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Abstract: Let {𝑋𝑛 , 𝑛 ≥ 1} be a sequence of 𝑚-dependent random vectors taking values in a real 

separable Hilbert space. In this work we introduce concentration inequality for the partial sums of 
{𝑋𝑛, 𝑛 ≥ 1}. Then, we give the weak laws of large numbers for weighted sums of {𝑋𝑛 , 𝑛 ≥ 1}. 
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1. Introduction 

One of the main tools in probabilistic analysis is the concentration inequality. Basically, the 

concentration inequalities are meant to give a sharp prediction of the actual value of a random variable 

by bounding the error term (from the expected value) with an associated probability.  The two simplest 

concentration inequalities are the Markov's inequality and Chebyshev's inequality. If we want bounds 

which give us stronger (exponential) convergence, we can use Hoeffding's inequality or McDiarmid's 

inequality (see [1, 2]). However, such concentration inequalities usually require certain independence 

assumptions. When the independence assumptions do not hold, it is more difficult to have similar 

inequalities. 

Recently, the subject of dependent random vectors in Hilbert spaces has received a lot of attention. 

The readers may see some results which have been obtained for negatively associated (NA) random 

vectors by [3], for negatively quadrant dependent (NQD) random vectors by [4] and for negatively 

superadditive dependent (NSD) random vectors by [5, 6]. The purpose of this note is to introduce 

concentration inequalities for sum of 𝑚-dependent random vectors in Hilbert spaces. As a consequence, 
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we have the weak laws of large numbers for weighted sums of 𝑚-dependent random vectors in Hilbert 

spaces. 

We start with the definitions of 𝑚-dependent random variables. 

Definition 1. Let 𝑚 be a non-negative integer number. A sequence of random varibles {𝑋𝑛, 𝑛 ≥ 1} 

is said to be 𝑚-dependent if for every 𝑛 and every 𝑗 ≥ 𝑚 + 1, {𝑋𝑛+𝑚+1, … , 𝑋𝑛+𝑗} is independent of 

{𝑋1, 𝑋2, … , 𝑋𝑛}. In particular, if 𝑚 = 0, {𝑋𝑛, 𝑛 ≥ 1} is an independent sequence. 

Example 1. Let {𝑍𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. 𝑁(0,1) random variables. Then 
{𝑍𝑛 − 𝑍𝑛+1, 𝑛 ≥ 1} are identically distributed 𝑁(0,2) random variables. Let 𝑋𝑛 = 𝑍𝑛 − 𝑍𝑛+1 then 𝑋𝑛 

and 𝑋𝑛+1 contain 𝑍𝑛+1 so they are dependent. But we can easily see that for every 𝑛, {𝑋1, … , 𝑋𝑛} and 
{𝑋𝑛+2, 𝑋𝑛+3, … } are independent. Therefore, {𝑋𝑛, 𝑛 ≥ 1} is 1-dependent. 

Let 𝐻 be a real separable Hilbert space with the norm ∥⋅∥ generated by an inner product 〈⋅,⋅〉 and let 

{𝑒𝑗, 𝑗 ∈ 𝐵} be an orthonormal basis in 𝐻.   

Definition 2. A sequence {𝑋𝑛, 𝑛 ≥ 1} of 𝐻-valued random vectors is said to be 𝑚-dependent if for 

any 𝑗 ∈ 𝐵, the sequence of random variables {〈𝑋𝑛, 𝑒𝑗〉, 𝑛 ≥ 1} is 𝑚-dependent. 

Example 2. Let {𝑍𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. 𝑁(0,1) random variables. For each 𝑛 ≥ 1, 𝑗 ∈ 𝐵, 

put 𝑋𝑛
𝑗
= 𝑐1𝑗𝑍𝑛 +⋅⋅⋅ +𝑐𝑚𝑗𝑍𝑛+𝑚 where ∑ ∑ 𝑐𝑖𝑗

2
𝑗∈𝐵

𝑚
𝑖=1 < ∞. We can see that for any 𝑗 ∈ 𝐵, {𝑋𝑛

𝑗
, 𝑛 ≥ 1} 

is 𝑚-dependent by definition. We consider 𝑋𝑛 = ∑ 𝑋𝑛
𝑗
𝑒𝑗𝑗∈𝐵 , 𝑛 ≥ 1, then {𝑋𝑛, 𝑛 ≥ 1} is a sequence of 

𝐻-valued 𝑚-dependent random vectors.   

2. The Main Results  

In this work we shall always assume that {𝑐𝑛, 𝑛 ≥ 1} is a sequence of positive real numbers. Let 
{𝑋𝑛, 𝑛 ≥ 1} be a sequence of 𝐻-valued 𝑚-dependent random vectors with mean 0 such that ‖𝑋𝑛‖ ≤ 𝑐𝑛 

for every 𝑛, and 𝑆𝑛 = 𝑋1 + 𝑋2 +⋅⋅⋅ +𝑋𝑛 be the partial sums. 

Theorem 1. For all 𝑡 > √(2𝑚 + 1)∑ 𝑐𝑖
2𝑛

𝑖=1  we get 

                 𝑃(‖𝑆𝑛‖ ≥ 𝑡) ≤ 𝑒𝑥𝑝{−
(√(2𝑚+1)∑ 𝑐𝑖

2𝑛
𝑖=1 −𝑡)

2

2∑ (∑ 𝑐𝑖+𝑗
𝑚∧(𝑛+1)
𝑗=0 )

2
𝑛
𝑖=1

}. 

In particular, if {𝑋𝑛, 𝑛 ≥ 1} is an independent sequence, then for all 𝑡 > √∑ 𝑐𝑖
2𝑛

𝑖=1  we have  

𝑃(‖𝑆𝑛‖ ≥ 𝑡) ≤ 𝑒𝑥𝑝 {−
(√∑ 𝑐𝑖

2𝑛
𝑖=1 − 𝑡)

2

2∑ 𝑐𝑖
2𝑛

𝑖=1

}. 

We can use Theorem 1 to prove the following results. 

Proposition 1. For all 𝑡 > √(2𝑚 + 1)∑ 𝑐𝑖
2𝑛

𝑖=1  we have 

𝑃(‖𝑆𝑛‖ ≥ 𝑡) ≤ 𝑒𝑥𝑝{−
(√(2𝑚+1)∑ 𝑐𝑖

2𝑛
𝑖=1 −𝑡)

2

2(𝑚+1)2∑ 𝑐𝑖
2𝑛

𝑖=1
}. 

Proposition 2. Let {𝑚𝑛, 𝑛 ≥ 1} be a sequence of positive integer numbers. Let {𝑎𝑛𝑖, 𝑛 ≥ 1,1 ≤ 𝑖 ≤
𝑚𝑛} be an array of positive real numbers such that 
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∑𝑎𝑛𝑖
2 𝑐𝑖

2

𝑚𝑛

𝑖=1

→ 0 𝑎𝑠 𝑛 → ∞, 

and 𝑈𝑛 = ∑ 𝑎𝑛𝑖𝑋𝑖
𝑚𝑛
𝑖=1 . We have 

𝑈𝑛
𝑃
→ 0 𝑎𝑠 𝑛 → ∞. 

3. Proofs of the Main Results 

To prove the main results, we need some lemmas. The first lemma is a familiar result in the theory 

of functional analysis. 

Lemma 1. (Triangle inequality) Let 𝑋, 𝑌 be vectors in 𝐻. Then, 

‖𝑋‖ − ‖𝑌‖ ≤ ‖𝑋 + 𝑌‖ ≤ ‖𝑋‖ + ‖𝑌‖. 
The next lemma is the one used in the proof of the McDiarmiad's inequality (see [5]). 

Lemma 2. (Hoeffding's lemma) Let 𝑋 be any real-valued random variable with expected value 

𝐸[𝑋] = 𝜂, such that 𝑎 ≤ 𝑋 ≤ 𝑏 almost surely, i.e. with probability one. Then, for all 𝜆 ∈ ℝ+, 

𝐸[𝑒𝜆(𝑋−𝐸[𝑋])] ≤ 𝑒𝑥𝑝 {
𝜆2(𝑏 − 𝑎)2

8
}, 

or equivalently 

𝐸[𝑒𝜆𝑋] ≤ 𝑒𝑥𝑝 {𝜆𝜂 +
𝜆2(𝑏 − 𝑎)2

8
}. 

Lemma 3. Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of 𝐻-valued 𝑚-dependent random vectors with mean 0 

such that ‖𝑋𝑛‖ ≤ 𝑐𝑛 for every 𝑛, and 𝑆𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛. Then, 

(𝐸‖𝑆𝑛‖)
2 ≤ 𝐸[‖𝑆𝑛‖

2] ≤ (2𝑚 + 1)∑𝑐𝑖
2

𝑛

𝑖=1

. 

Proof.  We have 

𝐸[‖𝑆𝑛‖
2] = 𝐸 ‖∑ 𝑋𝑖

𝑛

𝑖=1
‖
2

 = 𝐸∑ (〈∑ 𝑋𝑖 , 𝑒𝑗
𝑛

𝑖=1
〉)
2

𝑗∈𝐵

 = ∑ 𝐸 (∑ 〈𝑋𝑖 , 𝑒𝑗〉
𝑛

𝑖=1
)
2

𝑗∈𝐵

 = ∑ (∑ 𝐸〈𝑋𝑖 , 𝑒𝑗〉
2 +

𝑛

𝑖=1
∑ 2𝐸(〈𝑋𝑖 , 𝑒𝑗〉〈𝑋𝑘 , 𝑒𝑗〉)

1≤𝑖<𝑘≤𝑛
)

𝑗∈𝐵

 

Noting that if 𝑘 − 𝑖 > 𝑚, 𝑋𝑘 và 𝑋𝑗 are independent, hence 

∑2𝐸(〈𝑋𝑖, 𝑒𝑗〉〈𝑋𝑘 , 𝑒𝑗〉)

𝑗∈𝐵

= 0. 

If 0 < 𝑘 − 𝑖 ≤ 𝑚, then 

∑2𝐸(〈𝑋𝑖 , 𝑒𝑗〉〈𝑋𝑘 , 𝑒𝑗〉)

𝑗 ∈𝐵

≤ ∑𝐸(〈𝑋𝑖 , 𝑒𝑗〉
2 + 〈𝑋𝑘 , 𝑒𝑗〉

2)

𝑗 ∈𝐵

= 𝐸[‖𝑋𝑖‖
2] + 𝐸[‖𝑋𝑘‖

2] ≤ 𝑐𝑖
2 + 𝑐𝑘

2. 

Therefore 
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𝐸[‖𝑆𝑛‖
2] ≤∑𝐸[‖𝑋𝑖‖

2]

𝑛

𝑖=1

+ ∑ (𝑐𝑖
2 + 𝑐𝑘

2)

1≤𝑖<𝑘≤𝑛,𝑘−𝑖≤𝑚

 ≤ (2𝑚 + 1)∑𝑐𝑖
2

𝑛

𝑖=1

.

 

We can now prove the main results of this article. 

Proof of Theorem 1. Let ℱ𝑖 = 𝜎(𝑋1, … , 𝑋𝑖) and 𝑌𝑖 = 𝐸(‖𝑆𝑛‖|ℱ𝑖) for all 1 ≤ 𝑖 ≤ 𝑛. Then, 

{
𝑌𝑛 = 𝐸[‖𝑆𝑛‖|ℱ𝑛] = ‖𝑆𝑛‖,

𝑌0 = 𝐸[‖𝑆𝑛‖] = 𝑐𝑜𝑛𝑠𝑡.
 

It is easy to see that (𝑌0, 𝑌1, … , 𝑌𝑛) is a martingale. We have 

𝑌𝑛 − 𝑌𝑛−1 = ‖𝑆𝑛‖ − 𝐸[‖𝑆𝑛‖|ℱ𝑛−1]

 = ‖𝑆𝑛−1 + 𝑋𝑛‖ − 𝐸[‖𝑆𝑛‖|ℱ𝑛−1].
 

From Lemma 1, we deduce that 

‖𝑆𝑛−1‖ − 𝑐𝑛 ≤ ‖𝑆𝑛−1‖ − ‖𝑋𝑛‖ ≤ ‖𝑆𝑛−1 + 𝑋𝑛‖ ≤ ‖𝑆𝑛‖ + ‖𝑋𝑛‖ ≤ ‖𝑆𝑛−1‖ + 𝑐𝑛. 
Denote 

{
𝐴𝑛−1 = ‖𝑆𝑛−1‖ − 𝑐𝑛 − 𝐸[‖𝑆𝑛‖|ℱ𝑛−1]

𝐵𝑛−1 = ‖𝑆𝑛−1‖ + 𝑐𝑛 − 𝐸[‖𝑆𝑛‖|ℱ𝑛−1]
, 

then 𝐴𝑛−1 and 𝐵𝑛−1 are ℱ𝑛−1-measured and 

{
𝐴𝑛−1 ≤ 𝑌𝑛 − 𝑌𝑛−1 ≤ 𝐵𝑛−1,
𝐵𝑛−1 − 𝐴𝑛−1 = 2𝑐𝑛 .

 

Apply Lemma 2 for 𝑌𝑛 − 𝑌𝑛−1 we get, for all 𝜆 > 0, 

𝐸[𝑒𝑥𝑝{𝜆(𝑌𝑛 − 𝑌𝑛−1)}] = 𝐸[𝐸[𝑒𝑥𝑝{𝜆(𝑌𝑛 − 𝑌𝑛−1)}|ℱ𝑛−1]] ≤ 𝐸 [𝑒𝑥𝑝 {
𝜆2(2𝑐𝑛)

2

8
}]

 = 𝑒𝑥𝑝 {
𝜆2𝑐𝑛

2

2
} .

 

We write ‖𝑆𝑛‖ = (𝑌𝑛 − 𝑌𝑛−1) + (𝑌𝑛−1 − 𝑌𝑛−2) + ⋯+ (𝑌1 − 𝑌0) + 𝑌0. We have for 1 ≤ 𝑖 ≤ 𝑛, 

𝑌𝑖 − 𝑌𝑖−1 = 𝐸[‖𝑆𝑖−1 + 𝑋𝑖 +⋯+ 𝑋𝑖+𝑚∧(𝑛−𝑖) + 𝑋𝑖+𝑚∧(𝑛−𝑖)+1 +⋯+ 𝑋𝑛‖|ℱ𝑖] − 𝑌𝑛−1. 
From Lemma 1 we deduce  

‖𝑆𝑖−1 + 𝑋𝑖+𝑚∧(𝑛−𝑖)+1 +⋯+ 𝑋𝑛‖ − ∑ 𝑐𝑖+𝑗

𝑚∧(𝑛−𝑖)

𝑗=0

≤ ‖𝑆𝑖−1 + 𝑋𝑖 +⋯+ 𝑋𝑛‖

 ≤ ‖𝑆𝑖−1 + 𝑋𝑖+𝑚∧(𝑛−𝑖)+1 +⋯+ 𝑋𝑛‖ + ∑ 𝑐𝑖+𝑗

𝑚∧(𝑛−𝑖)

𝑗=0

.

 

Denote 

{
 
 

 
 𝐴𝑖−1 = 𝐸[‖𝑆𝑖−1 + 𝑋𝑖+𝑚∧(𝑛−𝑖)+1 +⋯+ 𝑋𝑛‖|ℱ𝑖] −∑ 𝑐𝑖+𝑗

𝑚∧(𝑛−𝑖)

𝑗=0
− 𝑌𝑖−1

𝐵𝑖−1 = 𝐸[‖𝑆𝑖−1 + 𝑋𝑖+𝑚∧(𝑛−𝑖)+1 +⋯+ 𝑋𝑛‖|ℱ𝑖] +∑ 𝑐𝑖+𝑗
𝑚∧(𝑛−𝑖)

𝑗=0
− 𝑌𝑖−1.

 

Noting that 𝑋𝑖+𝑚∧(𝑛−𝑖)+1 +⋯+ 𝑋𝑛 is independent of ℱ𝑖 and 𝑆𝑖−1 is ℱ𝑖−1-measured, then 

𝐸[‖𝑆𝑖−1 + 𝑋𝑖+𝑚∧(𝑛−𝑖)+1 +⋯+ 𝑋𝑛‖|ℱ𝑖] is also ℱ𝑖−1-measured. Therefore 𝐴𝑛−1 and 𝐵𝑛−1 are ℱ𝑖−1-

measured and 

{

𝐴𝑖−1 ≤ 𝑌𝑖 − 𝑌𝑖−1 ≤ 𝐵𝑖−1,

𝐵𝑖−1 − 𝐴𝑖−1 = 2∑ 𝑐𝑖+𝑗
𝑚∧(𝑛−𝑖)

𝑗=0
.
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Apply Lemma 2 for 𝑌𝑖 − 𝑌𝑖−1 we get, for all 𝜆 > 0, 

𝐸[𝑒𝑥𝑝{𝜆(𝑌𝑖 − 𝑌𝑖−1)}] = 𝐸[𝐸[𝑒𝑥𝑝{𝜆(𝑌𝑖 − 𝑌𝑖−1)}|ℱ𝑖−1]] ≤ 𝐸 [𝑒𝑥𝑝 {
𝜆2

8
(2∑ 𝑐𝑖+𝑗

𝑚∧(𝑛−𝑖)

𝑗=0
)

2

}]

 = 𝑒𝑥𝑝 {
𝜆2

2
(∑ 𝑐𝑖+𝑗

𝑚∧(𝑛−𝑖)

𝑗=0
)

2

} .

 

Hence for all 𝜆 > 0, 

𝐸[𝑒𝜆‖𝑆𝑛‖] = 𝐸 [𝐸[𝑒𝜆(𝑌𝑛−𝑌𝑛−1)𝑒𝜆𝑌𝑛−1|ℱ𝑛−1]]

 = 𝐸 [𝑒𝜆𝑌𝑛−1𝐸[𝑒𝜆(𝑌𝑛−𝑌𝑛−1)|ℱ𝑛−1]]

 ≤ 𝐸[𝑒𝜆𝑌𝑛−1]𝑒𝑥𝑝 {
𝜆2𝑐𝑛

2

2
}

 ≤ ⋯

 ≤ 𝑒𝑥𝑝{
𝜆2

2
∑( ∑ 𝑐𝑖+𝑗

𝑚∧(𝑛−𝑖)

𝑗=0

)

2
𝑛

𝑖=0

+ 𝜆𝑌0} .

 

By Chebysev’s inequality, 

𝑃(‖𝑆𝑛‖ ≥ 𝑡) ≤
𝐸[𝑒𝜆‖𝑆𝑛‖]

𝑒𝜆𝑡
≤ 𝑒𝑥𝑝 {

𝜆2

2
∑( ∑ 𝑐𝑖+𝑗

𝑚∧(𝑛−𝑖)

𝑗=0

)

2
𝑛

𝑖=0

+ 𝜆𝑌0 − 𝜆𝑡}

 ≤ 𝑒𝑥𝑝 {
𝜆2

2
∑( ∑ 𝑐𝑖+𝑗

𝑚∧(𝑛−𝑖)

𝑗=0

)

2
𝑛

𝑖=0

+ 𝜆(√(2𝑚 + 1)∑𝑐𝑖
2

𝑛

𝑖=1

− 𝑡)} ,

 

Where we have used Lemma 3 for the last inequality. The result follows by choosing 

𝜆 =
𝑡 − √(2𝑚 + 1)∑ 𝑐𝑖

2𝑛
𝑖=1

∑ (∑ 𝑐𝑖+𝑗
𝑚∧(𝑛−𝑖)
𝑗=0 )

2
𝑛
𝑖=0

> 0. 

Proof of Proposition 1. From Theorem 1 we get 

𝑃(‖𝑆𝑛‖ ≥ 𝑡) ≤ 𝑒𝑥𝑝 {−
(√(2𝑚 + 1)∑ 𝑐𝑖

2𝑛
𝑖=1 − 𝑡)

2

2∑ (∑ 𝑐𝑖+𝑗
𝑚∧(𝑛+𝑖)
𝑗=0 )

2
𝑛
𝑖=1

}. 

By Cauchy-Schwarz’s inequality we have 

( ∑ 𝑐𝑖+𝑗

𝑚∧(𝑛+𝑖)

𝑗=0

)

2

≤ (𝑚 ∧ (𝑛 − 𝑖) + 1)( ∑ 𝑐𝑖+𝑗
2

𝑚∧(𝑛−𝑖)

𝑗=0

) ≤ (𝑚 + 1)( ∑ 𝑐𝑖+𝑗
2

𝑚∧(𝑛+𝑖)

𝑗=0

). 

Then  

2∑( ∑ 𝑐𝑖+𝑗

𝑚∧(𝑛+𝑖)

𝑗=0

)

2
𝑛

𝑖=1

≤ 2(𝑚 + 1)∑ ∑ 𝑐𝑖+𝑗
2

𝑚∧(𝑛+𝑖)

𝑗=0

𝑛

𝑖=1

 ≤ 2(𝑚 + 1)2∑𝑐𝑖
2

𝑛

𝑖=1

.

 

We deduce that 
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𝑃(‖𝑆𝑛‖ ≥ 𝑡) ≤ 𝑒𝑥𝑝 {−
(√(2𝑚 + 1)∑ 𝑐𝑖

2𝑛
𝑖=1 − 𝑡)

2

2(𝑚 + 1)2∑ 𝑐𝑖
2𝑛

𝑖=1

}. 

The result follows. 

Proof of Proposition 2. It suffices to prove that for all 𝑡 > 0, 

𝑃(‖𝑈𝑛‖ ≥ 𝑡) → 0 𝑎𝑠 𝑛 → ∞. 
Because  

∑𝑎𝑛𝑖
2 𝑐𝑖

2

𝑚𝑛

𝑖=1

→ 0  𝑎𝑠 𝑛 → ∞, 

there exists a positive integer number 𝑛0 such that 𝑡 > √(2𝑚 + 1)∑ 𝑎𝑛𝑖
2 𝑐𝑖

2𝑚𝑛
𝑖=1  for all 𝑛 > 𝑛0.  

We consider the case when 𝑛 > 𝑛0. From Proposition 1 we have 

𝑃(‖𝑈𝑛‖ ≥ 𝑡) ≤ 𝑒𝑥𝑝

{
 
 

 
 

−

(√(2𝑚 + 1)∑ 𝑎𝑛𝑖
2 𝑐𝑖

2𝑚𝑛
𝑖=1 − 𝑡)

2

2(𝑚 + 1)2∑ 𝑎𝑛𝑖
2 𝑐𝑖

2𝑚𝑛
𝑖=1

}
 
 

 
 

 = 𝑒𝑥𝑝 {−
1

2(𝑚 + 1)2
(√2𝑚 + 1 −

𝑡

∑ 𝑎𝑛𝑖
2 𝑐𝑖

2𝑚𝑛
𝑖=1

)

2

} .

 

The result follows from the fact that as 𝑛 → ∞, 

𝑒𝑥𝑝 {−
1

2(𝑚 + 1)2
(√2𝑚 + 1 −

𝑡

∑ 𝑎𝑛𝑖
2 𝑐𝑖

2𝑚𝑛
𝑖=1

)

2

} → 0. 
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