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Abstract: Moiré photonic lattices provide tunable geometric configurations that enable the 

formation and control of topological solitons. These solitons depend on the interplay between the 

underlying lattice geometry and high-order nonlinearities such as third and fifth-order effects. In this 

work, we employ Moiré lattices generated in a high-order nonlinear material to investigate the 

existence of topological solitons under diverse geometries, which are controlled by the twisting 

angle of sublattices. The formation of solitons in both commensurate and incommensurate Moiré 

lattice configurations allows us to explore deeper into the impact of geometric transitions on soliton 

stability and localization. The findings have potential applications in advanced photonic systems, 

including topological photonics and all-optical switching, where soliton stability and control are 

significant factors that can be optimized to enhance performance and functionality. 
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1. Introduction  

Moiré photonic lattices have attracted significantly extensive interests in recent years, particularly 

in the context of the search for topological solitons in high-order nonlinear materials. This is due to the 

unique structural dynamics and enhanced stability of such lattices. Moiré patterns are created by 

superimposing two periodic structures with a slight rotational misalignment [1]. The concept of Moiré 

patterns has been known and utilized in various fields such as art, textile industry, architecture, and 

twistronics for many years [2-4]. In 2018, researchers discovered that stacking two layers of graphene 

with a “magical” offset angle of 1.1 degrees could induce superconductivity [5]. Additionally, these 

patterns have been used to manipulate cold atoms based on graphene-based systems [6, 7]. The potential 

of Moiré lattices to investigate a wide range of unique physical phenomena has recently prompted a 

surge of interest in the fields of optics, photonics, and condensed matter physics. They are among the 

tools utilized for the control and manipulation of light propagation, including delocalization-localization 

of light, magic-angle lasers, and topological defects [8-10] and can be enabled to enhance spatial 

dispersion and manipulate light on metasurface optics [11, 12]. The mutual rotation of two identical 

sublattices allows the generation of commensurable and incommensurable Moiré patterns with tunable 

amplitudes and twist angles. This tunability is crucial for studying the localization and delocalization of 

light, as well as for investigating the physics of flat-band structure [13].  

In the fields of mathematics and physics, a soliton is defined as a nonlinear, self-reinforcing, 

localized wave packet that maintains its shape while propagating at a constant velocity [14]. This 

stability is noteworthy, as solitons are capable of re-establishing their form even after colliding with 

other solitons [15]. Solitons provide stable solutions to a wide class of weakly nonlinear dispersive 

partial differential equations, which describe various physical systems. A topological soliton, also 

known as a topological defect, is a solution to a set of partial differential equations that is stable against 

decay to the trivial solution. Vortex solitons are a specific type of topological soliton characterized by a 

phase singularity, which means they have a point where the phase of the wave function is undefined. 

This results in a "vortex" structure, where the wave function circulates around the singularity. Vortex 

solitons have been studied for their potential applications in various fields such as optical tweezers that 

trap particles [16], enlarging the capacity of optical communication [17] and high-order quantum 

entanglement [18]. Their unique properties and stability make them valuable for understanding complex 

physical phenomena and developing advanced technological applications. In nonlinear optics, 

fundamental solitons in the media with saturable [19] and vortex solitons with cubic (Kerr) [20] on 

Moiré lattices have been studied. The nonlinear cubic SchrÖdinger equation with external lattices 

corresponds to numerous optical materials such as potassium niobate (KNbO3) [21] or lithium niobate 

(LiNbO3) [22]. For carbon disulfide (CS2) material, which elucidates high-order nonlinearities where 

the competition between cubic and quintic nonlinearities leads to unique soliton dynamics [23].  

Both third-order and fifth-order nonlinear optical media can support solitons, but the third-order 

Kerr term will exhibit catastrophic self-focusing if the beam intensity exceeds a threshold [24]. In the 

presence of fifth-order nonlinearity, the system becomes more stable because the self-defocusing effects 

of the fifth-order term counteract the self-focusing. The solitons in these competing cubic-quintic 

nonlinear systems are more robust and resilient to external perturbations, contributing to their increased 

stability. 

In this work, we investigated the formation and stability of topological solitons in a high-order 

nonlinear material within Moiré photonic lattices. By using square operator method (SOM), we explored 

the different configurations that were controlled by the twisting angles of sublattices and how they 

influence the existence of solitons and behavior of soliton characteristics. This method allowed us to 

examine the impact of both commensurate and incommensurate Moiré lattice structures on soliton 
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formation. We then systematically analyzed the stability of these solitons by doing direct numerical 

simulation using split-step Fourier method. 

2. Model and Method 

In the paraxial approximation [24], the propagation of laser beams in a nonlinear optical medium is 

governed by the nonlinear Schrodinger equation (NLSE), written for the complex envelope A(x,y,z) of 

the electric field as the following:  

2𝑖𝑘
𝜕𝐴

𝜕𝑧
+

𝜕2𝐴

𝜕𝑥2 +
𝜕2𝐴

𝜕𝑦2 + 2𝑘2(𝛿𝑛 + 𝑛NL(|𝐴|2))𝐴 = 0,                       (1) 

where 𝑘 = 𝜔/𝑐 is wavevector, 𝛿𝑛 is the variation of linear refractive index and 𝑛NL(|𝐴|2) is a 

contribution of nonlinear refractive index. The latter term is a function of the beam’s intensity. To 

account for the higher-order nonlinear material, we will consider carbon disulfide as a specific case in 

this work as its nonlinear optical properties were reported in [23]. The total refractive index of CS2 can 

be expressed as 𝑛 =  { 1 +  𝑅𝑒[𝜒(1) + 3𝜒(3)|𝐴|2 + 10 𝜒(5)|𝐴|4]}1/2, with 𝑅𝑒[𝜒(3)] ≈ 2.8 ×

10−21(𝑚2/𝑉2), 𝑅𝑒[𝜒(5)] ≈ −1.2 × 10−39(𝑚4/𝑉4) at wavelength 920 nm. By substituting this into 

(1), we obtain following equation: 

2𝑖𝑘
𝜕𝐴

𝜕𝑧
+

𝜕2𝐴

𝜕𝑥2 +
𝜕2𝐴

𝜕𝑦2 +
𝜔2

𝑐2 [𝛿𝑛 𝐴 + 3𝜒(3)𝐴|𝐴|2 + 10𝜒(5)𝐴|𝐴|4] = 0.               (2) 

After normalizing, the equation (2) turns into:  

𝑖
𝜕𝜓

𝜕𝑍
+

1

2
(

𝜕2𝜓

𝜕𝑋2 +
𝜕2𝜓

𝜕𝑌2) + 𝐼(𝑟)ψ + |𝜓|2ψ − (𝛽 − 𝑖𝛾)|𝜓|4ψ = 0.  (3) 

Here 𝑋 = 𝑥/𝑤0, 𝑌 = 𝑦/𝑤0, and 𝑍 = 𝑧/𝑙, with 𝑤0 being the initial beam waist and 𝑙 = 𝑛0𝜔𝑤0
2/𝑐  a 

characteristic length. The rescaling intensity is 𝐼𝑟 = 2𝑐2/3𝜔2𝑤2𝜒(3) and the normalized field equals to 

𝜓 = 𝐴/√𝐼𝑟. The coefficients 𝛽 and 𝛾 nonlinearities can be derived from the optical properties of CS2, 

satisfying the relation (𝛽 − 𝑖𝛾) = −
20

9

𝑐2

𝜔2𝑤0
2

𝜒(5)

[𝜒(3)]
2. After doing the calculations, we get the values 𝛽 =

0.028 and 𝛾 = 0.  Therefore, this conservative case will ensure the existence of stable solitons. We then 

apply equation (3) with Moiré photonic lattices and the final model to search for soliton solutions is 

presented as: 

𝑖
𝜕𝜓

𝜕𝑍
+

1

2
𝛻⊥

2𝜓 + 𝐼(𝑟)ψ + |𝜓|2𝜓 − 0.028|𝜓|4𝜓 = 0,        (4) 

where ψ is the dimensionless light field amplitude, 𝑍 is the propagation distance,  𝑟 = (𝑋, 𝑌) are the 

transverse coordinates, ∇= (∂𝑋 , ∂𝑌) is the gradient operator and 𝐼(𝑟) = |𝐼1𝑉(𝑅(θ)𝑟) + 𝐼2𝑉(𝑟)|2 is the 

function describing the Moiré lattices created by the superposition of two square sublattices with 𝐼1, 𝐼2 

are the amplitudes of both square sublattices, 𝑉(𝑟) is the potential of the sublattices [6]. In Fig. 1 there 

are shown some configurations of Moiré lattices according to commensurate and incommensurate cases. 

In order to obtain the soliton solutions of Eq. (4), we use SOM. Finding soliton solutions for complex 

function U(r) and propagation constant 𝜇 in formula 𝜓(𝑟, 𝑧) = 𝑈(𝑟)𝑒𝑖μ𝑧.  

−𝜇𝑈 +
1

2
(𝑈𝑥𝑥 + 𝑈𝑦𝑦) + 𝐼(𝑥, 𝑦)𝑈 + |𝑈|2𝑈 − 0.028|𝑈|4𝑈 = 0   (5) 

Starting with the operator ℒ0: 

ℒ0𝑈 = −𝜇𝑈 +
1

2
𝛥𝑈 + 𝐼(𝑋, 𝑌)𝑈 + 𝛾|𝑈|2𝑈 − 𝛽|𝑈|4𝑈    (6) 
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Here, 𝜇 represents the eigenvalue or propagation constant. By decomposing ℒ0 into its real and 

imaginary components and applying the Fourier transform, we derive the sub-operators 𝑇1 and 𝑇2: 

𝑇1 = Re (ℱ−1 (
ℱ(ℒ0𝑈)

𝐾2+𝑐
)) ,  𝑇2 = Im (ℱ−1 (

ℱ(ℒ0𝑈)

𝐾2+𝑐
))    (7) 

By decomposing the complex amplitude ψ into its real and imaginary parts, ψ = 𝑈𝑟𝑒(𝑥, 𝑦) +
𝑖𝑈𝑖𝑚(𝑥, 𝑦),  and substituting into the operator ℒ0𝑢, we get the sub-operators ℒℛℯ  and ℒℐ𝓂: 

ℒℛℯ = −𝜇𝑈𝑟𝑒 +
1

2
𝛥𝑈𝑟𝑒 + 𝐼(𝑥, 𝑦)𝑈𝑟𝑒 + 𝛽(𝑈𝑟𝑒

3 + 𝑈𝑟𝑒𝑈𝑖𝑚
2 ) − 𝛾(𝑈𝑟𝑒

2 + 𝑈𝑖𝑚
2 )

2
𝑈𝑟𝑒           (8) 

ℒ𝒾𝓂 = −𝜇𝑈𝑖𝑚 +
1

2
𝛥𝑈𝑖𝑚 + 𝐼(𝑥, 𝑦)𝑈𝑖𝑚 + 𝛽(𝑈𝑖𝑚

3 + 𝑈𝑖𝑚𝑈𝑟𝑒
2 ) − 𝛾(𝑈𝑖𝑚

2 + 𝑈𝑟𝑒
2 )

2
𝑈𝑖𝑚             (9) 

 

a) 

 

b) 

 

c) 
 

d) 

Figure 1. Two square sublattices stacked on top of each other before twisting (a) and Moiré photonic lattices 

with twisting angle 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(5/12), 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(3/4) (commensurate) (b),  

(c) and 𝜃 = 𝑝𝑖/6 (incommensurate) (d). 

After taking the partial derivatives of ℒℛℯ and ℒℐ𝓂 with respect to both 𝑈𝑟𝑒 and 𝑈𝑖𝑚, we obtain the 

elements of the operator ℒ1: 

𝑅11 =
𝜕ℒℛℯ

𝜕𝑈𝑟𝑒
(𝑇1),  𝑅12 =

𝜕ℒℛℯ

𝜕𝑈𝑖𝑚
(𝑇2)              (10) 

𝑅21 =
𝜕ℒℐ𝓂

𝜕𝑈𝑟𝑒
(𝑇1),  𝑅22 =

𝜕ℒℐ𝓂

𝜕𝑈𝑖𝑚
(𝑇2)                  (11) 

Thus, the operator ℒ1 is defined as: 
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ℒ1𝑈 = 𝑅11 + 𝑅12 + 𝑖(𝑅21 + 𝑅22)               (12) 

Then we apply the SOM to find the steady-excited state solutions known as vortex solitons, which 

were introduced by Yang [24]. This method has been shown to be effective for finding steady-state 

solutions in a variety of nonlinear wave equations. With the vortex soliton solutions obtained, we can 

test their stability by performing direct perturbation simulations in real time using the split-step Fourier 

method. 

3. Results and Discussion  

In this section, we present the results of the search for topological solitons in high-order nonlinear 

material with Moiré photonic lattices from commensurate to incommensurate geometries. We look for 

these topological states in the form 𝜓(𝑟, 𝑧) = 𝑈(𝑟)𝑒𝑖μ𝑧 with complex amplitude function U(r) and 

corresponding propagation constant 𝜇. To characterize the properties of the vortex solitons, we based 

on the dependence of power 𝑃 = ∬ |𝑈|2 𝑑2𝑟 and form factor 𝜒 = (∬ |𝑈|4  𝑑2𝑟)
1

2 / 𝑃 on the 

propagation constant 𝜇 [25]. 

3.1. The Different Properties of Fundamental Soliton and Vortex Solitons  

 
 

 

Figure 2. Comparison in power and form factor versus propagation constant 𝜇  between fundamental (𝑃1, 𝜒1) and 

vortex solitons (𝑃2, 𝜒2) versus propagation constant 𝜇 with 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(5/12) (a) and profiles of fundamental 

soliton and phase at point 1 (b), (c) and vortex soliton at point 2 (d), (e). 

In Fig. 2, the graph demonstrates the different properties of fundamental and vortex solitons 

influenced by twist angle 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(5/12) with the equal depth of two sublattices 𝐼1 = 𝐼2 = 2. The 

fundamental solitons, which were reported in [25], display lower power when compared to the vortex 

soliton. As 𝜇 increases, the power rises steadily but it remains smaller in magnitude than that of the 

vortex soliton. The form factor of the fundamental soliton starts relatively high, increasing with 𝜇 and 

the rate of increase is larger than the vortex soliton due to its energy concentration on a single peak, 

which represents a simpler spatial profile. The vortex soliton requires higher power than the fundamental 

soliton to maintain the stability of each peak surrounded center. When 𝜇 increases, the vortex soliton’s 

power rises more rapidly, which reflects the more complex structure of this type of soliton. To be more 

specific, Figs. 2b and 2d show the distinct profiles of the fundamental, the vortex soliton and their 
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phases. The fundamental soliton appears as a single peaked structure that is localized both in space and 

in intensity and this is the simplest soliton solution characterized by a symmetric bell-shaped profile. 

While the vortex soliton consists of multiple peaks forming a ring-like structure and the peaks are 

arranged symmetrically around a central core, the overall structure exhibits phase singularities with 

phase light filed goes from −π to π. The phase distribution is key to the vortex soliton, unlike the 

fundamental soliton, which does not have a constant phase as displayed in Figs. 2c and 2e. Therefore, 

this is the defining feature of the vortex soliton which results in a twist around the vortex core. 

3.2. Investigation of Vortex Soliton in Symmetric Moiré Photonic Lattice (𝐼1 = 𝐼2)  

 
 

 

Figure 3. Power and form-factor versus μ in Moiré lattices with commensurate angle θ = arctan(3/4) (a), 

incommensurate angle θ = pi/6 (b) and beam perturbed propagation (c), (d) at point 3 (unstable vortex soliton) 

and point 4 (stable vortex soliton). 

In the symmetric case, Fig. 3 illustrates the differences in vortex solitons' properties between the 

periodic and aperiodic angles of the Moiré lattice. In Figure 3a, as increases, the power of the soliton 

increases significantly; however, initially, the power decreases slightly to stabilize the soliton, and then 

it increases rapidly, accompanied by an increase in the form factor. Figure 3b displays the required 

power to stabilize the vortex soliton is higher than that of Fig. 3a, but the form factor is higher than that 

of the commensurate case. In contrast to the vortex stable soliton at points 4 and 6, points 3 and 5 show 

the unstable vortex soliton. The delocalization status is caused by the unstable soliton, which has 

numerous tiny peaks surrounding the main core center peaks. While a lot of power is needed to stabilize 
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the stable vortex solitons and focus them on the center peaks. Therefore, the vortex solitons exhibit more 

complex behavior with a steeper rise in power and a smoother increase in the form factor. Although the 

solitons are more strongly localized, the incommensurate angle causes some minor irregularities in the 

intensity distribution. This leads to a more complex soliton profile, indicating that despite the 

asymmetry, the incommensurate lattice can cause stronger localization and potentially improved 

stability. 

3.3. Investigation of Vortex Soliton in Asymmetric Moiré Photonic Lattice (𝐼1 ≠ 𝐼2)   

  

  
 

Figure 4. Power and form-factor versus μ in Moiré lattices with I1 = 2, I2 = 4 with commensurate  

angle θ = arctan(3/4) (a), incommensurate angle θ = pi/6 (b) and beam perturbed propagation  

of points 7, 8 respectively (c), (d). 

Fig. 4 shows the soliton properties of periodic and aperiodic angles with 𝐼1 = 2, 𝐼2 = 4 at the 

asymmetric case. When increasing the depth of the twisting pattern at 𝐼2 = 4, the range of the 

propagation constant increases from 1.2 to 2 for searching the vortex solitons. In both cases from Fig. 4 

signify that the power requirement for stabilizing soliton decreases when compared to symmetric cases 

from Fig. 3. While the form factor increases strongly higher than that of the symmetric cases, which 

indicates that the localization is much higher than that of the ones before and lower energy usage.  

4. Conclusion  

In summary, we demonstrated the possibility of enabling topological solitons in higher-order 

nonlinear material with third and fifth-order competing nonlinearities, supported by Moiré photonic 
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lattices. The Moiré lattice geometry dominates their soliton properties, demonstrating significantly 

stronger localization and higher power for incommensurate lattices compared to commensurate ones, 

illustrating the critical role of lattice design in soliton dynamics. In contrast to previous studies that have 

concentrated on low-order nonlinearities, this work combined third and fifth-order competing 

nonlinearities. By using advanced numerical methods, including split-step Fourier method and the 

squared-operator approach to model and analyze these effects, enabling precise characterization of 

vortex soliton properties such as power, form factor and phase distribution. The fifth-order nonlinearity 

enhances the stability and manageability of vortex solitons, making them promising for use in advanced 

optical systems, including all-optical switches, topological waveguides and robust light-based s 

ignal processors. 
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