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Abstract: The spheric aberration is one of the optical aberration influencing on the optical quality 

of the optical system, specially, the objective. In this paper, we propose to use the rays transfer 

matrix to evaluate the spheric aberration of the nonparaxial rays. Basing on the element 

configuration of the thin lens, we introduce the rays transfer matrix (RTM) describing the relation 

the object’s and image’s heigh from the optical axis. The transverse spheric aberration is numerically 

observed and compared to that obtained by using the paraxial approximation (PA). The obtained 

results are discussed to evaluate the spheric aberration of the thin lens, particularly, and the objective, 

generally. 
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1. Introduction* 

The optical quality of the optical system depends on the a lot of facts, among them is the spheric 

aberration [1]. The spheric aberration always appears in the optical system as a inherent feature of every 

optical system, which collects the nonparaxial light rays [2]. To evaluate and correct the spheric 

aberration there are a lot of methods: to collimate the nonparaxial rays to paraxial ones [3]; to use the 

aspheric lens [5-8] or to use electrically thin flat lens [9]. From our understanding, the rays transfer 

matrix is a method can used to evaluate the transverse spheric aberration of the thin lens and then discuss 

about application for the complex optical system.  

In this paper, we present in detail the scheme of rays traverse pass through the thin lens, and then 

introduce the rays transfer matrix of this system. Then the transverse spheric aberration is derived and 
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numerically calculated to evaluate and discuss in competition with that obtained by the paraxial 

approximation.     

2. Scheme of Ray Paths Through Thin Lens 

Fig. 1a describes the ray paths traveling through a thin lens [3]. Here, n  is the lens' refractive 

index, 0d  is the object distance, 
id is the image distance, h is the distance from the optical axis at 

which the outermost ray enters the lens, 1R is the first lens radius, 2R  is the second lens radius, 

and f  is the lens' focal length. The distance h  can be understood as half of the clear aperture. The 

nonparaxial rays do not meet at the paraxial focus.  

 

 

a 

 

b 

Figure 1. The ray paths travers through thin lens for Paraxial approximation (A) and Rays transfer matrix (B).   

Using the Coddington factors, one finds expressions for shape, s, and position, p [3] 
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and expression for the LSA (Longitudinal  Spheric Aberration) as follows: 
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If the focal length, f, is much larger than the LSA, an expression for TSA (Transverse Spheric 

Aberration) corresponding to the diameter of the focal spot can be found as follows 

i

h
TSA LSA

d
                                                                                           (4) 

From Eqs. (1) to (4), we have some remarks:  

i) The LSA will be only used to evaluate the point object, but not the light beams;  
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ii) The relation between the distances of the object, image and focal length obeys the following lens 

equation [10]: 

       0

1 1 1

id d f
 

     ;                                                                                     (5) 

This relation shows that the LSA is almost neglected. 

iii) The relation between radius of curvature and focal length is satisfied the lensmaker’s equation: 
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From Eq. (6), the focal length may be calculated from the given radius of curvature.  

iv) It is not used to evaluate the influence of the incident angle and radial distance of the object on 

the SA, that means, Eq.(3) is used to evaluate for  outermost ray;  

v) The height of the object influences not on the SA (Spheric Aberration), that means, the SA is 

evaluated for all of objects in front of lens.  

In other word, Eq. (3) may be used to calculate the SA of the designed optical system, only, but not 

used to evaluated or reduce the SA of the designing optical system. From five mentions above, it is 

necessary to modify Eq. (3) to the more flexible equation, which depends on four given parameters: 

radiuses of curvature 1R , 2R  index n and object’s distance id (or od ) and h . However, the modified 

equation will not used to evaluate the influence of the incident angle and radial distance of the object. 

There is a main question that, Eq.(3) is introduced using the paraxial approximation, i.e., the lens 

equation Eq. (5) is always satisfied. Consequence, the SA is neglected for all of light paraxial rays. This 

mention will be proved following by using rays transfer matrix.  

Using the ray transfer matrix [2], and basing on the scheme in Fig.1a, we introduce the output-input 

relation of the radial distances and incident angles of the light rays:    
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The TSA is evaluated by difference between heights ih  and OAh , which is marked by the ray travels 

through OA (Optical Axis), given as: 
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 . An expression for TSA is then found as folows: 
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Because the lens equation (5) is always satified, this leads to , 0 0 / 0i id d d d f   , and TSA=0.  

So, to evaluate the SA of the lens, we use the ray transfer matrix with different approach. Firstly, we 

consider a thin lens as the series of  individual optical systems, in which the medium is sandwitched 
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between two curvature surfaces (see Fig.1b).  From Fig.1b, the thickness of the lens at radial distance 

ch will be given as following: 

    1
1 22

1/ 2 1/ 2c c cd h H h R R                                                                  (11) 

Then, the RTM (Ray Transfer Matrix) for light rays traveling through radial distance, 
ch described 

in Fig.1b will be expressessed as: 
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where, atan
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The SA is calculated from the difference between the image’s heights marked by the rays traveling 

through 0ch  and 0ch   (two ray paths in Fig.1b).  From Eq. (13), the height, OAh of the image marked 

by the ray traveling through OA is given by: 
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Using Eqs. (11) and (13)-(15), we have carried out numerical calculations for TSA with different 

radius and different values of the entrance pupil ch and then have compared the obtained result with 

that received from Eq. (3). 

3. Simulation Results and Discussions 

We consider the light rays traveling through an optical system set-up with following parameters: 

 1 200 cmR ,  2 100 cm R ,  4 cmH , 1.54n  ,  0 0.5 cmh ,    0 0 4 cm d . 

Using these parameters for Eqs. (3) and (15), the transverse SA for the paraxial approximation and Ray 

transfer matrix are numerically calculated and presented in Fig. 2 and Fig. 3, respectively. 

We see that the TSA for the paraxial approximation is very small, meanwhile, for the ray transfer 

matrix is large. The attitude of the TSA’s curve changes from left to right. That mean, the TSA of rays 

under and upper the optical axis is different. To investigate in detail, the TSA observed for the object 

close to the front surface of the thin lens, ( 0 0.5d cm ) is presented in Fig. 4 for two cases of the 

orientation of the object. It is clear that, in the left the TSA of both cases are similar, in opposite, almost 

different in the right. It means, the TSA of both cases can be accepted for the rays laying in the same 

side of the optical axis.           
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Figure 2 TSA using PA with different distance 

values of object: 1 cm (magenta), 2 cm (red),  

3 cm (blue), 4 cm (black). 

Figure 3. TSA using RTM with different distance 

values of object: 1 cm (magenta), 2 cm (red),  

3 cm (blue), 4 cm (black). 

  

Figure 4. TSA using PA (blue) and RTM with 

0 0.5h cm (magenta) and 
0 0.5 h cm (red). 

Figure 5. TSA using PA (black) and RTM with 

different object’s heigh: 0.5 cm (green), 0.4 cm (blue), 

0.3 cm (red), 0.2 cm (magenta). 

We are interesting on the influence of the heigh of object on the TSA. Fig. 5 are results obtained by 

changing the heigh of object. It shows us, for the paraxial approximation, the TSA depends not on the 

heigh of object, at that time, for the rays transfer matrix it reduces if the heigh increases.  

From all of obtained results, we can conclude that, the TSA given in Eq.(3) could be used for the 

paraxial rays travers through thin lens, only, but not for the nonparaxial rays. To correct the TSA of the 

nonparaxial rays it is necessary to use the rays transfer matrix. Moreover, Eq.(3) will not used to evaluate 

the TSA of the objective, which has wide entrance pupil, to collect light rays from far ways target. To 

avoid this intricacy, it is necessary to use different method, for example, to use standard formula of the 

aspheric lens [7] or the rays transfer matrix proposed above. This method satisfies to correct the spheric 

aberration not only of the wide entrance pupil objective, but also of the wide light beam.     
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4. Conclussion 

We have proposed to use the rays transfer matrix to evaluate the spheric aberration of the thin len. 

The numerically calculated results show that to use the rays transfer matrix can evaluate the spheric 

abarration of the paraxial rays, only, but nonparaxial rays. The obtained results also give us an 

opportunity to use the rays transfer matrix to correct the spheric aberration of the light beam passing 

through wide entrance                                      
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