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Abstract: In this work, we have used multilayer neural networks to solve high-dimensional dynamic 

programming problems. We propose a deep learning algorithm to efficiently compute the overall 

solution for this class of problems. Importantly, our method does not rely on integral approximation 

but instead on derivative approximation. We evaluate the effectiveness of the proposed method 

through the standard neoclassical growth model. 
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1. Introduction* 

Artificial intelligence (AI) has notable applications such as image and voice recognition, computer 

vision support, and autonomous driving as shown in [1]. At the same time, there are many interesting 

problems that computational economists have not been able to solve, including heterogeneous agent 

models with large dimensions, large-scale central bank models, circular models' life and complex 

nonlinear estimation procedures, among many other problems. We specifically introduce an 

econometric-style deep learning (DL) approach to solve dynamic economic models by reformulating 

them as nonlinear regression equations via deep learning neural networks. 

Authors of [2] showed that solving the multidimensional dynamic programming problems is 

extremely difficult due to the huge amount of the computation. As the number of states in a dynamic 
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programming problem increases linearly, the computational burden increases exponentially, both in the 

number of operations to be performed and in memory requirements. Although much progress has been 

made with new approaches such as sparse grids over the past decade [3], solving dynamic programming 

problems with more than 30 state variables and karma is still a challenge. 

There are many methods for solving dynamic economic models on their ergodic sets approximated 

through stochastic simulation, such as indirect inference procedures for lifetime reward maximization, 

algorithms parameterization expectation (PEA) of Haan and Marcet [4] to minimize the Euler equation 

residual and the value iteration method of Maliar and Maliar [5] to minimize the Bellman equation 

residual. There are also methods where unsupervised learning is used, aiming to refine simulation points 

and identify ergodic sets with irregular shapes. In particular, Judd et al. [6] used clustering of simulated 

points, Maliar and Maliar [7] combined simulated points in epsilon-distinguishable sets. In contrast, 

Jirniy and Lepetyuk [8] showed a notable early application of reinforcement learning to solve the Krusell 

and Smith model [9]. 

Early applications of neural networks date back to Duffy and McNelis [10] and more recent 

applications include Duarte [11] Fernández-Villaverde et al., [12]; Lepetyuk et al., [13]; Villa and 

Valaitis [14]. In these works, neural networks for interpolation instead of polynomial functions were 

used. There is also a work of Azinovic et al. [15] where the authors used related Euler equation method 

to solve the problem of large-scale multi-generation dynamic economic modeling. They used deep 

neural networks and random grid points but focuses only on the Euler equation residual minimization 

method while we present a unified approach that also is applied to lifetime rewards and Hamilton - 

Jacobi - Bellman operator. 

In this work, a deep learning algorithm is used to solve the difficulty of dimensionality and provide 

an effective overall solution to high-dimensional dynamic programming problems. Our approach builds 

four deep neural networks for estimation: the value function of the problem, the policy function, and the 

associated Karush-Kuhn-Tucker multipliers for equation and inequality constraints. Similarly, one can 

think of these four deep neural networks as just one big deep neural network with multiple outputs. 

However, presenting the algorithm in terms of four separate networks simplifies the presentation. 

We apply two deep neural networks to the Hamilton-Jacobi-Bellman (HJB) equation to define the 

dynamic programming problem. Then, construct the loss function by adding the HJB loss function, 

policy loss function, and constraint loss functions. We train our neural networks by minimizing the loss 

criterion via mini-batch gradient descent on points drawn from the ergodic distribution of state vectors. 

Among all the different neural network architectures, we use deep neural networks because they 

have been proven to work surprisingly well in many contexts. We demonstrate our algorithm in solving 

the standard neoclassical growth model using conventional calibration. Computationally, this is a simple 

problem, but it provides us with a sharp testbed to show how our method works and evaluate its 

accuracy. 

After Introduction, the paper is organized as follows.  Section 2 introduces the problems to be solved, 

Section 3 presents our deep learning algorithm. Section 4 introduces our application to solving the 

neoclassical growth model. Finally, conclusions are given in Part 5. 

2. Math Problem 

Our goal is to solve the recursive continuous-time HJB equation: 

 
1

( ) max r(x, ) + ( ) ( , ) ( ( )) ( ) ( )
2

T
x xV x V x f x tr x V x x


    

 
    

 
    (1) 
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satisfying the following inequality constraints and equations: 

( , ) 0, ( , ) 0G x H x                                                                         (2) 

where V: 
NR R  is a value function that depends on the state vector 

Nx R ,   NV x R  is the 

gradient of V, and   NxN
xV x R  is the Hesian matrix of V. 

In problem (1),  denote the discount rate, : NxMr R R  is a function that returns an immediate 

reward depending on the state and control vector 
MR . The state vector follows the process 

: NxM Nf R R  and standard deviation : N NR R  . The problem is constrained by constraint functions 

1: LMG R R and 2: LMH R R  where 1 2,L L R are the number of inequality and equality constraints, 

respectively. We denote by : N MR R  policy function, which is the optimal control vector for each state. 

We are interested in solving problem (1) when N is large, that is, we are solving a multidimensional 

problem. It is well known that, in this case, problem (1) suffers from an acute loss of dimensionality. 

Grid-based methods quickly become unfeasible because the number of required grid points increases 

exponentially with N for a given accuracy. Local solution methods such as linearization or higher-order 

polynomial expansion are not suitable for problems with unusual behavior like kinks or other strong 

nonlinearities. On the contrary, using algorithm, one can solve both challenges well: globally 

approximate solutions to high-dimensional problems. 

3. Algorithm 

Our approach to solving problem (1) is built on the idea of deep learning. We use a neural network 

as a global nonlinear approximator for both the value and policy functions. We define a loss criterion, 

including HJB loss and first-order condition (FOC) loss. We then train the neural networks (i.e. update 

the weights in the network) by selecting points in the state space from their ergodic distribution and 

minimizing their loss function, using the method gradually reduces the gradient until convergence.  

We first define neural networks  

 

and  

  2; : LNx   % ¡ ¡
 

These four neural networks are parameterized according to weight vectors , ,V     and 
 to 

approximate: 

i) value function V(x); 

ii) policy function, and Karush-Kuhn-Tucker (KKT) multipliers; 

      iii)  ; 

      iv)  . 

To simplify notation, we include all the weights of the neural network in a matrix 

    , , ,V         

One can think of neural networks as any parameterized function approximator.  

      1; : , ; : , ; : LV N N M NV x x R x       % %¡ ¡ ¡ ¡ ¡
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Second, we define the loss function, which consists of three components: HJB loss, policy function 

loss, and constraint loss. For any point in the state space 
Nx ¡ , the HJB error is defined as the 

difference between the right and left sides of the HJB when we replace the exact values and policy 

functions with approximations of them: 

                 
1

er ; , ; ; , ; ; ;
2

TV V V
HJB x xr x r x s V x f x x tr x V x x V x                

 
% % %% %

 

Similarly, the policy function loss is defined as the difference of FOC from zero when we substitute 

the approximate values into the policy functions: 

 
  

    

         

, ;
err ; , ; ;

, ; ; , ; ;

T
V

x

T

r x x
x D f x x V x

D G x x x D H x x x





 

   

 






   

 
      



    

%
%%

%% %%
 

where 1 2, ,L xM L xMD G D H  ¡ ¡  and 
NxMD f ¡  are the submatrices of the Jacobian matrices of G, 

H and f containing the derivatives with respect to α, respectively. 

Finally, obvious losses include: 

          
1 2

err ; ax 0, , ; ;    err ; , ;PF PFx m G x x x H x x       % %
 

We combine these losses using the squared loss as the loss function: 

         
1 2

2 22 2

2 2 2 2
; er ; er ; er ; er ;HJB PF PFL x r x r x r x r x                                (3)  

We train the neural network by minimizing the above loss function through gradient descent on 

points drawn from the ergodic distribution of state vectors. 

Efficient implementation of this final step is the key to the success of our algorithm. We start by 

initializing the neural network weights. Then we perform K learning steps called episodes, where K can 

be chosen in many different ways. For each episode, we simulate from the state space its ergodic 

distribution. Computationally, this is very expensive when a closed-form expression for the ergodic 

distribution is available and is still relatively cheap if the ergodic distribution has to be simulated. We 

then randomly divide this sample into B mini-lots of size S. For each mini-batch, we determine the mini-

batch loss by averaging the loss function over the batch. Finally, we perform mini-batch gradient descent 

for all network weights, with k  as the learning rate in the kth episode. 

Algorithm 1: Deep learning algorithm for HJB  

Parameterization of value and policy functions via neural networks , , ,V  %%% and ;% 

Determine the loss function L as in (3); 

Initialize weights for neural networks  ; 

for k = 1, …, K do 

Simulation I gathers sample points  
1

I

i i
x


from an ergodic distribution   V x  

Randomly divide these points into B mini-lots of size S:    , 1 1

;
BS

s b s b

x



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Use the previous weight as the starting weight for the new step: ,1 ;k k   

for b = 1, …, B do 

        Determine the average loss function:     , , , ,11

1
; ; ;

S S

s b k b s b k bss
L x L x

S 
    

       Train   
,

, 1 , , ,1
: ; ;V

k b

SV V
k b k b k s b k bs

V L x  
    %  

       Train   
,

, 1 , , ,1
: ; ;

k b

S

k b k b k s b k bs
L x

    
    %  

       Train   
,

, 1 , , ,1
: ; ;

k b

S

k b k b k s b k bs
L x

    
    %  

      Train   
,

, 1 , , ,1
: ; ;

k b

S

k b k b k s b k bs
L x

    
    %  

end 

Update weights: 1 , 1;k k B    

end 

4. Application 

4.1. The Neoclassical Growth Model 

In this section we consider a standard model, the neoclassical continuous growth model. This 

problem has a closed-form solution for the policy functions, allowing us to focus on the approximate 

analysis of the value function. We can then derive the policy function from this method and compare it 

with the results of the next step in which we directly approximate the policy functions using a neural 

network. 

Let c(t) be the consumption function at time t of a household and k(t) be the capital at time t of a 

household.  

We denote the derivative of capital k with respect to t by 
': ( 1) ( )t

dk
k k k t k t

dt
    &  and let f(k) 

be the production or output function of the household, u(c(t)) be the utility function of the household. 

The problem is to find c(t) so that the objective function   
0

te u c t dt




  reaches the maximum 

value, satisfy the following constraints: 

0

( )

0 ( ) ( ( ))

(0)

k f k k c

c t f k t

k k

  

 



&

 
To solve this problem, we create the Hamilton function: 

   . ( ) .[ ( ) . ]tH e u c f k k c       
We have the first-order conditions of the problem: 
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0

( )

H

c
H

k

k f k k c






 




 


   



&

&

 

We can transform: 

'( ( )) 0

'( )

( )

te u c t

f k

k f k k c

 

  



  


  


  

&

&
 

deduce from here: 

 ' ( )  te u c t                                                                   (4) 

'( )              f k




 

&
                                                             (5) 

( )                  k f k k c  &                                                     (6) 

From (4) we deduce:  

 ( ) '( ) ''( ) ''( ) '( )t t te u c e u c c e u c c u c          & & &
 

Combining with (5) we obtain: 

''( )
'( )

'( )

u c c
f k

u c


 


   

& &
 

and infer:  

  
'( )

[ '( )].
''( )

u c
c f k

u c
   &       (7) 

Consider a utility function of the form: 

1

1

c
u










and production function: ( ) .f k A k  

then 

1 1(1 )
' ; '' . , '( ) . .

1

c
u c u c f k A k


  

 


   
    

  

Substituting (6) and (7) we get: 

 
1

. .

. ( ) . ( )

A k tc

c

k A k t k c t


  





  





  

&

&
 



V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17 

 

7 

Thus, we can obtain a closed solution for the neoclassical growth model. We now consider the 

solution approximated by the neural network. 

The model has a basic form, with a single agent deciding whether to save in capital or spend. The 

HJB equation has the following form: 

         max ' *
c

V k U c V k F k k c                       (8) 

Since the model is only used to demonstrate the algorithm, we use a standard calibration for all 

parameters in the model. Utility is 

1

1

c
u










 with 2  . The discount rate  is set to 0.06. The 

production function has the form ( ) .f k A k . Here, total factor productivity A is set to 0.5 and α to 

0.36. Finally, depreciation is set to 0.05, which gives an annual depreciation rate of 5%. We approximate 

the value function  V k  with a neural network  ; VV k %  and consumtion function  c k  with a neural 

network  ; .CC k %  HJB loss is defined as: 

    
 

   
;

; ; . * ; .

V

V C C
HJB

V k
err V k U C k F k k C k

k
 

 
        
 

%
% %%

 

and first-order condition error: 

 
 

 
1 ;

' ; .C
C

V k
err U C k

k

   
   

 

%
%

 

The total error that needs to be minimized is total HJB Cerr err err  . 

The results are shown in Figs. 1, 2 and 3 below. In particular there is a comparison of results from 

our neural network approximation with results obtained via a traditional finite element method. Both the 

value function and the policy function are almost identical to the reference solution, demonstrating the 

high accuracy of our solution method.  

 

Figure 1. Total loss function. 
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Figure 2. Value function. 

 

Figure 3. Consumption function (policy function). 

4.2. The Overlapping Multigeneration Model 

In this section, we consider an overlapping multigeneration model with stochastic output. In this 

model, the dimensionality of the state space increases linearly with the number of age groups. Therefore, 

a multidimensional state space arises naturally and makes economic sense. To demonstrate the 

applicability of our method in a context with multiple assets and sometimes binding constraints we 

include borrowing constraints and capital adjustment costs, making it illiquid. asset and allow dealers 

to trade one-period liquid bonds with collateral constraints. Thus, beyond the computational challenges, 

these extensions allow the model to connect with the literature highlighting the role of different liquid 

assets in cross-consumption responses to aggregate shock. 

The model we are considering has discrete time t = 0,1,... In each period, discrete exogenous shock 

Z can occur. We assume that the shocks follow a first-order Markov process with a finite support set 

  1,2,...,Z  with a transition probability matrix  . We denote the aggregate shock occurring in 

period t by zt and the history of aggregate shocks up to period t by zt = (z0,. ..,zt ). 

We study a model in which agents live for N time periods. There is no certainty about longevity and 

there is a representative household for each cohort. At each node zt, a representative household is born. 

Households distinguish themselves only by birth node 
0tz . At time   0 0,..., 1t t t N   , we define 

the birth household at the time of birth by its current age s = t – t0 + 1. For example, the consumption 
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level of a household with age s at time t is denoted by cs(zt ). We omit the explicit dependency on zt 

when there is no risk of confusion and write 
t
sc  . In each period, living agents receive a strictly active 

labor supply, which depends only on the agent's age. The agent's labor source at age s is denoted by ls. 

The prices of consumer goods are normalized to one. Furthermore, we assume that households supply 

their labor inelastically to the market wage   t
tw z w . At each node zt, the living agents maximize 

their remaining time-decomposable discounted expected utility given by: 

 








 
 

0

N s
i s i

t t i
i

E u c                                  

                 (9) 

where  1 
is the discount factor. Furthermore, we assume that the utility function 

 :u
 
is 

smooth, strictly monotonically increasing, strictly concave and satisfies the Inada condition:
  


'

0
lim
c

u c  . 

There are two ways for households to shift consumption over time. First, households can save capital 

at risk, which is subject to adjustment costs and is therefore illiquid. The illiquid savings of household 

s in period t is denoted by   s t s
ta z a . The savings will become capital in the next period: 

  
 

    1
1 ,      t, s 1,2,..., 1s s

t ta k N
             (10) 

where 
s
tk  

denotes the amount of illiquid capital of age group s at the beginning of holding period t. 

Households sell their capital to the firm at the market price rt. Capital gains will accumulate in the 

household's illiquid account. The amount deposited into a household's illiquid account in period t is 

calculated by: 

  
  s s s

t t t ta k r
     (11) 

Illiquid capital due to convex adjustment costs is given by 

  
 

2

2
s
t




      (12)
 

where   is the level of capital adjustment costs. Furthermore, we impose an exogenous borrowing limit 

a , which can be set to zero when borrowing is prohibited: 

  
s

ta a           (13) 

Besides saving illiquid, risky capital, households can buy term bonds at market price pt. Bonds have 

a net supply of zero. A bond that promises a payoff of 1 in the next period. Let 
s
tb  

be the amount of 

bonds that household s holds in period t and 
s
td  

be the number of bonds that household s buys in period 

t, such that 

  


 1
1

s s
t tb d

      (14) 

Bonds are liquid in the sense that there are no costs associated with adjusting bond holdings. 

However, the sale of bonds is subject to collateral constraints. To model collateral constraints, we use 

  
0s s

t td a  
     (15) 

where κ is an exogenous constant and only capital act as collateral. In case the household selling the 

bond is unable to pay in the next period, the corresponding capital value will be transferred to the 

household buying the bond; otherwise there will be no punishment. Therefore, households default only 
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if the value of the collateral is less than the promised bond amount. The actual payment of the bond is 

then given by 

 min ,1tr
     (16) 

In the numerical tests below, we have chosen κ high enough that the bond is truly a risk-free asset 

and default does not occur in equilibrium. Therefore,  min ,1 1tr  , which we use in the following 

for clearer notation. Therefore, the budget constraint of household s in period t is given by 

 
2

2
s s s s s s s
t t t t t t t t tc p d a l b r k


      

                           (17) 

Finally, agents are born and die without any properties - ie 

   1 1 0; 0N N
t t t tk b a d

 
There is a single representative firm with a Cobb–Douglas production function in which total factor 

productivity (TFP) and depreciation depend only on exogenous shocks. Each period, after a shock 

occurs, the firm purchases capital and hires labor to maximize profits, accepting the given price. The 

production function is given by 

       1, , 1t t t t t t t tf K L z K L K
                                             (18) 

1where Kt is the total amount of capital purchased, Lt is the total number of workers hired, α is the capital 

share in production, ηt represents stochastic TFP, and δt represents the stochastic depreciation rate. 

Capital prices (rt) and wages (wt), as well as bond prices (pt), are determined by market clearing in 

competitive spot markets for consumption, capital, labor, and bonds. promissory note. 

Approximating the equilibrium point with deep neural networks (DNN) 

To describe how to solve the model presented in the above section using DNN, we proceed in two 

steps. Firstly, we define the functional rational expectations equilibrium for the economy presented. 

Secondly, describes how to use a deep neural network to search for an approximate recursive equilibrium 

using the projection method. 

Our proposed algorithm aims to approximate a recursive equilibrium: a function that maps the state of 

the economy to options and prices, consistent with equilibrium conditions. We define the function-

dependent equilibrium is a system of equilibrium functions 

  

 
      

     
4 1 12, , , , : NT T T T T N

a d p  

where:
 

-   2 1: N N
a : 

is the capital investment function 

- 


 2 1: N N

: 
are the KKT factor functions for ceiling constraints 

-   2 1: N N
d : 

is the bond investment function 

      -


 2 1: N N

: are the KKT factorization functions for parallel constraints 

      -  2 1: N N
p

: 
is the bond price function 

for all states     
2: , ,

TT T Nx z k b , in which z  is the exogenous shock   1 2, ,...,
T

Nk k k k , is 

the capital holding portfolio   1 2, ,...,
T

Nb b b b along with the bond holding portfolio are endogenous 

states with 1 0k
 
and 1 0b

 
for all i=1,…,N-1: 
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                 ' '

1 1
1 1zi i i i i i

x u c x E r x x u c x x x        
       
 

  (19) 

      0ai i
x x                                                                     (20) 

   0a i
x                                                                      (21) 

   0
i

x                                                                      (22) 

simultaneously: 

         ' '

1p zi i i
x u c x E u c x x   

  
 

                                           (23) 

       0a di i i
x x x                                                                  (24) 

    0a di i
x x  

          
(25) 

   0
i

x                                                                          (26) 

 





1

1

0
N

d i
i

x                                                                   (27) 

where 

   ,0, ,0,
TT T

a dx z x x  
 
 

                                                                (28) 

where z+ is the random shock in the next period and: 

         1: a ii i
x x r x x                                                          (29) 

   

 

 
  

 
 1 1 1

1 1

, , ,
N N

i
K i

i i

r x f x l x x                                                           (30) 

   

 

 
  

 
 1 1 1

1 1

, ,
N N

i
L i

i i

w x f x l x x                                                             (31) 

            
2

1
2

i
i N p di i i i

c x l w x x x x x x


                                           (32) 

 Calculating an approximate value in this model means finding an approximate value for the  

4 • (N − 1) + 1 equilibrium functions such that the above equations are nearly satisfied for all 

exogenous shocks and all the values received by the 2N-dimensional endogenous state. 

Training algorithm. The goal of our solution framework is to estimate the equilibrium functions θ 

with deep neural networks. To do so, we combine four ingredients. In general, the four components are 

given by:  

i) a suitable class of approximate functions;  

ii) the loss function measures the quality of a given approximation at a given state;  

iii) update mechanism to improve the approximation;  

and  

iv) sampling method to select the update state and evaluate the approximate quality. 

Specifically, for our algorithm we chose a deep neural network as the function approximator. The 

loss function is implemented using errors under equilibrium conditions and the neural network 
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parameters are updated using variations of mini-batch gradient descent. To update the parameters of the 

neural network, as well as to evaluate the quality of the approximation, we sample states from a 

simulated path of the economy. 

The combination of these four ingredients allows us  

a) use a large number of states to evaluate the quality of our approximation,  

b) sample states from an approximate ergodic distribution of states in the economy,  

c) handle irregular geometries of the ergodic set of states, and  

d) approximate equilibrium functions have kinks and strong nonlinearity.  

Next, we outline each component separately and then combine them into an algorithm. 

Function approximation. We use densely connected convolutional neural networks as function 

approximators because they incorporate a set of desired properties. Neural networks are universal 

function approximators (Hornik et al., 1989), can resolve discrete localities, have high accuracy, 

nonlinear characteristics, and can handle large amounts of data. multidimensional input data. 

Given hyperparameters      
 1 1

, , .
KK

i ii i
K m and training parameters ρ, neural network  

mapping encoding: 

            2 2 1 1 1 2... ...K K Kx x W W W x b b b  

where   1i im m
iW

 
are the weight matrices and  1im

ib are vectors commonly called bias 

vectors. The vector ρ represents the set of all elements of the weight matrix and bias vector. K is called 

the number of layers of the neural network and mi is the number of nodes in layer i. The nonlinear 

functions σi are called activation functions and are applied element by element to each element of the 

vector:
 

          


 
 11 2, ,....,

i

T

i i i i mx x x x
. 

Therefore, a densely connected feedforward neural network is given by a sequence of matrix vector 

multiplications followed by an activation function. 

Loss function. The goal of our algorithm is to approximate the equilibrium functions θ using a neural 

network. In this section, we will introduce the loss function: an approximate measure of quality at a 

given state of the economy. 

Let ρ denote the set of trainable parameters of the neural network, and let the neural network, with 

the set of parameters ρ, be denoted as Nρ. The neural network maps the state x into approximate 

equilibrium functions: 
    

 
  

4 1 12: :NN x x
 

where 

    
2: , ,

TT T Nx z k b

 and 

             

                 

       

   
   

  
 

 
 1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ, , , ,

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ: ,..., , ,..., , ,..., , ,..., ,

T
T T T T T
a d p

T

N N N N

x x x x x x x

a x a x x x d x d x x x p x
 

The latter is called the training set, which we denote as Dtrain. Given parameters ρ and a set of Dtrain 

states, we define the loss function as the average squared error of all equilibrium conditions is  
trainDl  . 
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Update mechanism. This subsection describes how to use the loss function to optimize the trainable 

parameters ρ. The loss function is determined such that a smaller value corresponds to a lower mean 

squared error under equilibrium conditions. Therefore, parameters are considered “good” if they 

minimize the loss function. Due to the functional structure of deep neural networks, variations of the 

gradient descent method are often used to optimize the parameters ρ. Gradient descent updates the 

parameters stepwise in the direction in which the loss function decreases—that is: 

 
  


   




   


,        1,...,train

old
Dnew old learn

k k old
k

l
k length  

The parameter   0learn
that governs how much the parameters are adjusted with each gradient 

descent step is called the learning rate.  

Sample. As described above, the neural network parameters ρ are chosen to minimize the loss 

function. The training set generation (Dtrain) procedure used to achieve a good approximation of the 

equilibrium functions for the set of ergodic states of the economy. 

 Since we want to use approximate equilibrium functions to simulate the modeled economy, they 

must provide a good approximation of the states that will be visited during the simulation. Therefore, 

we chose to train the neural network in the states visited on the simulated path of the economy. To do 

so, we start with an arbitrary, economically feasible starting state and randomly initialized neural 

network parameters ρ. We then simulate the subsequent T − 1 periods based on the approximate 

equilibrium functions provided by the neural network. Since our method directly approximates the 

equilibrium functions, simulating the evolution of the economy is computationally cheap. The resulting 

T simulated states of the economy make up our data set  0 0 0
1 ,...,train TD x x . We call the set T of Dtrain 

simulation periods an episode. We split this input data into mini-batches—smaller subsets of size m with 

random membership—and perform gradient descent steps on each subset. Completion of an epoch is 

defined as when the entire Dtrain data set is passed through the algorithm. Each epoch, the neural network 

parameters are updated T/m times. Next, we set 1 0
1 Tx x

 
and use the update parameters of the neural 

network to simulate the next T − 1 periods, create a new training set  1 1 1
1 ,...,train TD x x , and repeat the 

process. Since we can generate large amounts of training data in this setting, overfitting is not a major 

concern. As the neural network learns better parameter values, the simulated states become better 

representations of the set of ergodic states of the economy. 

Since the loss function only requires evaluating a set of possible states of the economy, our algorithm 

does not require us to obtain Dtrain training data from the simulation. If the ergodic set of states of the 

economy is known, if one wants to approximate equilibrium functions over a larger set, or if one wants 

to improve the quality of the approximation in specific regions of the state space, then you can choose 

the Dtrain training set accordingly. 

Algorithm. Now, we summarize how to combine the components described in the previous sections 

to calculate approximate recursive equilibria with DNN. 

Starting from a randomly initialized neural network, our algorithm iterates between generating a 

new Dtrain training set by simulating the desired amount of states and improving the neural network 

parameters ρ by how to perform a variation of gradient descent steps on the training set. The error on a 

new set of simulated states is the out-of-sample error and can be used to evaluate the out-of-sample 

quality of the approximation. Because we use neural networks to directly estimate the equilibrium 

functions, simulating a newly computed set of points is cheap. Therefore, we can set the number of 

epochs to train on each set of simulation points to one. Therefore, each simulation state is used for only 
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a single gradient descent step, to protect our algorithm from overfitting. Algorithm 1 provides the 

pseudocode: 

Algorithm 2 

Data: 

T (length of 1 episode), Nepochs (Number of epochs per episode), Niter (Maximum number of 

iterations),  

 mean max,  (necessary threshold for average error and maximum error) 

 mean max,  (starting value for average current error and maximum current error) 

  0
 (initialization parameters for neural network), (initial value of state), i=0 (counter variable), 

 learn
 (learning speed) 

Result: 

 success (boolean variable if thresholds are reached) 

  final
 (final parameters of the neural network) 

 While               max maxiter mean meani N do 

   1 2, ,...,i i i i
train TD x x x  (create a new training episode) 

   
 1

1
i i

Tx x  (create a new starting state of an episode) 

        
 

 
   

 
max ... mean ...1

max max , maxi i
train train

x xx D x D
e e

T
 (error update) 

for   1,.., epochsj N do 

  (learn Nepochs on data) 

                  for   1,.., ( )k length  

                        
 

  





 


1
i
train

i

Di i learn
k k i

k

l

 
                        (perform gradient reduction through updating neural network parameters) 

          end 

        end 

 1i i  (updated episode number) 

end 

If  iteri N  then return (   , final isuccess False  ) 

otherwise return (   , final isuccess True  ) 

Neural network hyperparameters. We use a deep neural network with two hidden layers to solve 

our benchmark model. Heuristically, we found it useful to augment the state of the economy with 

redundant information before passing it to the neural network. The input layer consists of 8 + 4 • A input 

nodes, with A = 6 creating 32 input nodes. 

After the input layer, the neural network has two hidden layers with 100 hidden nodes activated at 

the first layer, 50 hidden nodes at the second layer. The output layer includes (6 − 1) = 5 nodes, activated 

using softplus functions to ensure that non-negative constraints are met. 
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Figure 4. Neural network diagram to approximate the solution of the optimization problem. 

A schematic illustration of the neural network architecture is provided in Fig. 4 for clarity, without 

including redundant information. To avoid excessive complexity, we keep the number of epochs per 

episode, 
epochN , small. The learning rate must be chosen sufficiently small, and the mini-batch size large 

enough, to ensure that the mini-batch gradient descent steps are not overly noisy. On a heuristic note, 

we found it beneficial to reduce the learning rate and increase the mini-batch size toward the end of the 

training process to fine-tune the neural network parameters. 

  

Figure 5. Loss function during training. 
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The Figure 5 below shows the loss function behavior over 100 training episodes. The vertical axis 

represents the logarithm (base 10) of the loss, indicating a scale for very small values. The horizontal 

axis represents the training episodes. The loss decreases steadily as training progresses, indicating that 

the model is learning effectively. While there are minor fluctuations in the loss values, particularly in 

the middle and later stages, the general trend remains downward. By the end of 100 episodes, the loss 

appears to stabilize around −2.2 (log scale), suggesting that the model is nearing convergence. 

We have implemented the algorithm and obtained the results of the solution by deep learning method 

compared with the analytical method, showing that the results are very similar as shown in the figure below: 

 

Figure 6. Relationship between capital k and assets a in the 5th generation according to two solution methods: 

neural network approximation and analysis. 

Figure 6 compares the performance of a neural network model (red dots) with an analytic solution 

(hollow circles) for Agent 5. The k-axis represents the independent variable k, and the a-axis represents 

the dependent variable a. The neural network predictions (red dots) closely align with the analytic 

solutions (hollow circles) across different clusters, indicating that the neural network is effectively 

approximating the analytic solution. 

 

5. Conclusion 

In summary, we have used multilayer neural networks to solve optimization problems and 

specifically applied it to an optimization problem in neoclassical economic theory, including 

multigenerational optimization models. 

Our algorithm is based on HJB to process the value function and uses boundary conditions and 

additional constraints to make the loss function converge. This method is feasible because the 

computation of derivatives in these loss functions is efficiently performed by the implementation of the 

neural network. 

We also apply our algorithm to solve the standard neoclassical growth model and compare our 

results with those of a reference method using a finite difference scheme. This allows us to test the 

accuracy of our method and show that our policy function approximation performs well. 
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In addition, we extend this model to include multi-generational optimization problems, 

demonstrating the applicability of the method in contexts with multiple assets and sometimes binding 

constraints. The obtained results show that the neural network can approximate the policy and value 

functions in these models well. 
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