 𝑁𝐽𝑝 ∑ 𝑚1𝜈𝑧𝑚2𝜈𝑧𝜈 − ∑ 𝛾𝑛𝜈𝑆𝑛𝜈𝒋
𝑧

𝑛𝜈𝒋                        (5) 

From the Hamilonian (5) we obtain the expression for the free energy 𝑓 = −
1

4𝑁𝛽
𝑙𝑛𝑇𝑟(𝑒−𝛽𝐻0) and 

magnetic moment per spin:  

𝑓 =
3

4
∑  [𝐽𝑚𝑛𝑎𝑧𝑚𝑛𝑏𝑧 + 𝐽′(𝑚𝑛𝑎𝑧

2 + 𝑚𝑛𝑏𝑧
2 )]𝑛 +

𝐽𝑝

4
∑ 𝑚1𝜈𝑧𝑚2𝜈𝑧𝜈 −

1

4𝛽
∑ ln {

𝑠ℎ[(𝑠+
1

2
)𝑦𝑛𝜈]

𝑠ℎ(
𝑦𝑛𝜈

2
)

}𝑛𝜈 ,         (6)                                                                                                                                                                                             

𝑚𝑛𝜈𝑧 =
ℎ𝑛𝜈

𝛾𝑛𝜈
𝑏𝑠(𝑦𝑛𝜈), 𝑚𝑛𝜈𝑥 =

Ω0

𝛾𝑛𝜈
𝑏𝑠(𝑦𝑛𝜈), 𝑚𝑛𝜈 = √𝑚𝑛𝜈𝑥

2 + 𝑚𝑛𝜈𝑧
2 .                                           (7) 

 𝑦𝑛𝜈 = 𝛽𝛾𝑛𝜈                                                                                                                                       (8) 

The Brillouin function 𝑏𝑠(𝑦) figured in the equation (9) has the following form 

𝑏𝑠(𝑦) = (𝑠 + 1/2)𝑐𝑡ℎ((𝑠 + 1/2)𝑦) −
1

2
𝑐𝑡ℎ(𝑦/2).                                          (9) 

 

Figure 1. The structure of bilayer honeycomb lattice in longitudinal and transversal field. 

3. Results and Discussions 

In this part, we consider the case where the initial spin configuration without field is FM order in 

each layer and AF order of the spins in the two layers and the average spin moments of two sub-lattices 



N. T. Niem / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 64-71 67 

in each layer are equal. In the numerical calculation, all quantities are non-unit, and the unit of energy 

is the magnitude of the NN exchange energy |𝐽|. That means temperature 𝜏 =
𝑘𝐵𝑇

|𝐽|
= 𝛽−1, and field  

ℎ =
𝑔𝜇𝐵𝐵

|𝐽|
 . 

        𝑚1𝑎𝑧 = 𝑚1𝑏𝑧 = 𝑚1𝑧; 𝑚2𝑎𝑧 = 𝑚2𝑏𝑧 = 𝑚2𝑧; 𝑚𝑛𝜈𝑥 = 𝑚𝑛𝑥; 

𝑚𝑛𝑧 =
ℎ𝑛

𝛾𝑛
𝑏𝑠(𝑦𝑛); 𝑚𝑛𝑥 =

Ω0

𝛾𝑛
𝑏𝑠(𝑦𝑛); 𝑦𝑛 = 𝛽𝛾𝑛, 𝛾𝑛 = √ℎ𝑛

2 + 𝛺0
2                      (10) 

𝑚𝑛 = √𝑚𝑛𝑧
2 + 𝑚𝑛𝑥

2   ;  𝑚 =
1

2
(𝑚1 + 𝑚2).              (11) 

The magnetic fields exerting on the spin at the first and the second layers and the free energy per 

spin are 

ℎ1 = ℎ0+3(𝐽 + 2𝐽′) 𝑚1𝑧 + 𝐽𝑝𝑚2𝑧, ℎ2 = ℎ0+3(𝐽 + 2𝐽′)  𝑚2𝑧 + 𝐽𝑝𝑚1𝑧,                         (12) 

        𝑓 =
1

4
{3(𝐽 + 2𝐽′)(𝑚1𝑧

2 +𝑚2𝑧
2 ) + 2𝐽𝑝𝑚1𝑧𝑚2𝑧} −

1

2𝛽
∑ 𝑙𝑛 {

𝑠ℎ[(𝑠+
1

2
)𝑦𝑛]

𝑠ℎ(
𝑦𝑛
2

)
}𝑛 ,                            (13) 

The first and the second derivatives of free energy with respect to the magnetic field give us the spin 

moment m and the susceptibility 𝜒 of the bilayer film. 

        𝑚𝑧 = −
𝜕𝑓

𝜕ℎ0
=

1

2
(𝑚1𝑧 + 𝑚2𝑧), 𝑚𝑥 = −

𝜕𝑓

𝜕Ω0
=

1

2
(𝑚1𝑥 + 𝑚2𝑥)                                         (14) 

The longitudinal static susceptibility is given by 

𝜒𝑧 = −
𝜕2𝑓

𝜕ℎ0
2 =

1

2
{

𝑍1+𝑍2 −2[3(𝐽+2𝐽′)−𝐽𝑝]𝑍1𝑍2

1−3(𝐽+2𝐽′)[𝑍1+𝑍2]+[9(𝐽+2𝐽′)2−𝐽𝑝
2]𝑍1𝑍2

},                                               (15) 

𝑍𝑛 =
1

𝛾𝑛
2 [𝑏𝑠(𝑦𝑛)

Ω0
2

𝛾𝑛
+ 𝛽ℎ𝑛

2𝑏𝑠
′(𝑦𝑛)].                                              (16) 

The first derivative of the Brillouin function presented in (16) is written as                                

        𝑏𝑠
′(𝑦) =

1

4𝑠ℎ2(𝑦/2)
−

(𝑠+1/2)2

𝑠ℎ2[(𝑠+1/2)𝑦]
.                                 (17) 

Similarly, the transverse static susceptibility,  𝜒𝑥 = −
𝜕2𝑓

𝜕Ω0
2  is  

𝜒𝑥 =
1

2
∑ 𝑍𝑛𝑛 +

1

2
{

3(𝐽+2𝐽′)(𝑘1
2+𝑘2

2)+2𝐽𝑝𝑘1𝑘2+[𝐽𝑝
2−9(𝐽+2𝐽′)2](𝑍1𝑘2

2+𝑍2𝑘1
2)

1−3(𝐽+2𝐽′)[𝑍1+𝑍2]+[9(𝐽+2𝐽′)2−𝐽𝑝
2]𝑍1𝑍2

},                                        (18) 

where 𝑘𝑛 =
Ω0ℎ𝑛

𝛾𝑛
2 [𝛽𝑏𝑠

′(𝑦𝑛) −
𝑏𝑠(𝑦𝑛)

𝛾𝑛
].                                                                                            (19) 

3.1. Magnetization 

We investigate the magnetization process of the bilayer honeycomb lattice under the effect of the 

transverse field. Firstly, we study the magnetization of bilayer spin film with transverse field and 

temperature variation at a specified small longitudinal external field value h0. The results are shown in 

Figure 2. 

We found that while the effect of external longitudinal fields causes weak ferromagnetic properties 

of the film, the effect of the transverse field changes the magnitude of the total magnetic moment. The 

increase in transverse field leads to a decrease in the net spin moment and the reduction of the 

corresponding phase transition temperature of the film (Figure 2a). 
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Figure 2b shows the effect of the exchange interaction coupling between spins JP on the 

magnetization. The increase in the magnitude of Jp leads to an increase in the phase transition 

temperature of the film. 

 
     a 

 

          b 

 

Figure 2. The dependence of the net spin moment on the temperature at a given value of the longitudinal field 

h0 = 0.2 with different values of the transversal field Ω0 (a) and the inter-   exchange interaction Jp (b). The 

values of the parameters are: J = 1, J’= 0.1, s = 3/2 for all curves. 

Next, we investigate the magnetization process of the bilayer honeycomb lattice under the effect of 

the transverse field. 
a. 

 

b. 

 

Figure 3. Magnetization process of the bilayer honeycomb spin lattice when changing the transverse field (a) 

and Jp (b). Here, the spins in the two layers are antiparallel. The chosen parameters are: s=3/2, τ=1.2. 

In Figure 3, we plot the net spin moment of the film as a function of the external fields. The 

magnetization curves start at zero magnetic field. When the longitudinal magnetic field reaches a critical 

value, the interaction between the two material layers leads to a reversal of the magnetization of the 

second layer. The bilayer honeycomb film exhibits unusual behavior in the out-of-plane field: the first-

order magnetization process with two critical longitudinal fields (or spin flop at low field and spin flip 
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at high field). These critical values decrease with increasing transverse field and reducing the exchange 

interaction Jp. 

The free energy of the antiparallel layer spin configuration changes discontinuously at two critical 

fields (Figure 4). 

 

Figure 4. Field dependence of the free energy per spin of the bilayer honeycomb spin lattice. The initial spin 

configuration without fields is: FM order in each layer and AF order of the spins in the two layers. Here, s=3/2 

and other parameters are shown in the figure. 

3.2. Susceptibility 

In this part we present the results of the calculations for the susceptibility of the film. 

a. 

 

b. 

 

Figure 5. The dependence of the longitudinal susceptibility on the temperature at a given value of the 

longitudinal field h0 = 0.2 with different values of the transversal field Ω0 (a); and the inter-   exchange 

interaction Jp (b). Here s=3/2 and chosen parameters are shown in the figure. 

We have plotted the longitudinal susceptibility of the bilayer spin film as a function of the 

temperature at different values of the external fields and the inter-exchange interaction (Figure 5). We 
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see the highest longitudinal susceptibility at the transition temperature for all values of the longitudinal 

and transversal fields. The longitudinal susceptibility decreases rapidly with increasing temperature of 

the system. With the increase in the transversal field, the highest point of the longitudinal susceptibility 

curve increases and shifts to the low-temperature region (Figure 5a). The inter-exchange interaction Jp 

impacts strongly on the highest longitudinal susceptibility. A slight decrease in the magnitude of the 

exchange interaction leads to a significant increase in the highest longitudinal susceptibility (Figure 5b). 
a. 

 

b. 

 

Figure 6. The effect of the longitudinal and transversal field on the transverse susceptibility of the bilayer spin 

film. The values of the parameters are: J = 1, J’=0.1, Jp=-0.2, s = 3/2. 

The thermal variation of the transverse susceptibility for the bilayer honeycomb lattice is plotted in 

Figure 6. The graphs show a gradual decrease when the temperature increases. As the transerval field 

increases, the transverse susceptibility decreases. The longitudinal field which exerts on the film leads 

the transverse susceptibility to decrease more slowly. 

4. Conclusions 

In summary, we have theoretically investigated the magnetization process in the AF bilayer 

honeycomb spin lattice with FM order in each layer using the Ising spin model in longitudinal and 

transverse fields. In the frame of mean field approximation, the theoretical expressions for the free 

energy, the magnetization, and the susceptibility of the film are established as functions of the external 

fields, the temperature of the system, and the inter-layer exchange interaction. In the presence of the 

transversal field, the first order magnetization process happens at smaller values of the critical 

longitudinal fields. The AF exchange interaction coupling has the effect of decreasing the critical fields 

and magnitude of the longitudinal susceptibility of the film. 
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