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Abstract: The quantum phase transition in binary Bose Gases is studied using the Cornwall-Jackiw-

Tomboulis effective potential approach in the double-bubble approximation, which preserves the 

Goldstone theorem. Its main feature is that the transition is second order occurring at ultra-cold 

temperatures associated with the type of inverse symmetry-breaking transition occurring when the 

chemical potential reaches a critical value. However, it cannot simultaneously occur for the two 

components of a binary mixture of Bose gases.  
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1. Introduction* 

Bose gases can consist of bosons or pairs of Fermi particles bound to have integer spin, which obey 

Bose-Einstein statistics. Symmetric wave functions describe their state, and the Pauli principle does not 

limit the filling number. The system can be a homogeneous or a mixture system, The Bose system can 

have an arbitrary number of particles in a quantum state. 

Phase transitions are still one of the most interesting problems in modern Physics. There have been 

a lot of works dealing with phase transitions in binary-mixture quantum systems [1-6]. However, in 

almost works there have been studied thermal phase transition while quantum phase transition can occur 

in the system [7-9]. Quantum phase transitions occur in the systems as the quantum fluctuations of 

physical quantities become largest at a certain temperature, in which particle density reaches a maximum 

value at a critical state [10]. This means the system’s quantum state changes from one state to another 

at a certain temperature when the chemical potential or the coupling constant reaches a critical value. 

Its scenarios are determined by examining the dependence of order parameters characterizing the system 
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on the chemical potential or coupling constant at each temperature value. The order parameters of the 

system can be of field operators, condensation densities, energy density and thermodynamic potential, 

etc. In particular, there are three scenarios of the phase transition in the system: the scenario of symmetry 

restoration (SR) in which the symmetry, broken at zero order parameter, gets restored at higher order 

parameter; the scenario of symmetry non-restoration (SNR) in which symmetry, broken at zero  

order parameter, no longer gets restored as order parameter is increased and, lastly, the scenario of  

inverse symmetry breaking (ISB) where the symmetry turns out to be broken as the order parameter is 

increased [11].  

In theory, quantum phase transition can occur in a quantum system at ultra-cold temperature when 

the chemical potential (µ) or coupling constant (λ) changes, reaching a critical value. However,  

experiments have also proved that it is possible to create many types of phase transitions by adjusting 

parameters such as temperature, the chemical potential, or the coupling constant of the system. 

Furthermore, Bose gases become quantum fluids when cooled at ultra-cold temperatures and a special 

property of liquid is superfluidity. A fluid is superfluid if the Landau criteria are satisfied. That means, 

the speed of sound in the momentum space of the fluid reaches a critical value and follows the formula:  

minc

E
v

k

 
  

 
,                      (1) 

where E is the energy of the mode excited sound wave in the system [10]. Specially, BEC occurs when 

Bose gases are cooled to ultra-cold temperatures, reaching their BEC critical temperature value -Tc  (near 

0K). Indeed, successful research on BEC of Bose gases mixtures won the Physics Nobel Prize in 2001. 

That achievement belongs to the research group of Wieman, Cornell and Ketterle of Colorado State 

University (USA), obtained by cooling Bose gases to a temperature of 170 nK [12]. Therefore, the BEC 

process of Bose gases is a form of thermal phase transition, and the temperature is below 200 nK called 

ultra-cold temperature.   

In this work, we consider binary ultra-cold Bose Gases to investigate the order and types of their 

quantum phase transition and superfluidity. Binary Bose gases can be miscible or immiscible mixtures. 

To have a deeper insight into the quantum phase transition in binary ultra-cold Bose gases, we carry out 

a study of the dependence of their field condensates on chemical potential at ultra-cold temperatures to 

find out how many types and the order of quantum phase transition can happen when the chemical 

potential changed. 

This work is organized as follows. In Section 2, we present the research methods of quantum phase 

transition in binary ultra-cold Bose gases. The results and discussions are presented in Section 3. 

Conclusions are given in Section 4.  

2. Research Methods 

We investigate the scenarios and the order of quantum phase transition in a binary mixture of Bose 

gases by using the Cornwall–Jackiw–Tomboulis (CJT) effective potential approach. This approach is 

considered to be of an adequate and reliable approach for the study of phase transition. However, to 

determine the CJT effective potential, a certain approximation must be used [13, 14]. Therefore, we use 

the CJT effective potential approach in the double-bubble approximation which preserves the Goldstone 

theorem, and apply quantum phase transition field theory to binary Bose gases. The loop expansion 

stops at the 2-loop approximation and all transfer function matrices of Bose gases components must be 

transformed to diagonalization to recover the Goldstone theorem. To begin with, we first write the 

Lagrangian for the binary mixture of Bose gases: 

https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/however
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/by
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/furthermore
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/gas
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/quantum
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/fluid
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/of


D. T. M. Hue / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 107-115 

 

109 

 
2 2 2 2

* *

1 12

, ,
2 2

L i i V
t m t m

     
      

         
    

h h
h h

                          (2) 

                       
        

2 2 2
* * * * * *1 2

1 2, ,
2 2 2

V
  

                   
 

in which µ1 (µ2) denotes the chemical potential of the field  ( ), m1 (m2) the mass of the bosons, λ1, 

λ2, and λ the coupling constants which are expressed through s-wave scattering lengths a1, a2, and a12 of 

the corresponding collisions 1 + 1, 2 + 2 and 1 + 2 as follows: 

 

2 2 2
1 2 12 1 2

1 2 12

1 2 12 1 2

4 4 4
, , ,

a a a m m
m

m m m m m

  
     



h h h
,                             (3)    

where m12 is reduced mass.   

Next, to get a simple and easy process in research, we consider the binary mixture of Bose gases 

consisting of two components, namely.
85Rb , and

87Rb . In addition, to become a miscible binary Bose 

gas, the coupling constant must not only always be positive but also satisfy the following condition [5]:  

2

1 24 0    .                                                             (4) 

Hence, e.g. we choose the values of parameters in the range which can be easily adjusted in the Lab 

[12] as follows: 

      12 2 12 2 12 2 12

1 2 15.10 , 0,4.10 , 10 , 5.10eV eV eV eV              for the miscible case;    (5) 

      12 2 12 2 12 2 12

1 2 15.10 , 0,4.10 , 4.10 , 5.10eV eV eV eV               for the immiscible case.   (6) 

3. Results and Discussion 

3.1. Results 

Based on the results in [14] and by restricting ourselves to an improved double-bubble 

approximation we arrive at the CJT effective potential which preserves the Goldstone theorem,  
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2

,              (7) 

where
0 ,

0  are the corresponding condensates of ,  fields which are the non-trivial solutions to the 

gap equations 
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yielding,  
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In addition, obtained the inverse propagators from the Schwinger-Dyson equations 
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in which,                                                                                                                                            (13) 
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   and 
3
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n
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
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We obtain expressions of the Nambu Goldstone energy modes in the momentum space by  

taking traces of the matrices (12):  

2 2 2 2

1 1 2 2

1 1 2 2

,
2 2 2

k k k k
E c E c

m m m m

   
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   

r r r r

.                            (16) 

At ultra-cold temperatures, k is so small that Eq (16) becomes  

                                         1 2
1 2

1 2

,
2 2

c c
E k E k

m m
  .                             (17) 

Therefore, the speeds of sound in the binary Bose gases in this case read as follows: 

1 1 2 2
1 2

1 2

,
2 2

s s

E c E c
v v

k m k m
    .                                 (18) 

In this work, to perform a numerical study of quantum phase transition scenarios in the system, we 

used formulas (9) and (10) to draw the dependence of
0 , 

0 on the chemical potential µ2 at a definite 

chemical potential µ1 and ultra-cold temperatures. Firstly, we consider the binary Bose gases at  

T = 150 nK in which (5) is satisfied. This is an example of the miscible ultra-cold binary Bose gases. 

The results are shown in Fig. 1, which indicates that the symmetry of the first quantum condensate 

component 
0 is broken at

12

2 1,07.10 eV  or inverse symmetry breaking quantum transition (ISB) 

occurs when chemical potential reaches this critical value. It also represents another scenario of quantum 

phase transition in the system for the second component
0 : the phase changes to the symmetry 

restoration phase (SR) when µ2 reaches the second critical value, 
12

2 1,53.10 eV  . 
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Figure 1. The dependence of order parameter ϕ0, ψ0 on µ2 at λ1 = 5.010−12 eV−2, λ2 = 0,410−12 eV−2,  

λ = 10−12 eV −2, µ1 = 5.010−12 eV and T = 150 nK.  

To get better understanding of quantum phase transition in this binary miscible Bose gases satisfied 

(5), we draw the dependence of order parameter ϕ0, ψ0 on µ2 at the so low temperature, near 0K  

(T = 5 nK, for instance). Its results are shown in Fig. 2. This figure indicates that the symmetry of the 

second quantum condensate component 
0 is broken at 12

2 2 0,93.10 eV    or inverse symmetry 

breaking quantum transition (ISB) occurs when chemical potential reaches a critical value
12

2 2 0,93.10 eV    . Besides, it also shows that the scenario of quantum phase transition in the 

system for the first component 
0 is the symmetry restoration phase transition (SR) when µ2 reaches the 

critical value, 12

2 2 2.10 eV    .  

 

Figure 2. The dependence of order parameter ϕ0, ψ0 on µ2 at λ1 = 5.10−12 eV−2,  

λ2 = 0,410−12 eV−2, λ=10−12 eV −2, µ1 = 5.010−12 eV and T = 5 nK. 

 A question is that, immediately arises whether or not the scenarios SR and ISB, presented in the 

foregoing cases, possibly exist in nature. To answer this, one must investigate the T dependence of the 

specific heat at constant volume based on the formula [10-11]. 
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The obtained results are presented in Figs 3 and 4. 

 

Figure 3. The dependence of the specific heat at constant volume on chemical potential µ2 at T = 150 nK  

and λ1 = 5.010−12 eV−2, λ2 = 0,410−12 eV−2, λ=10−12 eV −2, µ1 = 5.010−12 eV. 

 

Figure 4. The dependence of the specific heat at constant volume on chemical potential µ2  

at T = 5 nK and λ1 = 5.010−12 eV−2, λ2 = 0,410−12 eV−2, λ=10−12 eV −2, µ1 = 5.010−12 eV.  

The CV (T) - graph plotted in Fig. 3 proves that the ISB scenario for the first component possibly 

exists in nature because its corresponding specific heat is positive, CV > 0. On the other hand, the 

negative value of specific heat, CV < 0 in Fig. 3 also implies that the SR of the second component is 

impossible to exist [11]. Besides, Fig. 4 shows that both scenarios SR and ISB can not occur. 

Moreover, based on Fig. 1, one can infer that the order of quantum phase transition in binary mixtures 

of Bose gases is second order because of the monotonous variation of the order parameters to zero. This 

https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/furthermore
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conclusion is confirmed again in Fig. 2, because its heat capacity at constant volume has a singular 

point at the critical state.  

Next, we consider the immiscible case of the binary Bose gases satisfied (6) at ultra-cold 

temperature, T = 5 nK. Taking similar steps as above, the results are shown in Figs. 5 and 6.  

 

Figure 5. The dependence of order parameter ϕ0, ψ0 on µ2 at T = 5 nK, and λ1 = 5.10−12 eV−2,  

λ2 = 0,410−12 eV−2, λ= 4.010−12 eV −2, µ1 = 5.010−12 eV. 

 

Figure 6. The dependence of the specific heat at constant volume on chemical potential µ2 at the temperature  

T = 5 nK, and λ1 = 5.010−12 eV−2, λ2 = 0,410−12 eV−2, λ= 4.010−12 eV −2, µ1 = 5.010−12 eV. 

Fig. 5 shows that the scenario of quantum phase transition is ISB for the first condensate component

0 , and SR for the second component
0 . However, Fig. 6 confirms that only the ISB scenario occurred 

for the first component in the binary ultra-cold Bose gases.   

3.2. Discussion 

One can see that the Lagrangian (1) is invariant under the Unita U(1)xU(1) phase transformation. 

Thus, there must exist two massless bosons called Nambu Goldstone bosons according to Goldstone’s 

theorem [15]. 

https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/heat
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/capacity
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/a
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/at
https://dictionary.cambridge.org/vi/dictionary/english-vietnamese/the


D. T. M. Hue / VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 4 (2024) 107-115 

 

114 

Here, Eq (19) is not only expressing the superfluidity condition (1) for the Bose gases but also 

preserving Goldstone’s theorem: Appearing two Nambu Goldstone bosons in the system, Goldstone’s 

theorem is valid. That means the binary mixture of Bose gases at ultra-cold temperature is a 

superfluidity. It means that the model and method of research in this paper are matched and all results 

we got in this paper are accurate.  

Furthermore, Fig. 4 also proves that BEC occurs in the binary Bose gases at temperature T, near 0K. 

Because, at T = 5 nK, all bosonic particles in the system are in the BEC state. They are at the BEC phase 

– they are also at the same quantum state. Then, can not occur quantum phase transition in the system 

for this case. That means the results obtained in this paper are reliable and accurate.  

In addition, the type of the transition agrees with the results of the theoretical works. However, 

experiments can not be carried-outat lower 150 nK. Therefore, the article’s results can suggest how to 

get the expected phases for the experimental process in the Lab.  

4. Conclusions 

    By using the CJT effective potential approach, we focused on the investigation of the quantum 

phase transition in binary mixture Bose gases at ultra-cold temperatures, the main results we found are 

as follows: 

i) Quantum phase transition in the system is second order when chemical potential changes;  

ii) Only the ISB scenario of quantum phase transition in the binary ultra-cold Bose gases can occur 

and exist in nature for one component; 

iii) We confirmed that a Bose gas is superfluid and quantum condensation occurs in the system at 

ultra-cold temperature (nK) when the chemical potential reaches the critical point. However, 

experimental results have shown that phase transition in Bose gases is of first order and follows the 

restoration symmetry scenario. Hence, the first and second results mentioned above can be seen as a 

discovery of this work. 
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