
VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

 1

Original Article

Using Deep Learning Neural Networks

to Solve Optimization Problems in Economy

Vu Tuan Anh1,*, Le Thi Thuy Giang2, Do Thi Loan2, Pham Van Khanh2

1Department of Investment Promotion, Vietnam National University, Hanoi,

VNU Town in Hoa Lac, Thach That, Hanoi, Vietnam
2Institue of Information Technology, Vietnam Academy of Science and Technology;

A3 Building, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

Received 18 June 2024

Revised 31 August 2024; Accepted 10 December 2024

Abstract: In this work, we have used multilayer neural networks to solve high-dimensional dynamic

programming problems. We propose a deep learning algorithm to efficiently compute the overall

solution for this class of problems. Importantly, our method does not rely on integral approximation

but instead on derivative approximation. We evaluate the effectiveness of the proposed method

through the standard neoclassical growth model.

Keywords: Optimization, HJB equation, machine learning, neural network.

1. Introduction*

Artificial intelligence (AI) has notable applications such as image and voice recognition, computer

vision support, and autonomous driving as shown in [1]. At the same time, there are many interesting

problems that computational economists have not been able to solve, including heterogeneous agent

models with large dimensions, large-scale central bank models, circular models' life and complex

nonlinear estimation procedures, among many other problems. We specifically introduce an

econometric-style deep learning (DL) approach to solve dynamic economic models by reformulating

them as nonlinear regression equations via deep learning neural networks.

Authors of [2] showed that solving the multidimensional dynamic programming problems is

extremely difficult due to the huge amount of the computation. As the number of states in a dynamic

* Corresponding author.
 E-mail address: vtanhhsv@gmail.com

 https//doi.org/10.25073/2588-1124/vnumap.4949

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

2

programming problem increases linearly, the computational burden increases exponentially, both in the

number of operations to be performed and in memory requirements. Although much progress has been

made with new approaches such as sparse grids over the past decade [3], solving dynamic programming

problems with more than 30 state variables and karma is still a challenge.

There are many methods for solving dynamic economic models on their ergodic sets approximated

through stochastic simulation, such as indirect inference procedures for lifetime reward maximization,

algorithms parameterization expectation (PEA) of Haan and Marcet [4] to minimize the Euler equation

residual and the value iteration method of Maliar and Maliar [5] to minimize the Bellman equation

residual. There are also methods where unsupervised learning is used, aiming to refine simulation points

and identify ergodic sets with irregular shapes. In particular, Judd et al. [6] used clustering of simulated

points, Maliar and Maliar [7] combined simulated points in epsilon-distinguishable sets. In contrast,

Jirniy and Lepetyuk [8] showed a notable early application of reinforcement learning to solve the Krusell

and Smith model [9].

Early applications of neural networks date back to Duffy and McNelis [10] and more recent

applications include Duarte [11] Fernández-Villaverde et al., [12]; Lepetyuk et al., [13]; Villa and

Valaitis [14]. In these works, neural networks for interpolation instead of polynomial functions were

used. There is also a work of Azinovic et al. [15] where the authors used related Euler equation method

to solve the problem of large-scale multi-generation dynamic economic modeling. They used deep

neural networks and random grid points but focuses only on the Euler equation residual minimization

method while we present a unified approach that also is applied to lifetime rewards and Hamilton -

Jacobi - Bellman operator.

In this work, a deep learning algorithm is used to solve the difficulty of dimensionality and provide

an effective overall solution to high-dimensional dynamic programming problems. Our approach builds

four deep neural networks for estimation: the value function of the problem, the policy function, and the

associated Karush-Kuhn-Tucker multipliers for equation and inequality constraints. Similarly, one can

think of these four deep neural networks as just one big deep neural network with multiple outputs.

However, presenting the algorithm in terms of four separate networks simplifies the presentation.

We apply two deep neural networks to the Hamilton-Jacobi-Bellman (HJB) equation to define the

dynamic programming problem. Then, construct the loss function by adding the HJB loss function,

policy loss function, and constraint loss functions. We train our neural networks by minimizing the loss

criterion via mini-batch gradient descent on points drawn from the ergodic distribution of state vectors.

Among all the different neural network architectures, we use deep neural networks because they

have been proven to work surprisingly well in many contexts. We demonstrate our algorithm in solving

the standard neoclassical growth model using conventional calibration. Computationally, this is a simple

problem, but it provides us with a sharp testbed to show how our method works and evaluate its

accuracy.

After Introduction, the paper is organized as follows. Section 2 introduces the problems to be solved,

Section 3 presents our deep learning algorithm. Section 4 introduces our application to solving the

neoclassical growth model. Finally, conclusions are given in Part 5.

2. Math Problem

Our goal is to solve the recursive continuous-time HJB equation:

1

() max r(x,) + () (,) (()) () ()
2

T
x xV x V x f x tr x V x x

 (1)

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

3

satisfying the following inequality constraints and equations:

(,) 0, (,) 0G x H x (2)

where V:
NR R is a value function that depends on the state vector

Nx R , NV x R is the

gradient of V, and NxN
xV x R is the Hesian matrix of V.

In problem (1), denote the discount rate, : NxMr R R is a function that returns an immediate

reward depending on the state and control vector
MR . The state vector follows the process

: NxM Nf R R and standard deviation : N NR R . The problem is constrained by constraint functions

1: LMG R R and 2: LMH R R where 1 2,L L R are the number of inequality and equality constraints,

respectively. We denote by : N MR R policy function, which is the optimal control vector for each state.

We are interested in solving problem (1) when N is large, that is, we are solving a multidimensional

problem. It is well known that, in this case, problem (1) suffers from an acute loss of dimensionality.

Grid-based methods quickly become unfeasible because the number of required grid points increases

exponentially with N for a given accuracy. Local solution methods such as linearization or higher-order

polynomial expansion are not suitable for problems with unusual behavior like kinks or other strong

nonlinearities. On the contrary, using algorithm, one can solve both challenges well: globally

approximate solutions to high-dimensional problems.

3. Algorithm

Our approach to solving problem (1) is built on the idea of deep learning. We use a neural network

as a global nonlinear approximator for both the value and policy functions. We define a loss criterion,

including HJB loss and first-order condition (FOC) loss. We then train the neural networks (i.e. update

the weights in the network) by selecting points in the state space from their ergodic distribution and

minimizing their loss function, using the method gradually reduces the gradient until convergence.

We first define neural networks

and

 2; : LNx % ¡ ¡

These four neural networks are parameterized according to weight vectors , ,V and
 to

approximate:

i) value function V(x);

ii) policy function, and Karush-Kuhn-Tucker (KKT) multipliers;

 iii) ;

 iv) .

To simplify notation, we include all the weights of the neural network in a matrix

 , , ,V

One can think of neural networks as any parameterized function approximator.

 1; : , ; : , ; : LV N N M NV x x R x % %¡ ¡ ¡ ¡ ¡

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

4

Second, we define the loss function, which consists of three components: HJB loss, policy function

loss, and constraint loss. For any point in the state space
Nx ¡ , the HJB error is defined as the

difference between the right and left sides of the HJB when we replace the exact values and policy

functions with approximations of them:

1

er ; , ; ; , ; ; ;
2

TV V V
HJB x xr x r x s V x f x x tr x V x x V x

% % %% %

Similarly, the policy function loss is defined as the difference of FOC from zero when we substitute

the approximate values into the policy functions:

, ;
err ; , ; ;

, ; ; , ; ;

T
V

x

T

r x x
x D f x x V x

D G x x x D H x x x

%
%%

%% %%

where 1 2, ,L xM L xMD G D H ¡ ¡ and
NxMD f ¡ are the submatrices of the Jacobian matrices of G,

H and f containing the derivatives with respect to α, respectively.

Finally, obvious losses include:

1 2

err ; ax 0, , ; ; err ; , ;PF PFx m G x x x H x x % %

We combine these losses using the squared loss as the loss function:

1 2

2 22 2

2 2 2 2
; er ; er ; er ; er ;HJB PF PFL x r x r x r x r x (3)

We train the neural network by minimizing the above loss function through gradient descent on

points drawn from the ergodic distribution of state vectors.

Efficient implementation of this final step is the key to the success of our algorithm. We start by

initializing the neural network weights. Then we perform K learning steps called episodes, where K can

be chosen in many different ways. For each episode, we simulate from the state space its ergodic

distribution. Computationally, this is very expensive when a closed-form expression for the ergodic

distribution is available and is still relatively cheap if the ergodic distribution has to be simulated. We

then randomly divide this sample into B mini-lots of size S. For each mini-batch, we determine the mini-

batch loss by averaging the loss function over the batch. Finally, we perform mini-batch gradient descent

for all network weights, with k as the learning rate in the kth episode.

Algorithm 1: Deep learning algorithm for HJB

Parameterization of value and policy functions via neural networks , , ,V %%% and ;%

Determine the loss function L as in (3);

Initialize weights for neural networks ;

for k = 1, …, K do

Simulation I gathers sample points
1

I

i i
x

from an ergodic distribution V x

Randomly divide these points into B mini-lots of size S: , 1 1

;
BS

s b s b

x

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

5

Use the previous weight as the starting weight for the new step: ,1 ;k k

for b = 1, …, B do

 Determine the average loss function: , , , ,11

1
; ; ;

S S

s b k b s b k bss
L x L x

S

 Train
,

, 1 , , ,1
: ; ;V

k b

SV V
k b k b k s b k bs

V L x
 %

 Train
,

, 1 , , ,1
: ; ;

k b

S

k b k b k s b k bs
L x

 %

 Train
,

, 1 , , ,1
: ; ;

k b

S

k b k b k s b k bs
L x

 %

 Train
,

, 1 , , ,1
: ; ;

k b

S

k b k b k s b k bs
L x

 %

end

Update weights: 1 , 1;k k B

end

4. Application

4.1. The Neoclassical Growth Model

In this section we consider a standard model, the neoclassical continuous growth model. This

problem has a closed-form solution for the policy functions, allowing us to focus on the approximate

analysis of the value function. We can then derive the policy function from this method and compare it

with the results of the next step in which we directly approximate the policy functions using a neural

network.

Let c(t) be the consumption function at time t of a household and k(t) be the capital at time t of a

household.

We denote the derivative of capital k with respect to t by
': (1) ()t

dk
k k k t k t

dt
 & and let f(k)

be the production or output function of the household, u(c(t)) be the utility function of the household.

The problem is to find c(t) so that the objective function
0

te u c t dt

 reaches the maximum

value, satisfy the following constraints:

0

()

0 () (())

(0)

k f k k c

c t f k t

k k

&

To solve this problem, we create the Hamilton function:

 . () .[() .]tH e u c f k k c
We have the first-order conditions of the problem:

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

6

0

()

H

c
H

k

k f k k c

&

&

We can transform:

'(()) 0

'()

()

te u c t

f k

k f k k c

&

&

deduce from here:

 ' () te u c t (4)

'() f k

&
 (5)

() k f k k c & (6)

From (4) we deduce:

 () '() ''() ''() '()t t te u c e u c c e u c c u c & & &

Combining with (5) we obtain:

''()
'()

'()

u c c
f k

u c

& &

and infer:

'()

['()].
''()

u c
c f k

u c
 & (7)

Consider a utility function of the form:

1

1

c
u

and production function: () .f k A k

then

1 1(1)
' ; '' . , '() . .

1

c
u c u c f k A k

Substituting (6) and (7) we get:

1

. .

. () . ()

A k tc

c

k A k t k c t

&

&

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

7

Thus, we can obtain a closed solution for the neoclassical growth model. We now consider the

solution approximated by the neural network.

The model has a basic form, with a single agent deciding whether to save in capital or spend. The

HJB equation has the following form:

 max ' *
c

V k U c V k F k k c (8)

Since the model is only used to demonstrate the algorithm, we use a standard calibration for all

parameters in the model. Utility is

1

1

c
u

 with 2 . The discount rate is set to 0.06. The

production function has the form () .f k A k . Here, total factor productivity A is set to 0.5 and α to

0.36. Finally, depreciation is set to 0.05, which gives an annual depreciation rate of 5%. We approximate

the value function V k with a neural network ; VV k % and consumtion function c k with a neural

network ; .CC k % HJB loss is defined as:

;

; ; . * ; .

V

V C C
HJB

V k
err V k U C k F k k C k

k

%
% %%

and first-order condition error:

1 ;

' ; .C
C

V k
err U C k

k

%
%

The total error that needs to be minimized is total HJB Cerr err err .

The results are shown in Figs. 1, 2 and 3 below. In particular there is a comparison of results from

our neural network approximation with results obtained via a traditional finite element method. Both the

value function and the policy function are almost identical to the reference solution, demonstrating the

high accuracy of our solution method.

Figure 1. Total loss function.

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

8

Figure 2. Value function.

Figure 3. Consumption function (policy function).

4.2. The Overlapping Multigeneration Model

In this section, we consider an overlapping multigeneration model with stochastic output. In this

model, the dimensionality of the state space increases linearly with the number of age groups. Therefore,

a multidimensional state space arises naturally and makes economic sense. To demonstrate the

applicability of our method in a context with multiple assets and sometimes binding constraints we

include borrowing constraints and capital adjustment costs, making it illiquid. asset and allow dealers

to trade one-period liquid bonds with collateral constraints. Thus, beyond the computational challenges,

these extensions allow the model to connect with the literature highlighting the role of different liquid

assets in cross-consumption responses to aggregate shock.

The model we are considering has discrete time t = 0,1,... In each period, discrete exogenous shock

Z can occur. We assume that the shocks follow a first-order Markov process with a finite support set

 1,2,...,Z with a transition probability matrix . We denote the aggregate shock occurring in

period t by zt and the history of aggregate shocks up to period t by zt = (z0,. ..,zt).

We study a model in which agents live for N time periods. There is no certainty about longevity and

there is a representative household for each cohort. At each node zt, a representative household is born.

Households distinguish themselves only by birth node
0tz . At time 0 0,..., 1t t t N , we define

the birth household at the time of birth by its current age s = t – t0 + 1. For example, the consumption

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

9

level of a household with age s at time t is denoted by cs(zt). We omit the explicit dependency on zt

when there is no risk of confusion and write
t
sc . In each period, living agents receive a strictly active

labor supply, which depends only on the agent's age. The agent's labor source at age s is denoted by ls.

The prices of consumer goods are normalized to one. Furthermore, we assume that households supply

their labor inelastically to the market wage t
tw z w . At each node zt, the living agents maximize

their remaining time-decomposable discounted expected utility given by:

0

N s
i s i

t t i
i

E u c

 (9)

where 1
is the discount factor. Furthermore, we assume that the utility function

 :u

is

smooth, strictly monotonically increasing, strictly concave and satisfies the Inada condition:

'

0
lim
c

u c .

There are two ways for households to shift consumption over time. First, households can save capital

at risk, which is subject to adjustment costs and is therefore illiquid. The illiquid savings of household

s in period t is denoted by s t s
ta z a . The savings will become capital in the next period:

 1
1 , t, s 1,2,..., 1s s

t ta k N
 (10)

where
s
tk

denotes the amount of illiquid capital of age group s at the beginning of holding period t.

Households sell their capital to the firm at the market price rt. Capital gains will accumulate in the

household's illiquid account. The amount deposited into a household's illiquid account in period t is

calculated by:

 s s s

t t t ta k r
 (11)

Illiquid capital due to convex adjustment costs is given by

2

2
s
t

 (12)

where is the level of capital adjustment costs. Furthermore, we impose an exogenous borrowing limit

a , which can be set to zero when borrowing is prohibited:

s

ta a (13)

Besides saving illiquid, risky capital, households can buy term bonds at market price pt. Bonds have

a net supply of zero. A bond that promises a payoff of 1 in the next period. Let
s
tb

be the amount of

bonds that household s holds in period t and
s
td

be the number of bonds that household s buys in period

t, such that

 1
1

s s
t tb d

 (14)

Bonds are liquid in the sense that there are no costs associated with adjusting bond holdings.

However, the sale of bonds is subject to collateral constraints. To model collateral constraints, we use

0s s

t td a
 (15)

where κ is an exogenous constant and only capital act as collateral. In case the household selling the

bond is unable to pay in the next period, the corresponding capital value will be transferred to the

household buying the bond; otherwise there will be no punishment. Therefore, households default only

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

10

if the value of the collateral is less than the promised bond amount. The actual payment of the bond is

then given by

 min ,1tr
 (16)

In the numerical tests below, we have chosen κ high enough that the bond is truly a risk-free asset

and default does not occur in equilibrium. Therefore, min ,1 1tr , which we use in the following

for clearer notation. Therefore, the budget constraint of household s in period t is given by

2

2
s s s s s s s
t t t t t t t t tc p d a l b r k

 (17)

Finally, agents are born and die without any properties - ie

 1 1 0; 0N N
t t t tk b a d

There is a single representative firm with a Cobb–Douglas production function in which total factor

productivity (TFP) and depreciation depend only on exogenous shocks. Each period, after a shock

occurs, the firm purchases capital and hires labor to maximize profits, accepting the given price. The

production function is given by

 1, , 1t t t t t t t tf K L z K L K
 (18)

1where Kt is the total amount of capital purchased, Lt is the total number of workers hired, α is the capital

share in production, ηt represents stochastic TFP, and δt represents the stochastic depreciation rate.

Capital prices (rt) and wages (wt), as well as bond prices (pt), are determined by market clearing in

competitive spot markets for consumption, capital, labor, and bonds. promissory note.

Approximating the equilibrium point with deep neural networks (DNN)

To describe how to solve the model presented in the above section using DNN, we proceed in two

steps. Firstly, we define the functional rational expectations equilibrium for the economy presented.

Secondly, describes how to use a deep neural network to search for an approximate recursive equilibrium

using the projection method.

Our proposed algorithm aims to approximate a recursive equilibrium: a function that maps the state of

the economy to options and prices, consistent with equilibrium conditions. We define the function-

dependent equilibrium is a system of equilibrium functions

4 1 12, , , , : NT T T T T N

a d p

where:

- 2 1: N N
a :

is the capital investment function

-

 2 1: N N

:
are the KKT factor functions for ceiling constraints

- 2 1: N N
d :

is the bond investment function

 -

 2 1: N N

: are the KKT factorization functions for parallel constraints

 - 2 1: N N
p

:
is the bond price function

for all states
2: , ,

TT T Nx z k b , in which z is the exogenous shock 1 2, ,...,
T

Nk k k k , is

the capital holding portfolio 1 2, ,...,
T

Nb b b b along with the bond holding portfolio are endogenous

states with 1 0k

and 1 0b

for all i=1,…,N-1:

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

11

 ' '

1 1
1 1zi i i i i i

x u c x E r x x u c x x x

 (19)

 0ai i
x x (20)

 0a i
x (21)

 0
i

x (22)

simultaneously:

 ' '

1p zi i i
x u c x E u c x x

 (23)

 0a di i i
x x x (24)

 0a di i
x x

(25)

 0
i

x (26)

1

1

0
N

d i
i

x (27)

where

 ,0, ,0,
TT T

a dx z x x

 (28)

where z+ is the random shock in the next period and:

 1: a ii i
x x r x x (29)

 1 1 1

1 1

, , ,
N N

i
K i

i i

r x f x l x x (30)

 1 1 1

1 1

, ,
N N

i
L i

i i

w x f x l x x (31)

2

1
2

i
i N p di i i i

c x l w x x x x x x

 (32)

 Calculating an approximate value in this model means finding an approximate value for the

4 • (N − 1) + 1 equilibrium functions such that the above equations are nearly satisfied for all

exogenous shocks and all the values received by the 2N-dimensional endogenous state.

Training algorithm. The goal of our solution framework is to estimate the equilibrium functions θ

with deep neural networks. To do so, we combine four ingredients. In general, the four components are

given by:

i) a suitable class of approximate functions;

ii) the loss function measures the quality of a given approximation at a given state;

iii) update mechanism to improve the approximation;

and

iv) sampling method to select the update state and evaluate the approximate quality.

Specifically, for our algorithm we chose a deep neural network as the function approximator. The

loss function is implemented using errors under equilibrium conditions and the neural network

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

12

parameters are updated using variations of mini-batch gradient descent. To update the parameters of the

neural network, as well as to evaluate the quality of the approximation, we sample states from a

simulated path of the economy.

The combination of these four ingredients allows us

a) use a large number of states to evaluate the quality of our approximation,

b) sample states from an approximate ergodic distribution of states in the economy,

c) handle irregular geometries of the ergodic set of states, and

d) approximate equilibrium functions have kinks and strong nonlinearity.

Next, we outline each component separately and then combine them into an algorithm.

Function approximation. We use densely connected convolutional neural networks as function

approximators because they incorporate a set of desired properties. Neural networks are universal

function approximators (Hornik et al., 1989), can resolve discrete localities, have high accuracy,

nonlinear characteristics, and can handle large amounts of data. multidimensional input data.

Given hyperparameters
 1 1

, , .
KK

i ii i
K m and training parameters ρ, neural network

mapping encoding:

 2 2 1 1 1 2... ...K K Kx x W W W x b b b

where 1i im m
iW

are the weight matrices and 1im

ib are vectors commonly called bias

vectors. The vector ρ represents the set of all elements of the weight matrix and bias vector. K is called

the number of layers of the neural network and mi is the number of nodes in layer i. The nonlinear

functions σi are called activation functions and are applied element by element to each element of the

vector:

 11 2, ,....,

i

T

i i i i mx x x x
.

Therefore, a densely connected feedforward neural network is given by a sequence of matrix vector

multiplications followed by an activation function.

Loss function. The goal of our algorithm is to approximate the equilibrium functions θ using a neural

network. In this section, we will introduce the loss function: an approximate measure of quality at a

given state of the economy.

Let ρ denote the set of trainable parameters of the neural network, and let the neural network, with

the set of parameters ρ, be denoted as Nρ. The neural network maps the state x into approximate

equilibrium functions:

4 1 12: :NN x x

where

2: , ,

TT T Nx z k b

 and

 1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ, , , ,

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ: ,..., , ,..., , ,..., , ,..., ,

T
T T T T T
a d p

T

N N N N

x x x x x x x

a x a x x x d x d x x x p x

The latter is called the training set, which we denote as Dtrain. Given parameters ρ and a set of Dtrain

states, we define the loss function as the average squared error of all equilibrium conditions is
trainDl .

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

13

Update mechanism. This subsection describes how to use the loss function to optimize the trainable

parameters ρ. The loss function is determined such that a smaller value corresponds to a lower mean

squared error under equilibrium conditions. Therefore, parameters are considered “good” if they

minimize the loss function. Due to the functional structure of deep neural networks, variations of the

gradient descent method are often used to optimize the parameters ρ. Gradient descent updates the

parameters stepwise in the direction in which the loss function decreases—that is:

, 1,...,train

old
Dnew old learn

k k old
k

l
k length

The parameter 0learn
that governs how much the parameters are adjusted with each gradient

descent step is called the learning rate.

Sample. As described above, the neural network parameters ρ are chosen to minimize the loss

function. The training set generation (Dtrain) procedure used to achieve a good approximation of the

equilibrium functions for the set of ergodic states of the economy.

 Since we want to use approximate equilibrium functions to simulate the modeled economy, they

must provide a good approximation of the states that will be visited during the simulation. Therefore,

we chose to train the neural network in the states visited on the simulated path of the economy. To do

so, we start with an arbitrary, economically feasible starting state and randomly initialized neural

network parameters ρ. We then simulate the subsequent T − 1 periods based on the approximate

equilibrium functions provided by the neural network. Since our method directly approximates the

equilibrium functions, simulating the evolution of the economy is computationally cheap. The resulting

T simulated states of the economy make up our data set 0 0 0
1 ,...,train TD x x . We call the set T of Dtrain

simulation periods an episode. We split this input data into mini-batches—smaller subsets of size m with

random membership—and perform gradient descent steps on each subset. Completion of an epoch is

defined as when the entire Dtrain data set is passed through the algorithm. Each epoch, the neural network

parameters are updated T/m times. Next, we set 1 0
1 Tx x

and use the update parameters of the neural

network to simulate the next T − 1 periods, create a new training set 1 1 1
1 ,...,train TD x x , and repeat the

process. Since we can generate large amounts of training data in this setting, overfitting is not a major

concern. As the neural network learns better parameter values, the simulated states become better

representations of the set of ergodic states of the economy.

Since the loss function only requires evaluating a set of possible states of the economy, our algorithm

does not require us to obtain Dtrain training data from the simulation. If the ergodic set of states of the

economy is known, if one wants to approximate equilibrium functions over a larger set, or if one wants

to improve the quality of the approximation in specific regions of the state space, then you can choose

the Dtrain training set accordingly.

Algorithm. Now, we summarize how to combine the components described in the previous sections

to calculate approximate recursive equilibria with DNN.

Starting from a randomly initialized neural network, our algorithm iterates between generating a

new Dtrain training set by simulating the desired amount of states and improving the neural network

parameters ρ by how to perform a variation of gradient descent steps on the training set. The error on a

new set of simulated states is the out-of-sample error and can be used to evaluate the out-of-sample

quality of the approximation. Because we use neural networks to directly estimate the equilibrium

functions, simulating a newly computed set of points is cheap. Therefore, we can set the number of

epochs to train on each set of simulation points to one. Therefore, each simulation state is used for only

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

14

a single gradient descent step, to protect our algorithm from overfitting. Algorithm 1 provides the

pseudocode:

Algorithm 2

Data:

T (length of 1 episode), Nepochs (Number of epochs per episode), Niter (Maximum number of

iterations),

 mean max, (necessary threshold for average error and maximum error)

 mean max, (starting value for average current error and maximum current error)

 0
 (initialization parameters for neural network), (initial value of state), i=0 (counter variable),

 learn
 (learning speed)

Result:

 success (boolean variable if thresholds are reached)

 final
 (final parameters of the neural network)

 While max maxiter mean meani N do

 1 2, ,...,i i i i
train TD x x x (create a new training episode)

 1

1
i i

Tx x (create a new starting state of an episode)

max ... mean ...1

max max , maxi i
train train

x xx D x D
e e

T
 (error update)

for 1,.., epochsj N do

 (learn Nepochs on data)

 for 1,.., ()k length

1
i
train

i

Di i learn
k k i

k

l

 (perform gradient reduction through updating neural network parameters)

 end

 end

 1i i (updated episode number)

end

If iteri N then return (, final isuccess False)

otherwise return (, final isuccess True)

Neural network hyperparameters. We use a deep neural network with two hidden layers to solve

our benchmark model. Heuristically, we found it useful to augment the state of the economy with

redundant information before passing it to the neural network. The input layer consists of 8 + 4 • A input

nodes, with A = 6 creating 32 input nodes.

After the input layer, the neural network has two hidden layers with 100 hidden nodes activated at

the first layer, 50 hidden nodes at the second layer. The output layer includes (6 − 1) = 5 nodes, activated

using softplus functions to ensure that non-negative constraints are met.

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

15

Figure 4. Neural network diagram to approximate the solution of the optimization problem.

A schematic illustration of the neural network architecture is provided in Fig. 4 for clarity, without

including redundant information. To avoid excessive complexity, we keep the number of epochs per

episode,
epochN , small. The learning rate must be chosen sufficiently small, and the mini-batch size large

enough, to ensure that the mini-batch gradient descent steps are not overly noisy. On a heuristic note,

we found it beneficial to reduce the learning rate and increase the mini-batch size toward the end of the

training process to fine-tune the neural network parameters.

Figure 5. Loss function during training.

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

16

The Figure 5 below shows the loss function behavior over 100 training episodes. The vertical axis

represents the logarithm (base 10) of the loss, indicating a scale for very small values. The horizontal

axis represents the training episodes. The loss decreases steadily as training progresses, indicating that

the model is learning effectively. While there are minor fluctuations in the loss values, particularly in

the middle and later stages, the general trend remains downward. By the end of 100 episodes, the loss

appears to stabilize around −2.2 (log scale), suggesting that the model is nearing convergence.

We have implemented the algorithm and obtained the results of the solution by deep learning method

compared with the analytical method, showing that the results are very similar as shown in the figure below:

Figure 6. Relationship between capital k and assets a in the 5th generation according to two solution methods:

neural network approximation and analysis.

Figure 6 compares the performance of a neural network model (red dots) with an analytic solution

(hollow circles) for Agent 5. The k-axis represents the independent variable k, and the a-axis represents

the dependent variable a. The neural network predictions (red dots) closely align with the analytic

solutions (hollow circles) across different clusters, indicating that the neural network is effectively

approximating the analytic solution.

5. Conclusion

In summary, we have used multilayer neural networks to solve optimization problems and

specifically applied it to an optimization problem in neoclassical economic theory, including

multigenerational optimization models.

Our algorithm is based on HJB to process the value function and uses boundary conditions and

additional constraints to make the loss function converge. This method is feasible because the

computation of derivatives in these loss functions is efficiently performed by the implementation of the

neural network.

We also apply our algorithm to solve the standard neoclassical growth model and compare our

results with those of a reference method using a finite difference scheme. This allows us to test the

accuracy of our method and show that our policy function approximation performs well.

V. T. Anh et al. / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 1-17

17

In addition, we extend this model to include multi-generational optimization problems,

demonstrating the applicability of the method in contexts with multiple assets and sometimes binding

constraints. The obtained results show that the neural network can approximate the policy and value

functions in these models well.

Acknowledgements

The Institue of Information Technology (IoIT), Vietnam Academy of Science and Technology is

acknowledged for the financial support under grant number CS24.05.

References

[1] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, Massachusetts Institute Technology Press, 2016.

[2] R. Bellman, Dynamic Programming, Princeton University Press, 1958.

[3] J. Brumm, S. Scheidegger, Using Adaptive Sparse Grids to Solve HighDimensional Dynamic Models,

Econometrica, Vol. 85, 2017, pp. 1575-1612.

[4] W. D. Haan, A. Marcet, Solving the Stochastic Growth Model by Parameterized Expectations, Journal of Business

and Economic Statistics, Vol. 8, pp. 31-34.

[5] L. Maliar, S. Maliar, Parameterized Expectations Algorithm: How to Solve for Labor Easily, Computational

Economics, Vol. 25, 2005, pp. 269-274.

[6] K. L. Judd, L. Maliar, S. Maliar, Numerically Stable and Accurate Stochastic Simulation Approaches for Solving

Dynamic Models, Quant Econom, Vol. 2, 2011, pp. 173-210.

[7] L. Maliar, S. Maliar, Merging Simulation and Projection Approaches to Solve High-dimensional Problems with an

Application to A New Keynesian Model, Quant Econom, Vol. 6, 2015, pp. 1-47.

[8] A. Jirniy, V. Lepetyuk, A Reinforcement Learning Approach to Solving Incomplete Market Models with Aggregate

Uncertainty, SSRN: https://papers. ssrn.com/sol3/papers.cfm?abstract_id=1832745, 2011 (accessed on: April 1st,

2024).

[9] P. Krusell, A. Smith, Income and Wealth Heterogeneity in the Macroeconomy, Journal of Political Economy, Vol.

106, 1998, pp. 868-896.

[10] J. Duffy, P. McNelis, Approximating and Simulating the Real Business Cycle Model: Parameterized Expectations,

Neural Networks, and the Geneticalgorithm, Journal of Economic Dynamics and Control, Vol. 25, No. 9, 2001,

pp. 1273-1303.

[11] V. Duarte, Machine Learning for Continuous-Time Economics, SSRN:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3012602, 2018 (accessed on: April 1st, 2024).

[12] J. F. Villaverde, S. Hurtado, G. Nuño, Financial Frictions and the Wealth Distribution, NBER Working Paper

26302, 2019.

[13] V. Lepetyuk, L. Maliar, S. Maliar, When the U.S. Catches A Cold, Canada Sneezes: A Lower-Bound Tale Told by

Deep Learning, Journal of Economic Dynamics and Control, Vol. 117, 2020, pp. 103926.

[14] A. Villa, V. Valaitis, Machine Learning Projection Methods for Macro-Finance Models. SSRN:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id= 3209934, 2019 (accessed on: April 1st, 2024).

[15] M. Azinovic, J. Luca, S. Scheidegger, Deep Equilibrium Nets, SSRN: https://ssrn.com/abstract=3393482, 2020

(accessed on: April 1st, 2024).

https://papers/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3012602
https://papers.ssrn.com/sol3/papers.cfm?abstract_id
https://ssrn.com/abstract=3393482

