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Abstract: Let 𝑚, 𝑛 be non-negative integers and 𝑁 be an 𝑅-module such that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is 

finitely generated for all 𝑗 ≤ 𝑚 +  𝑛 and 𝐻𝐼,𝐽
𝑖 (𝑁) ∈ 𝑆𝑛(𝐼, 𝐽) for all 𝑖 ≤  𝑚, where 𝑆𝑛(𝐼, 𝐽) is a class 

of modules. We hence prove that (1) if 𝑛 =  1 then 𝐻𝐼,𝐽
𝑖 (𝑁) is (𝐼, 𝐽)-cofinite for all 𝑖 ≤  𝑚; (2) if 

𝑛 ≥  2 and 𝐸𝑥𝑡𝑅
ℓ(𝑅/𝐼, 𝐻𝐼,𝐽

𝑡+𝑖−ℓ(𝑁)) is finitely generated for all 1 ≤ 𝑡 ≤ 𝑛 − 1, ℓ ≤  𝑡 − 1, 𝑖 ≤ 𝑚, 

then 𝐻𝐼,𝐽
𝑖 (𝑁) is (𝐼, 𝐽)-cofinite for all 𝑖 ≤  𝑚. These extend the results of Khazaei-Sazeedeh [10, Thm 

2.10, Thm 2.11] for local cohomology modules for a pair of ideals. Finally, we prove that 𝐻𝐼,𝐽
𝑖 (𝑁) 

is (𝐼, 𝐽)-cofinite for all 𝑖 ≥ 0 whenever 𝐼 is principal, 𝑁 is an 𝑅-module satisfying 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is 

finitely generated for all 𝑗 ≥  0, and 𝐻𝐼,𝐽
0 (𝑁) is in dimension <  2. This extends a theorem [13, Thm 

1] of Kawasaki. 

Keywords: cofinite module, local cohomology, local cohomology for a pair of ideals, in dimension 

<  2 module.  
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1. Introduction* 

Throughout this note the ring 𝑅 is commutative Noetherian. Let 𝑗 be a non-negative integer, 𝐼, 𝐽 

ideals of 𝑅, and 𝑁 an 𝑅-module. The 𝑗𝑡ℎ  local cohomology functor 𝐻𝐼,𝐽
𝑗

(−) w.r.t a pair of ideals (𝐼, 𝐽) 

was defined by Takahashi et al. [1] as the 𝑗𝑡ℎ right derived functor of (𝐼, 𝐽)-torsion functor Γ𝐼,𝐽(−). They 

called 𝐻𝐼,𝐽
𝑗

(𝑁) the 𝑗𝑡ℎ  local cohomology module of 𝑁 w.r.t a pair of ideals (𝐼, 𝐽). It is clear that 𝐻𝐼,0
𝑗

(𝑁) 

is just the ordinary local cohomology module 𝐻𝐼
𝑗
(𝑁) of 𝑁 w.r.t the ideal 𝐼. 
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* Corresponding author. 

   E-mail address: hoangnv@utc.edu.vn 

 https//doi.org/10.25073/2588-1124/vnumap.4960 

mailto:hoangnv@utc.edu.vn


N. V. Hoang / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 91-98 92 

In [2], Grothendieck conjectured that (0:
𝐻𝐼

𝑗
(𝑁)

 𝐼) is finitely generated for all 𝑗 ≥  0 and all finitely 

generated modules 𝑁. In [3], Hartshorne provided a counterexample to this conjecture. He also 

introduced an 𝑅-module 𝐾 to be 𝐼-cofinite if 𝑆𝑢𝑝𝑝𝑅(𝐾) ⊆  𝑉 (𝐼) and 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝐾) is finitely generated 

for all 𝑗 and he asked a question: For which rings 𝑅 and ideals 𝐼 are the modules 𝐻𝐼
𝑗
(𝑁) is 𝐼-cofinite for 

all finitely generated modules 𝑁? Hartshorne proved that if 𝑁 is a finitely generated 𝑅-module where 𝑅 

is a complete regular local ring, then 𝐻𝐼
𝑗
(𝑁) is 𝐼-cofinite in the case 𝐼 is a prime ideal with dim𝑅(𝑅/𝐼)  =

 1 (see [3, Coro 7.7]). This problem was studied more extensively by the numerous mathematicians (see 

papers [4-10]). The aim of this note is to investigate a question similar to the one above for the theory 

of local cohomology w.r.t a pair of ideals. Before stating main results, we recall the notion of (𝐼, 𝐽)-

cofinite module which is introduced by Tehranian-and Talemi (see [11, Def 2.1]) as follows: An 𝑅-

module 𝐾 is called (𝐼, 𝐽)-cofinite if 𝑆𝑢𝑝𝑝𝑅(𝐾)  ⊆  𝑊(𝐼, 𝐽) and 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝐾) is finitely generated for 

all 𝑗, where 𝑊(𝐼, 𝐽) =  {𝑝 ∈  𝑆𝑝𝑒𝑐 𝑅 | 𝐼𝑛  ⊆  𝑝 +  𝐽 for some 𝑛 ∈  𝑁0} (see [1, Def 3.1]). We then 

introduce a class 𝑆𝑛(𝐼, 𝐽) of modules (see Definition 2.1). The first main result in this note is the 

following theorem on the cofiniteness of module 𝐻𝐼,𝐽
𝑖 (𝑁) w.r.t a pair of ideals (𝐼, 𝐽). 

Theorem 1.1. Let 𝑚 be an integer with 𝑚 ≥  0, and 𝑁 an 𝑅-module. If 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely 

generated for all 𝑗 ≤  𝑚 + 1 and 𝐻𝐼,𝐽
𝑖 (𝑁)  ∈  𝑆1(𝐼, 𝐽) for all 𝑖 ≤  𝑚, then 𝐻𝐼,𝐽

𝑖 (N) is (𝐼, 𝐽)-cofinite for 

all 𝑖 ≤  𝑚. 

This result covers [10, Thm 2.10] of Khazaei-Sazeedeh for local cohomology modules (see 

Corollary 2.3). Theorem 1.1 also has a consequence on the co-finiteness of 𝐻𝐼,𝐽
𝑖 (N) when these modules 

are in dimension <  2 (see Corollary 2.5), in which an 𝑅-module 𝐾 is called in dimension <  2 if there 

exists a finitely generated 𝑅-submodule 𝑇 of 𝐾 such that 𝑑𝑖𝑚𝑆𝑢𝑝𝑝𝑅(𝐾/𝑇) ≤  1 (see [12, Def 2.1] of 

Asadollahi-Naghipour). We next prove the co-finiteness of 𝐻𝐼,𝐽
𝑖 (N) concerning the condition that 𝐻𝐼,𝐽

𝑖 (N) 

belongs to a class module 𝑆𝑛(𝐼, 𝐽). The following theorem is the second main result in this note. 

Theorem 1.2. Let 𝑛 be an integer with 𝑛 ≥  2. Let 𝑚 be a non-negative integer such that 

𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗 ≤  𝑚 +  𝑛 and 𝐻𝐼,𝐽
𝑖 (𝑁)  ∈  𝑆𝑛(𝐼, 𝐽) for all 𝑖 ≤  𝑚. If 

𝐸𝑥𝑡𝑅
ℓ (𝑅/𝐼, 𝐻𝐼,𝐽

𝑡+𝑖−ℓ(𝑁)) is finitely generated for all 1 ≤  𝑡 ≤  𝑛 −  1, 0 ≤  ℓ ≤  𝑡 −  1 and 𝑖 ≤  𝑚, 

then 𝐻𝐼,𝐽
𝑖 (𝑁) is (𝐼, 𝐽)-cofinite for all 𝑖 ≤  𝑚. 

By replacing 𝐽 =  0 in Theorem 1.2, we obtain again a result of Khazaei-Sazeedeh in [10, Thm 

2.11]. The last of this section, we use Theorem 1.1 and Corollary 2.5 to study the co-finiteness of 𝐻𝐼,𝐽
𝑖 (𝑁) 

when the ideal 𝐼 is principal. Kawasaki proved that if 𝐼 is a principal ideal then local cohomology module 

𝐻𝐼
𝑖(𝑀) is 𝐼-cofinite for all 𝑖 ≥  0 when 𝑀 is a finitely generated 𝑅-module (see [13, Thm 1]). We next 

extend the result of Kawasaki in [13] to the case of local cohomology module 𝐻𝐼,𝐽
𝑖 (𝑁) where 𝐼 is a 

principal ideal and the module 𝑁 is not necessary finitely generated. The following theorem is the third 

main result in this note. 

Theorem 1.3. Let 𝐼 and 𝐽 be ideals of 𝑅 such that 𝐼 is a principal ideal. Let 𝑁 be an 𝑅-module such 

that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗 ≥  0. Assume that the 𝑅-module 𝐻𝐼,𝐽
0 (𝑁) is in dimension 

<  2. Then the 𝑅-module 𝐻𝐼,𝐽
𝑖 (𝑁) is (𝐼, 𝐽)-cofinite for all 𝑖 ≥  0. 

This note is organized into two sections. In Section 2, we first introduce a condition 𝑃𝑛(𝐼, 𝐽) and a 

class 𝑆𝑛(𝐼, 𝐽) of modules. We second prove three main theorems and their consequences. 
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2. Main Results 

We first recall a class 𝑆𝑛(𝐼, 𝐽) of modules which is introduced in [14]. 

Definition 2.1. (see [14, Def 2.3]) Let 𝑛 be a non-negative integer, 𝐼, 𝐽 ideals of 𝑅 and 𝐾 an 𝑅-

module. 

We say that an 𝑅-module 𝐾 satisfies the condition 𝑃𝑛(𝐼, 𝐽) if the following statement holds: Suppose 

that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝐾) is finitely generated for all 𝑗 ≤  𝑛 and 𝑆𝑢𝑝𝑝𝑅(𝐾)  ⊆  𝑊(𝐼, 𝐽). Then the module 𝐾 is 

(𝐼, 𝐽)-cofinite. 

We define a class of 𝑅-modules as follows: 

𝑆𝑛(𝐼, 𝐽) =  {𝐾 ∈  𝑀𝑜𝑑 −  𝑅 | 𝐾 satisfies the condition 𝑃𝑛(𝐼, 𝐽)}, 

where 𝑀𝑜𝑑 −  𝑅 is the category of modules over the ring 𝑅. 

Remark 2.2. Firstly, we observe that 𝑆0(𝐼, 𝐽)  ⊆  𝑆1(𝐼, 𝐽)  ⊆  𝑆2(𝐼, 𝐽)  ⊆ . . .. Secondly, we recall that 

an 𝑅-module 𝐾 satisfies the condition 𝑃𝑛(𝐼) if 𝐾 is 𝐼-cofinite whenever 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝐾) is finitely 

generated for all 𝑗 ≤  𝑛 and 𝑆𝑢𝑝𝑝𝑅(𝐾)  ⊆  𝑉 (𝐼) (see [10, Def 2.1]). Hence, if we replace 𝐽 by 0 in 

𝑃𝑛(𝐼, 𝐽), we obtain that 𝑃𝑛(𝐼, 0)  =  𝑃𝑛(𝐼). Moreover, we also have 

𝑆𝑛(𝐼, 0)  =  𝑆𝑛(𝐼)  =  {𝐾 ∈  𝑀𝑜𝑑 −  𝑅 | 𝐾 satisfies the condition 𝑃𝑛(𝐼)} 

and the notion (𝐼, 𝐽)-cofinite is an extension of the notion 𝐼-cofinite because the notion (𝐼, 0)-cofinite 

coincides exactly with the notion 𝐼-cofinite. 

We next prove Theorem 1.1 on the co-finiteness of 𝐻𝐼,𝐽
𝑖 (𝑁) with respect to a pair of ideals (𝐼, 𝐽) 

concerning the condition 𝑆1(𝐼, 𝐽). 

Proof of Theorem 1.1. We process by induction on 𝑚 ≥  0. Assume that 𝑚 =  0. Then the 𝑅-

module 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for 𝑗 =  0, 1 by the hypothesis. Therefore, the isomorphism 

𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁)) ≅  𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝑁) and the exact sequence 

𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝑁/𝛤𝐼,𝐽(𝑁))  =  0 →  𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁))  →  𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝑁) 

imply that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁)) is finite for all 𝑗 ≤  1. Moreover, since 𝛤𝐼,𝐽(𝑁)  ∈  𝑆1(𝐼, 𝐽) by the 

hypothesis for 𝑚 =  0, we obtain that 𝐻𝐼,𝐽
0 (𝑁) is (𝐼, 𝐽)-cofinite as 𝐻𝐼,𝐽

0 (𝑁) ≅  𝛤𝐼,𝐽(𝑁). 

We now assume that 𝑚 >  0 and the result have been proved for all values less than 𝑚. Consider 

the short exact sequence 

0 →  𝑁̅  →  𝐸 →  𝑃 →  0,   (†) 

where 𝑁̅  =  𝑁/Γ𝐼,𝐽(𝑁), 𝑃 =  𝐸/𝑁̅, and 𝐸 =  𝐸𝑅(𝑁̅) the injective envelope of 𝑅-module 𝑁̅. Note that 

𝛤𝐼,𝐽(𝐸)  =  0 since 𝛤𝐼,𝐽(𝑁̅)  =  0. By the case 𝑚 =  0 we obtain that 𝛤𝐼,𝐽(𝑁) is (𝐼, 𝐽)-cofinite. Thus 

𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁̅) is finitely generated for all 𝑗 ≤  𝑚 +  1 by the following exact sequences 

𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁)  →  𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁̅)  →  𝐸𝑥𝑡𝑅
𝑗+1

(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁)) 

and the hypothesis of 𝑁. On the other hand, by the exact sequence (†), we have isomorphisms 

𝐸𝑥𝑡𝑅
𝑗 (𝑅/𝐼, 𝑃) ≅  𝐸𝑥𝑡𝑅

𝑗+1
(𝑅/𝐼, 𝑁̅) for all 𝑗 ≥  0. Therefore the 𝑅-module 𝐸𝑥𝑡𝑅

𝑗
(𝑅/𝐼, 𝑃) is finitely 

generated for all 𝑗 ≤  𝑚. Also, by the sequence (†) and by the fact 𝛤𝐼,𝐽(𝐸)  =  0, we have isomorphisms 

𝐻𝐼,𝐽
𝑖 (𝑃) ≅  𝐻𝐼,𝐽

𝑖+1(𝑁̅) for all 𝑖 ≥  0; moreover, we also get 𝐻𝐼,𝐽
𝑖+1(𝑁̅) ≅ 𝐻𝐼,𝐽

𝑖+1(𝑁) for all 𝑖 ≥  0. 

Therefore, we obtain that 𝐻𝐼,𝐽
𝑖 (𝑃) ≅ 𝐻𝐼,𝐽

𝑖+1(𝑁)  ∈  𝑆1(𝐼, 𝐽) for all 𝑖 ≤  𝑚 − 1 by the hypothesis. Finally, 

by applying the inductive assumption for the 𝑅-module 𝑃, we obtain that 𝐻𝐼,𝐽
𝑖 (𝑃) is (𝐼, 𝐽)-cofinite for 

all 𝑖 ≤  𝑚 − 1, and so 𝐻𝐼,𝐽
𝑖 (𝑁) is (𝐼, 𝐽)-cofinite for all 𝑖 ≤  𝑚, as required.  

By replacing 𝐽 =  0 in Theorem 1.1 we get the following consequence. 



N. V. Hoang / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 91-98 94 

Corollary 2.3. (see [10, Thm 2.10]) Let 𝑚 be a non-negative integer and 𝑁 an 𝑅-module. If 

𝐸𝑥𝑡𝑅
𝑖 (𝑅/𝐼, 𝑁) is finitely generated for all 𝑖 ≤  𝑚 + 1 and 𝐻𝐼

𝑖(𝑁) ∈  𝑆1(𝐼) for all 𝑖 ≤  𝑚, then 𝐻𝐼
𝑖(𝑁) 

is 𝐼-cofinite for all 𝑖 ≤  𝑚. 

Remark 2.4. Before considering more consequences of Theorem 1.1, we need to recall that an 𝑅-

module 𝐾 is called in dimension <  2 if there exists a finitely generated submodule 𝑇 of 𝐾 such that 

𝑑𝑖𝑚𝑆𝑢𝑝𝑝𝑅(𝐾/𝑇)  <  2 (see [12, Def 2.1]). The following is a result on the co-finiteness of 𝐻𝐼,𝐽
𝑖 (𝑁). 

Corollary 2.5. (covers [9, Thm 1.1]) Let 𝑚 be a non-negative integer and 𝑁 an 𝑅-module. If 

𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗 ≤  𝑚 + 1 and 𝐻𝐼,𝐽
𝑖 (𝑁) is in dimension <  2 for all 𝑖 ≤  𝑚, 

then 𝐻𝐼,𝐽
𝑖 (𝑁) is (𝐼, 𝐽)-cofinite for all 𝑖 ≤  𝑚. 

Proof. By Theorem 1.1, we need only to show 𝐻𝐼,𝐽
𝑖 (𝑁) ∈ 𝑆1(𝐼, 𝐽) for all 𝑖 ≤  𝑚 provided that 

𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗 ≤  𝑚 +  1 and 𝐻𝐼,𝐽
𝑖 (𝑁) is in dimension <  2 for all 𝑖 ≤  𝑚. 

Fix an integer 𝑖 ∈  {0,1, . . . , 𝑚}. Set 𝐾 =  𝐻𝐼,𝐽
𝑖 (𝑁). Hence, 𝐾 is in dimension <  2 by the hypothesis. 

Note that 𝑆𝑢𝑝𝑝𝑅(𝐾)  ⊆  𝑊(𝐼, 𝐽) by [1, Prop 1.7 and Coro 1.13]. We now prove that the 𝑅-module 𝐾 

satisfies the condition 𝑃1(𝐼, 𝐽). To do this, we assume that the 𝑅-modules 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐾) and 

𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝐾) are finitely generated, we claim that 𝐸𝑥𝑡𝑅

𝑗
(𝑅/𝐼, 𝐾) is finitely generated for all 𝑗. By the 

hypothesis of 𝐾, there exists a finitely generated submodule 𝑇 of 𝐾 such that 𝑑𝑖𝑚𝑆𝑢𝑝𝑝𝑅(𝐾/𝑇)  ≤  1 

and 𝑆𝑢𝑝𝑝𝑅(𝐾/𝑇)  ⊆ 𝑊(𝐼, 𝐽). We have the following exact sequence 

0 →  𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝑇)  →  𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐾)  →  𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐾/𝑇) 
→  𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝑇)  →  𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝐾)  →  𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝐾/𝑇) 
→  𝐸𝑥𝑡𝑅

2(𝑅/𝐼, 𝑇)  →  𝐸𝑥𝑡𝑅
2(𝑅/𝐼, 𝐾)  →  𝐸𝑥𝑡𝑅

2(𝑅/𝐼, 𝐾/𝑇)  → . . . 
It follows that 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐾/𝑇) and 𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝐾/𝑇) are finitely generated. Keep in mind that 

𝑑𝑖𝑚𝑆𝑢𝑝𝑝𝑅(𝐾/𝑇)  ≤  1. Thus, we get by [15, Thm 2.5] that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝐾/𝑇) is finitely generated for 

all 𝑗. Therefore, by the above exact sequence again, we obtain that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝐾) is finitely generated 

for all 𝑗, and the claim is proved. That means the 𝑅-module 𝐻𝐼,𝐽
𝑖 (𝑁) satisfies the condition 𝑃1(𝐼, 𝐽) for 

any 𝑖 ∈  {0,1, . . . , 𝑚}. Hence 𝐻𝐼,𝐽
𝑖 (𝑁)  ∈  𝑆1(𝐼, 𝐽) for all 0 ≤  𝑖 ≤  𝑚, as required.  

We next prove Theorem 1.2 on the co-finiteness of 𝐻𝐼,𝐽
𝑖 (𝑁) with respect to a pair of ideals (𝐼, 𝐽) in 

the case where the module 𝐻𝐼,𝐽
𝑖 (𝑁) belongs to a class 𝑆𝑛(𝐼, 𝐽) for some integer 𝑛 ≥  2. 

Proof of Theorem 1.2. We prove by induction on 𝑚 ≥  0. Suppose 𝑚 =  0. We have by the 

hypothesis that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗 ≤ 𝑛 + 0 (*), 𝐸𝑥𝑡𝑅
ℓ (𝑅/𝐼, 𝐻𝐼,𝐽

𝑡+0−ℓ(𝑁)) is 

finitely generated for all 1 ≤  𝑡 ≤  𝑛 −  1, 0 ≤  ℓ ≤  𝑡 −  1 and 𝑖 =  0, and 𝛤𝐼,𝐽(𝑁)  =  𝐻𝐼,𝐽
0 (𝑁) ∈

𝑆𝑛(𝐼, 𝐽). Hence, in order to show that the module 𝐻𝐼,𝐽
0 (𝑁) is (𝐼, 𝐽)-cofinite, we need only to prove that 

𝐸𝑥𝑡𝑅
𝑣(𝑅/𝐼, 𝐻𝐼,𝐽

0 (𝑁)) is finitely generated for all 𝑣 ≤  𝑛. We now have the following exact sequences 

0 → Γ𝐼,𝐽(𝑁) → 𝑁 → 𝑁̅ = 𝑁/Γ𝐼,𝐽(𝑁) → 0    (1) 

0 → 𝑁̅ → 𝐸0 → 𝑁1 = 𝐸0/𝑁̅ → 0    (1’) 

where 𝐸0 is the injective envelope of 𝑅-module 𝑁̅. By the sequence (1), we get the following exact 

sequence 

𝐸𝑥𝑡𝑅
𝑣−1(𝑅/𝐼, 𝑁̅)  →  𝐸𝑥𝑡𝑅

𝑣(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁))  →  𝐸𝑥𝑡𝑅
𝑣(𝑅/𝐼, 𝑁). 

Hence, from (*), in order to show the finiteness of 𝐸𝑥𝑡𝑅
𝑣(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁)) for all 𝑣 ≤  𝑛, we need to 

Claim that 𝐸𝑥𝑡𝑅
𝑣−1(𝑅/𝐼, 𝑁̅) is finitely generated for all 𝑣 ≤ 𝑛. 

The case 𝑣 −  1 =  0 is clear since  

𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝑁̅) ≅ (0:𝑁̅ 𝐼) ⊆  𝛤𝐼(𝑁̅) ⊆ 𝛤𝐼,𝐽(𝑁̅)  =  0  

by [1, Corollary 1.13]. For the case 𝑣 − 1 =  1, by the sequence (1’), we get that 
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𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝑁̅)  ≅  𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝑁1) 
≅  𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁1)) 

≅  𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽
1 (𝑁̅)) 

since 𝛤𝐼,𝐽(𝐸0)  =  0. Remind that 

𝐻𝑜𝑚𝑅 (𝑅/𝐼, 𝐻𝐼,𝐽
1 (𝑁̅)) ≅  𝐸𝑥𝑡𝑅

0(𝑅/𝐼, 𝐻𝐼,𝐽
1+0−0(𝑁)) 

is finitely generated by the hypothesis (for 𝑡 =  1, ℓ =  0, 𝑖 =  0). Hence 𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝑁̅) is finitely 

generated. 

We next prove the finiteness of 𝐸𝑥𝑡𝑅
𝑣−1(𝑅/𝐼, 𝑁̅) in the case 1 <  𝑣 −  1 ≤  𝑛 −  1 (**). Fix an 

integer 𝑣 −  1 ∈  {2, 3, . . ., 𝑛 −  1}. For any integer 𝑢 >  1, we have the following exact sequences 

0 → Γ𝐼,𝐽(𝑁𝑢−1) → 𝑁𝑢−1 → 𝑁𝑢−1
̅̅ ̅̅ ̅̅ ̅ → 0, (u) 

0 → 𝑁𝑢−1
̅̅ ̅̅ ̅̅ ̅ → 𝐸𝑢−1 → 𝑁𝑢 → 0    (u’) 

where 𝑁𝑢−1
̅̅ ̅̅ ̅̅ ̅  =  𝑁𝑢−1/𝛤𝐼,𝐽(𝑁𝑢−1), 𝐸𝑢−1  =  𝐸𝑅(𝑁𝑢−1

̅̅ ̅̅ ̅̅ ̅) the injective envelope of 𝑁𝑢−1
̅̅ ̅̅ ̅̅ ̅ and 𝑁𝑢  =

 𝐸𝑢−1/𝑁𝑢−1
̅̅ ̅̅ ̅̅ ̅. By the sequence (1’), we get an isomorphism 

𝐸𝑥𝑡𝑅
𝑣−2(𝑅/𝐼, 𝑁1)  ≅  𝐸𝑥𝑡𝑅

𝑣−1(𝑅/𝐼, 𝑁̅). 
Moreover, by the sequence (u) with u = 2, we obtain the following exact sequence 

𝐸𝑥𝑡𝑅
𝑣−2(𝑅/𝐼, Γ𝐼,𝐽(𝑁1)) → 𝐸𝑥𝑡𝑅

𝑣−2(𝑅/𝐼, 𝑁1) → 𝐸𝑥𝑡𝑅
𝑣−2(𝑅/𝐼, 𝑁1

̅̅ ̅) . 

Therefore, it is enough to show that the modules 𝐸𝑥𝑡𝑅
𝑣−2(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁1)) and 𝐸𝑥𝑡𝑅

𝑣−2(𝑅/𝐼, 𝑁1
̅̅ ̅) are 

finitely generated. Note that 𝛤𝐼,𝐽(𝑁1) ≅ 𝐻𝐼,𝐽
1 (𝑁̅) ≅  𝐻𝐼,𝐽

1 (𝑁). Thus, the 𝑅-module 

𝐸𝑥𝑡𝑅
𝑣−2(𝑅/𝐼, Γ𝐼,𝐽(𝑁1)) ≅  𝐸𝑥𝑡𝑅

𝑣−2(𝑅/𝐼, 𝐻𝐼,𝐽
1 (𝑁)) 

is finitely generated by the hypothesis (for 𝑡 =  𝑣 −  1, ℓ =  𝑣 −  2, 𝑖 =  0). By the sequence (u’) with 

u = 2, we have an isomorphism 

𝐸𝑥𝑡𝑅
𝑣−2(𝑅/𝐼, 𝑁1

̅̅ ̅) ≅  𝐸𝑥𝑡𝑅
𝑣−3(𝑅/𝐼, 𝑁2) 

By the sequence (u) with u = 3, we have the following exact sequence 

𝐸𝑥𝑡𝑅
𝑣−3(𝑅/𝐼, Γ𝐼,𝐽(𝑁2)) →  𝐸𝑥𝑡𝑅

𝑣−3(𝑅/𝐼, 𝑁2) → 𝐸𝑥𝑡𝑅
𝑣−3(𝑅/𝐼, 𝑁2

̅̅̅̅ ) 

Thus, it suffices to show that 𝐸𝑥𝑡𝑅
𝑣−3(𝑅/𝐼, Γ𝐼,𝐽(𝑁2)) and 𝐸𝑥𝑡𝑅

𝑣−3(𝑅/𝐼, 𝑁2
̅̅̅̅ ) are finitely generated. 

We have the following isomorphisms 

𝐸𝑥𝑡𝑅
𝑣−3(𝑅/𝐼, Γ𝐼,𝐽(𝑁2)) ≅ 𝐸𝑥𝑡𝑅

𝑣−3(𝑅/𝐼, 𝐻𝐼,𝐽
1 (𝑁1

̅̅ ̅)) 

                                                                                ≅ 𝐸𝑥𝑡𝑅
𝑣−3(𝑅/𝐼, 𝐻𝐼,𝐽

1 (𝑁1)) 

                                          ≅ 𝐸𝑥𝑡𝑅
𝑣−3(𝑅/𝐼, 𝐻𝐼,𝐽

2 (𝑁̅)) 

                                           ≅ 𝐸𝑥𝑡𝑅
𝑣−3(𝑅/𝐼, 𝐻𝐼,𝐽

2 (𝑁)) 

and the last module is finitely generated by the hypothesis (for 𝑡 =  𝑣 −  1, ℓ =  𝑣 −  3, 𝑖 =  0). 

Continuing the same arguments as above, after finitely many steps, we need only to show that 𝑅-the 

modules 𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁𝑣−2)) and 𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝑁𝑣−2
̅̅ ̅̅ ̅̅ ) are finitely generated. We also have the following 

isomorphisms 

𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝛤𝐼,𝐽(𝑁𝑣−2)) ≅ 𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝐻𝐼,𝐽
1 (𝑁𝑣−3

̅̅ ̅̅ ̅̅ )) ≅ 𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝐻𝐼,𝐽

1 (𝑁𝑣−3)) 

                                                            ≅ 𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝐻𝐼,𝐽

2 (𝑁𝑣−4
̅̅ ̅̅ ̅̅ )) ≅ 𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝐻𝐼,𝐽
2 (𝑁𝑣−4))  

                                                            … 

                                                             ≅ 𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝐻𝐼,𝐽

𝑣−3(𝑁1
̅̅ ̅)) ≅ 𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝐻𝐼,𝐽
𝑣−3(𝑁1))  

                                                             ≅ 𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝐻𝐼,𝐽

𝑣−2(𝑁̅)) ≅ 𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝐻𝐼,𝐽

𝑣−2(𝑁))  

and the last module is finitely generated by the hypothesis (for 𝑡 =  𝑣 − 1, ℓ =  1, 𝑖 =  0). Moreover, 

by the sequences (u) and (u’) for 𝑢 =  𝑣 − 1, 𝑣 − 2, . . . ,1 we obtain the following isomorphisms 

𝐸𝑥𝑡𝑅
1(𝑅/𝐼, 𝑁𝑣−2

̅̅ ̅̅ ̅̅ ) ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝑁𝑣−1) ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, ΓI,J(𝑁𝑣−1)) 

                       ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽
1 (𝑁𝑣−2

̅̅ ̅̅ ̅̅ )) ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻I,J
1 (𝑁𝑣−2)) 
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                       ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽
2 (𝑁𝑣−3

̅̅ ̅̅ ̅̅ )) ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻I,J
2 (𝑁𝑣−3)) 

                                             … 

                       ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽
𝑣−2(𝑁1

̅̅ ̅)) ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽
𝑣−2(𝑁1)) 

               ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽
𝑣−1(𝑁̅)) ≅ 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽

𝑣−1(𝑁)). 

Note that the last module in the above isomorphisms is finitely generated by the hypothesis (for 𝑡 =
 𝑣 −  1, ℓ =  0, 𝑖 =  0). Hence 𝐸𝑥𝑡𝑅

1(𝑅/𝐼, 𝑁𝑣−2
̅̅ ̅̅ ̅̅  ) is finitely generated. Hence the statement (**) is 

proved, and so that the Claim also is proved. Thus, we have proved the theorem in the case 𝑚 =  0. 

Assume that 𝑚 >  0 and the theorem is true for all values <  𝑚. By the inductive assumption, 

𝐻𝐼,𝐽
0 (𝑁)  =  𝛤𝐼,𝐽(𝑁) is (𝐼, 𝐽)-cofinite, and so the module 𝐸𝑥𝑡𝑅

𝑗
(𝑅/𝐼, 𝑁̅) is finitely generated for all 𝑗 ≤

 𝑚 +  𝑛 by the sequence (1) and by the hypothesis. Hence, we obtain by (1), (1’) and the hypothesis 

that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁1) ≅  𝐸𝑥𝑡𝑅
𝑗+1

(𝑅/𝐼, 𝑁̅) is finitely generated for all 𝑗 ≤  𝑛 + 𝑚 − 1. Moreover, we have 

by (1’) and (1) that 

𝐻𝐼,𝐽
𝑖 (𝑁1) ≅ 𝐻𝐼,𝐽

𝑖+1(𝑁̅) ≅ 𝐻𝐼,𝐽
𝑖+1(𝑁) ∈ 𝑆𝑛(𝐼, 𝐽) 

for all 𝑖 ≤  𝑚 − 1 by the hypothesis. On the other hand, by (1) and (1’), we have 

𝐸𝑥𝑡𝑅
ℓ (𝑅/𝐼, 𝐻𝐼,𝐽

𝑡+𝑖−ℓ(𝑁1)) ≅ 𝐸𝑥𝑡𝑅
ℓ (𝑅/𝐼, 𝐻𝐼,𝐽

𝑡+𝑖+1−ℓ(𝑁̅)) 

                                              ≅ 𝐸𝑥𝑡𝑅
ℓ (𝑅/𝐼, 𝐻𝐼,𝐽

𝑡+𝑖+1−ℓ(𝑁)) 

for all 1 ≤  𝑡 ≤  𝑛 −  1, 0 ≤  ℓ ≤  𝑡 −  1 and 𝑖 ≤  𝑚 −  1. Moreover, we get by the hypothesis of 𝑁 

that the last module in the above isomorphism is finitely generated for all 1 ≤  𝑡 ≤  𝑛 −  1, 0 ≤  ℓ ≤

 𝑡 −  1 and 𝑖 ≤  𝑚 −  1. Hence the 𝑅-module 𝐸𝑥𝑡𝑅
ℓ (𝑅/𝐼, 𝐻𝐼,𝐽

𝑡+𝑖−ℓ(𝑁1)) is finitely generated for all 1 ≤

 𝑡 ≤  𝑛 − 1, 0 ≤  ℓ ≤  𝑡 −  1 and 𝑖 ≤  𝑚 −  1. Therefore, by the inductive assumption for 𝑅-module 

𝑁1, we obtain that the module 𝐻𝐼𝐽
𝑖 (𝑁1) is (𝐼, 𝐽)-cofinite for all 𝑖 ≤  𝑚 −  1. Hence, 𝐻𝐼,𝐽

𝑖 (𝑁) ≅

𝐻𝐼,𝐽
𝑖−1(𝑁1) is (𝐼, 𝐽)-cofinite for all 𝑖 ≤  𝑚, and so the proof of our theorem is completed.  

Note that Theorem 1.2 is an extension of a theorem of Khazaei-Sazeedeh in [10, Thm 2.11]. 

Moreover, by replacing 𝑛 =  2 in Theorem 1.2 we get an immediate result as the following 

consequence. 

Corollary 2.6. Let 𝑚 be a non-negative integer such that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 

𝑗 ≤  𝑚 +  2 and 𝐻𝐼,𝐽
𝑖  (𝑁)  ∈  𝑆2(𝐼, 𝐽) for all 𝑖 ≤  𝑚. If 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽

1+𝑖(𝑁)) is finitely generated for 

all 𝑖 ≤  𝑚, then 𝐻𝐼,𝐽
𝑖 (𝑁) is (𝐼, 𝐽)-cofinite for all 𝑖 ≤  𝑚. 

For the last of this section, before proving Theorem 1.3 we need to recall the following lemma on 

the class 𝑆𝑛(𝐼, 𝐽) and the modules 𝐻𝐼,𝐽
𝑖 (𝑁). 

Lemma 2.7. (see [14, Thm 3.1]) Let 𝑛 be a non-negative integer. Let 𝑁 be an 𝑅-module such that 

𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗. Let 𝑡 be a non-negative integer such that 𝐻𝐼,𝐽
𝑖 (𝑁) = 0 for 

all 𝑖 ≠  𝑡, 𝑡 +  1. Then 𝐻𝐼,𝐽
𝑡+1(𝑁) ∈ 𝑆𝑛(𝐼, 𝐽) if and only if 𝐻𝐼,𝐽

𝑡 (𝑁) ∈ 𝑆𝑛+2(𝐼, 𝐽).  

We now are ready to prove the last theorem in this note. 

Proof of Theorem 1.3. By the hypothesis we have that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗 

and 𝐻𝐼,𝐽
0 (𝑁)  is in dimension <  2. From this we obtain by [16, Thm 1.1, (i)] that 𝐻𝐼,𝐽

0 (𝑁) is an (𝐼, 𝐽)-

cofinite module over 𝑅. It yields that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝐻𝐼,𝐽
0 (𝑁)) is finitely generated for all 𝑗 ≥  0. Hence 

𝐻𝐼,𝐽
0 (𝑁) belongs to the class of modules 𝑆2(𝐼, 𝐽). 

Note that since 𝐼 is a principal ideal, there exists an element 𝑎 ∈  𝐼 such that 𝐼 =  (𝑎). Hence 

𝐻𝐼,𝐽
𝑖 (𝑁) ≅ 𝐻𝑖(𝐶𝑎,𝐽

 ⊗𝑅 𝑁) for all 𝑖 ≥  0, where 𝐶𝑎,𝐽
 = (0 →  𝑅 →  𝑅𝑎,𝐽  →  0) is a complex (see [1, 

Def 2.1, Def 2.2 and Thm 2.4]). Thus, we obtain that 𝐻𝐼,𝐽
𝑖 (𝑁)  =  0 for all 𝑖 ≠ 0, 1. Hence, the conditions 
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in the hypothesis of Lemma 2.7 are satisfied for number 𝑡 =  0. Keep in mind that 𝐻𝐼,𝐽
0 (𝑁) ∈ 𝑆2(𝐼, 𝐽) 

by the above paragraph, and hence the module 𝐻𝐼,𝐽
1 (𝑁) belongs to the class of modules 𝑆0(𝐼, 𝐽) by again 

Lemma 2.7. 

On the other hand, by again the hypothesis that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗 ≥  0 and 

𝐻𝐼,𝐽
0 (𝑁) is in dimension <  2, we obtain by [16, Thm 1.1, (ii)] that 𝐻𝑜𝑚𝑅(𝑅/𝐼, 𝐻𝐼,𝐽

1 (𝑁)) is finitely 

generated. Therefore, since 𝐻𝐼,𝐽
1 (𝑁)  ∈  𝑆0(𝐼, 𝐽), we get by the definition of class 𝑆0(𝐼, 𝐽) that the 𝑅-

module 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝐻𝐼,𝐽
1 (𝑁)) is finitely generated for all 𝑗 ≥  0, that is, the 𝑅-module 𝐻𝐼,𝐽

1 (𝑁) is (𝐼, 𝐽)-

cofinite, as required.  

By replacing 𝐽 =  0 in Theorem 1.3, we obtain the following corollary on the cofiniteness of local 

cohomology modules in [14, Thm 3.4]. 

Corollary 2.8. Let 𝐼 be a principal ideal of 𝑅 and 𝑁 an 𝑅-module such that 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely 

generated for all 𝑗 ≥  0. Assume that the module 𝐻𝐼
0(𝑁) is in dimension <  2. Then the 𝑅-module 𝐻𝐼

𝑖(𝑁) 

is 𝐼−cofinite for all 𝑖 ≥  0. 

As a consequence of Corollary 2.8 we obtain a theorem of K. I. Kawasaki in the paper [13] as the 

following result. 

Corollary 2.9. (see [13, Thm 1]) Let 𝐼 be a principal ideal of 𝑅 and 𝑁 a finitely generated 𝑅-module. 

Then 𝐻𝐼
𝑖(𝑁) is 𝐼−cofinite for all 𝑖 ≥  0. 

Proof. Since 𝑁 is finitely generated, we obtain that the 𝑅-module 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated 

for all 𝑗 ≥  0, and 𝐻𝐼
0(𝑁) is in dimension <  2. Therefore, the conclusion of the corollary follows from 

Corollary 2.8.  

Finally, we give an example on a non-finitely generated 𝑅-module 𝑁 satisfying the assumption of 

Theorem 1.3. 

Example 2.10. Let 𝑅 =  𝑘[𝑋] be the ring of polynomials in one variable 𝑋 with coefficients in field 

𝑘. Let 𝐼 =  (𝑋) be a pricipal ideal of 𝑅. Note that since 𝑅 is a PID, any divisible module is injective. 

The injective hull of 𝑅 is the fraction field 𝐾 =  𝑘(𝑋). Since 𝐾/𝑅 is divisible, it is injective. Hence, an 

injective resolution of 𝑅-module 𝑅 is given by 0 →  𝑅 →  𝐾 →  𝐾/𝑅 →  0. We apply functor 𝛤𝐼(−) 

and calculate the local cohomology as the cohomology of the complex 0 →  𝛤𝐼(𝐾)  →  𝛤𝐼(𝐾/𝑅)  →  0. 

We then obtain that 𝐻𝐼
0(𝑅)  =  0 and 𝐻𝐼

𝑗
(𝑅)  =  0 for all 𝑗 >  1. We also have 

𝐻𝐼
1(𝑅)  =  𝛤𝐼(𝐾/𝑅)  =  𝑅𝑋/𝑅 =  𝑘[𝑋, 𝑋−1]/𝑘[𝑋]. 

We set 𝑁 =  𝐻𝐼
1(𝑅). We obtain by [17, Exercise 4.2.4 (i)] that the 𝑅-module 𝑁 is not finitely 

generated. Moreover, since 𝐼 is a principal ideal, we get that 𝑁 =  𝐻𝐼
1(𝑅) is 𝐼-cofinite by [13, Thm 1]. 

Hence 𝐸𝑥𝑡𝑅
𝑗

(𝑅/𝐼, 𝑁) is finitely generated for all 𝑗 ≥  0. On the other hand,  

𝑆𝑢𝑝𝑝𝑅(𝑁)  =  𝑆𝑢𝑝𝑝𝑅(𝐻𝐼
1(𝑅)) ⊆ 𝑆𝑢𝑝𝑝𝑅(𝑅) ∩ 𝑉(𝐼) = 𝑉(𝐼) ⊆ 𝑀𝑎𝑥(𝑅). 

It yields that 𝑑𝑖𝑚𝑆𝑢𝑝𝑝𝑅(𝑁)  <  2. Thus, 𝑁 is an in dimension <  2 module. We then have 𝐻𝐼,𝐽
0 (𝑁) =

𝛤𝐼,𝐽(𝑁) is in dimension <  2 for any ideal 𝐽 of 𝑅 (since the class of in dimension <  2 module is a Serre 

subcategory (cf. [18, Section 4]) and 𝛤𝐼,𝐽(𝑁) is a submodule of 𝑁). Therefore, we have shown that 𝑁 is 

a non-finitely generated 𝑅-module satisfying the hypothesis of Theorem 1.3. 
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