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Abstract: In this work, we establish the complete convergence for sequences of arbitrary random 

variables taking values in Hilbert space ℍ with general normalizing sequences. As corollaries, we 

present some convergence results for ℍ -valued martingale difference sequences. Finally, the 

complete convergence of degenerate von Mises statistics is investigated. 
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1. Introduction* 

The concept of complete convergence was introduced by Hsu and Robbins [1] as follows: A 

sequence of random variables {𝑋𝑛, 𝑛 ≥ 1} is said to complete convergence to a constant 𝐶 if 
∑ 𝑃∞

𝑛=1 (|𝑋𝑛 − 𝐶| > 𝜀) < ∞ for all 𝜀 > 0. In the same paper, they proved that a sequence of arithmetic 

means of i.i.d random variables converges completely to the expected value of the variables provided 

their variance is finite. The results of Hsu and Robbins are a fundamental concept in probability theory 

and extended by several authors. 

In 2003, Jajte [2] gave a strong law of large numbers for general weighted sums of i.i.d random 

variables using the class of function 𝜙 which satisfies the following conditions: 

i) For some 𝑑 ≥ 1, 𝜙 is strictly increasing on [𝑑, ∞) with range [0,∞); 

ii) There exist 𝐶 > 0 and a positive integer 𝑘0 ≥ 𝑑 such that 𝜙(𝑦 + 1)/𝜙(𝑦) ≤ 𝐶 for all 𝑦 ≥ 𝑘0; 

iii) There exist constants 𝑎 and 𝑏 such that for all 𝑠 > 𝑑, 𝜙2(𝑠) ∫
1

𝜙2(𝑥)

∞

𝑠
𝑑𝑥 ≤ 𝑎𝑠 + 𝑏. 

Inspired by Jajte [2], Son et al., [3] developed Jajte's technique to obtain the complete convergence 

for randomly weighted sums of negatively associated random variables with general normalizing 
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sequences. Recently, Yang (2007) [4] has proved two strong limit theorems for arbitrary stochastic 

sequences, which generalized the results of Jardas et al., [5] for sequences of independent random 

variables and the results of Liu and Yang (2003) [6] for arbitrary stochastic sequences. Since then, the 

results for the convergence of the sequence of arbitrary random variables have been studied by several 

authors, for instance, W. Yang and X. Yang (2008) [7], Zhang et al., (2014) [8], Wang et al., (2019) [9] 

and so forth. 

The aim of this work is to study the complete convergence for arbitrary stochastic sequences. Let 

{𝑋𝑛, ℱ𝑛, 𝑛 ≥ 1} be a stochastic sequence on the probability space(𝛺, ℱ, 𝑃), that is, the sequence of 𝜎 -

fields {ℱ𝑛, 𝑛 ≥ 0} in ℱ which is increasing in 𝑛 (that is ℱ𝑛 ↑), and ℱ𝑛 is adapted to random variables 𝑋𝑛 

. Let ℍ be a real separable Hilbert space with norm ‖⋅‖. An ℱ -measurable function from 𝛺 to ℍ is 

called ℍ -valued random variable. The expected value of a ℍ -valued random variable 𝑋, denoted by 

𝐸𝑋, is defined by be the Bochner integral (when 𝐸‖𝑋‖ < ∞). 

In this work, basing on the class of functions 𝜙 in [3], we study the complete convergence for 

arbitrary stochastic sequences taking values in Hilbert space ℍ with general normalizing sequences. 

Definition 1. A sequence of ℍ -valued random variables {𝑋𝑛, 𝑛 ≥ 1}is said to complete 

converegence to a constant 𝐶if  

∑ 𝑃∞
𝑛=1 (‖𝑋𝑛 − 𝐶‖ > 𝜀) < ∞,  ∀𝜀 > 0. 

Let 𝑟 ≥ 1. We consider class 𝒦𝑟 and class ℋ𝑟, which are defined in the following way. The class 

𝒦𝑟 consists of all functions 𝜙(𝑥), which satisfies the following conditions: 

i) 𝜙(𝑥) is strictly increasing on [0, ∞) with range[0,∞); 

ii) There exists positive constant 𝑎 and a positive number 𝑛0 such that 

𝜙2(𝑠) ∫
𝑥𝑟−1

𝜙2(𝑥)

∞

𝑠

𝑑𝑥 ≤ 𝐶𝑠𝑟 ,  𝑠 > 𝑛0 (1) 

It can be seen that the class 𝒦𝑟 includes basic and important normalizing functions such as the 

function 𝜙(𝑥) = 𝑥𝑝 with 2𝑝 > 𝑟 and the regularly varying function with index 𝑝 with 𝑝 > 𝑟. We first 

obtain the complete convergence for sequences of arbitrary ℍ -valued random variables with general 

normalizing sequences 𝜙 ∈ 𝒦𝑟  (see Theorem 9). 

The class ℋ𝑟 includes all functions 𝜙(𝑥) which satisfies the following conditions: 

iii) There exist positive constants 𝐶 and a positive integer 𝑛0 such that for all 𝑠 > 𝑛0, 

𝜙(𝑠) ∫
𝑥𝑟−1

𝜙(𝑥)

𝑠

1

𝑑𝑥 ≤ 𝐶𝑠𝑟 . (2) 

Class ℋ𝑟 also contains functions of the form 𝜙(𝑥) = 𝑥𝑝 for any real number 𝑝 and the regularly 

varying function with index 𝑝 with 𝑝 ≥ 𝑟. We establish the results of the complete convergence for the 

sequence of martingale difference with 𝜙 ∈ 𝒦𝑟 ∩ ℋ𝑟 in the Corollary 10. 

2. Preliminaries  

Let ℍ be a real separable Hilbert space. Let (𝛺,ℱ, 𝑃) be a probability space and suppose we are 

given a family of 𝜎 -field {ℱ𝑡, 𝑡 ≥ 0} such that ℱ𝑠 ⊆  ℱ𝑡 ⊂  ℱ for 0 ≤ 𝑠 ≤ 𝑡 and ⋂ ℱ𝑠+𝜀𝜀>0 =  ℱ𝑡. We 

assume further that each ℱ𝑡 is complete relative to the probability measure 𝑃. 

Definition 2. A stochastic sequence of ℍ -valued random variable {𝑋𝑛,ℱ𝑛 , 𝑛 ≥ 1} such that 

𝐸‖𝑋𝑛‖ < ∞, ∀𝑛 ≥ 0 is called ℍ -martingale (respectively ℍ -martingale difference) if 𝐸(𝑋𝑛|ℱ𝑛−1) =
𝑋𝑛−1 (respectively 𝐸(𝑋𝑛|ℱ𝑛−1) = 0). 
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Remark 3. The properties of martingale and difference martingale taking values in the Hilbert space 

are inherited from the real space. Moreover, the Hilbert space can be seen as a 2-smooth Banach space. 

To prove our main results, we need the following lemmas. 

Lemma 4. (See [10], [11]) For any 𝑡 > 0 there exists a positive constant 𝐶 such that for every ℍ -

valued martingale difference sequence {𝑋𝑛,ℱ𝑛, 𝑛 ≥ 1}, for all 𝑛 ≥ 1 

𝐸 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑ 𝑋𝑖
𝑘
𝑖=1 ‖

2
) ≤ 𝐶 ∑ 𝐸𝑛

𝑖=1 ‖𝑋𝑖‖2. 

We recall the definition of regularly and slowly varying functions. 

Definition 3. A positive measurable function 𝑓 defined on [𝑎,∞)(𝑎 ≥ 0) is called regularly varying  

at infinity with index 𝜌, written 𝑓 ∈ ℛ𝒱𝜌, if for each 𝜆 > 0, 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝜆𝑥)

𝑓(𝑥)
= 𝜆𝜌. 

In particular, when 𝜌 = 0, the function 𝑓 is called slowly varying at infinity, written 𝑓 ∈ ℛ𝒱. 

 Clearly, 
log ( )

, log ( ), log (log ( )),
log (log ( ))

p p p p x
x x x x x x

x


  

 

 are regularly varying functions at 

infinity with index 𝑝 where 𝑙𝑜𝑔+(𝑥): = 𝑚𝑎𝑥{𝑙𝑜𝑔 𝑥 , 1}. In particular 𝑙𝑜𝑔𝛽𝑥, 𝛽 ∈ ℝ, exp(𝑙𝑜𝑔𝛽𝑥) , 0 <

𝛽 < 1 are slowly varying at infinity. The following result of Karamata is often applicable. 

Lemma 6. (Karamata’s theorem, [12]) Let 𝑓 ∈ ℛ𝒱𝜌 be locally bounded on [𝑎, ∞). Then 

i) For 𝜎 ≥ −(𝜌 + 1) 

𝑙𝑖𝑚
𝑥→∞

𝑥𝜎+1𝑓(𝑥)

∫ 𝑡𝜎𝑥

𝑎
𝑓(𝑡)𝑑𝑡

= 𝜎 + 𝜌 + 1, 

ii) For 𝜎 < −(𝜌 + 1) (and for 𝜎 = −(𝜌 + 1) if ∫ 𝑡−(𝜌+1)∞

𝑥
𝑓(𝑡)𝑑𝑡 < ∞) 

𝑙𝑖𝑚
𝑥→∞

𝑥𝜎+1𝑓(𝑥)

∫ 𝑡𝜎∞

𝑥
𝑓(𝑡)𝑑𝑡

= −(𝜎 + 𝜌 + 1). 

It essentially says that integrals of regularly varying functions are again regularly varying, or more 

precisely, one can take the slowly varying function out of the integral. For more details regarding 

regularly varying functions, the reader may refer to Bingham [13]. 

Definition 7. (Bingham [13], Theorem 1.5.13) Let ℓ(. )be a slowly varying function. Then, there 

exists a slowly varying function ℓ#(. )(unique up to asymptotic equivalence) satisfying 

𝑙𝑖𝑚
𝑥→∞

ℓ(𝑥)ℓ#(𝑥ℓ(𝑥)) = 1 and 𝑙𝑖𝑚
𝑥→∞

ℓ#(𝑥)ℓ(𝑥ℓ#(𝑥)) = 1. 

The function ℓ# is called the de Bruijn conjugate of ℓ, and (ℓ, ℓ#) is called a (slowly varying) 

conjugate pair. 

For 𝑎, 𝑏 > 0, each of (ℓ(𝑎𝑥), ℓ#(𝑏𝑥)), (𝑎ℓ(𝑥), 𝑎−1ℓ#(𝑥)), ((ℓ(𝑥𝑎))1/𝑎, (ℓ#(𝑥𝑎))1/𝑎) is a 

conjugate pair by [13] (Proposition 1.5.14). R. Bojanic and Seneta [14] proved that if ℓ(. )is a slowly 

varying function satisfying 

𝑙𝑖𝑚
𝑥→∞

(
ℓ(𝜆0𝑥)

ℓ(𝑥)
− 1) 𝑙𝑜𝑔( ℓ(𝑥)) = 0, (3) 

for some 𝜆0 > 1, then for every 𝑎 ∈ ℝ, 

𝑙𝑖𝑚
𝑥→∞

ℓ(𝑥ℓ𝑎(𝑥))

ℓ(𝑥)
= 1, 
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Therefore, we can choose (up to asymptotic equivalence) ℓ#(𝑥) = 1/ℓ(𝑥). In particular, if ℓ(𝑥) =

𝑙𝑜𝑔( 𝑥) then ℓ#(𝑥) = 1/ 𝑙𝑜𝑔( 𝑥). 

Lemma 8. (Bingham [13], Section 1.7.7) If  𝑓 ∈ ℛ𝒱𝜌 with 𝜌 ≠ 0, then there exists 𝑔 ∈ ℛ𝒱1/𝜌 such 

that 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑔(𝑥))

𝑥
= 𝑙𝑖𝑚

𝑥→∞

𝑔(𝑓(𝑥))

𝑥
= 1. 

The function 𝑔 is determined uniquely up to asymptotic equivalence. In particular, if 𝑓(𝑥) =
𝑥𝑎𝑏ℓ𝑎(𝑥𝑏) with ℓ(𝑥) is a slowly varying function and 𝑎, 𝑏 > 0, then 

𝑔(𝑥) = 𝑥
1

𝑎𝑏ℓ
#

1
𝑏 (𝑥

1
𝑎). (4) 

Throughout this work, ℍ is a real separable Hilbert space, by saying  {𝑋𝑛, ℱ𝑛, 𝑛 ≥ 1} is a sequence 

of ℍ -valued arbitrary random variables, we mean that is the stochastic sequence taking value on  Hilbert 

space ℍ. Let {𝑎𝑛, 𝑛 ≥ 1} and {𝑏𝑛, 𝑛 ≥ 1} be sequences of positive real numbers, we use notion 𝑎𝑛 =
𝑂(𝑏𝑛) means that 𝑎𝑛 ≤ 𝐶𝑏𝑛 for some 0 < 𝐶 < ∞.  (ℓ, ℓ#) is a slowly varying conjugate pair. The 

indicator function of 𝐴is denoted by 𝐼(𝐴). The symbol 𝐶 denotes a generic positive constant whose 

value may be different for each appearance. 

The organization of the work is as follows. In Section 3, we list our main results on complete 

convergence for the sequence of arbitrary random variables taking value on a Hilbert space. Moreover, 

we obtain some conditions for the complete convergence of ℍ -valued martingale difference. Finally, 

we present an application of our results to general von Mises statistics in Section 4. 

3. The Main Results  

We establish the complete convergence for sequence of the stochastic sequence of an arbitrary 

random variable taking value in ℍ with general normalizing sequences. 

Theorem 9. Let 𝑟 ≥ 1 and {𝑋, 𝑋𝑛, ℱ𝑛, 𝑛 ≥ 1} be a sequence of ℍ -valued arbitrary random variable 

and identically distributed. If there exists 𝜙 ∈  𝒦𝑟such that 

𝐸(𝜙−1(‖𝑋‖))𝑟 < ∞, 
then for every 𝜀 > 0 

∑
1

𝑛2−𝑟

∞

𝑛=1

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑(𝑋𝑖 − 𝑚𝑛𝑖)

𝑘

𝑖=1

‖ ≥ 𝜀𝜙(𝑛)) < ∞, 

where 𝑚𝑛𝑖 = 𝐸(𝑋𝑖𝐼(‖𝑋𝑖‖ ≤ 𝜙(𝑛))|ℱ𝑖−1). 
Proof. For all 𝑛 ≥ 1,1 ≤ 𝑖 ≤ 𝑛, denote 

𝑌𝑛𝑖 = 𝑋𝑖𝐼(‖𝑋𝑖‖ ≤ 𝜙(𝑛)),  𝑈𝑛𝑘 = ∑(𝑌𝑛𝑖 − 𝐸(

𝑘

𝑖=1

𝑌𝑛𝑖|ℱ𝑖−1)) 

For any fixed𝜀 > 0, we see that 

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑ 𝑋𝑖

𝑘

𝑖=1

− 𝑚𝑛𝑖‖ ≥ 𝜀𝜙(𝑛)) ≤ ∑ 𝑃

𝑛

𝑖=1

(‖𝑋𝑖‖ > 𝜙(𝑛)) 

+𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑ 𝑋𝑖

𝑘

𝑖=1

‖ 𝐼(‖𝑋𝑖‖ ≤ 𝜙(𝑛)) − 𝐸(𝑋𝑖𝐼(‖𝑋𝑖‖ ≤ 𝜙(𝑛))|ℱ𝑖−1)) ≥ 𝜀𝜙(𝑛)) 

≤ ∑ 𝑃

𝑛

𝑖=1

( ‖𝑋𝑖‖ > 𝜙(𝑛)) + 𝑃( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖𝑈𝑛𝑘‖ > 𝜀𝜙(𝑛)) 
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On the other hand, 

 ∑
1

𝑛2−𝑟
∞
𝑛=1 ∑ 𝑃𝑛

𝑖=1 (‖𝑋𝑖‖ > 𝜙(𝑛)) = ∑ 𝑛𝑟−1∞
𝑛=1 ∑ 𝑃∞

𝑘=𝑛 (𝜙(𝑘) < ‖𝑋‖ ≤ 𝜙(𝑘 + 1)) 

 = ∑ 𝑃∞
𝑘=1 (𝜙(𝑘) < ‖𝑋‖ ≤ 𝜙(𝑘 + 1)) ∑ 𝑛𝑟−1𝑘

𝑛=1  
 ≤ ∑ 𝑘𝑟∞

𝑘=1 𝑃(𝑘 < 𝜙−1(‖𝑋‖) ≤ 𝑘 + 1) 

 ≤ 𝐸(𝜙−1( ‖𝑋‖))𝑟   < ∞. (5) 

Now, we need only to prove that 

∑
1

𝑛2−𝑟

∞

𝑛=1

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖𝑈𝑛𝑘‖ ≥ 𝜀𝜙(𝑛)) < ∞. 

It is easily seen that {𝑌𝑛𝑖 − 𝐸(𝑌𝑛𝑖|ℱ𝑖−1), ℱ𝑖 , 𝑖 ≥ 1}, is a sequence of ℍ -valued martingale 

difference. By Markov's inequality, Jensen's inequality, Lemma 4, we have 

 ∑
1

𝑛2−𝑟
∞
𝑛=1 𝑃 ( 𝑚𝑎𝑥

1≤𝑘≤𝑛
‖𝑈𝑛𝑘‖ ≥ 𝜀𝜙(𝑛)) ≤ ∑

1

𝜀2𝑛2−𝑟𝜙2(𝑛)
∞
𝑛=1 𝐸 ( 𝑚𝑎𝑥

1≤𝑘≤𝑛
‖𝑈𝑛𝑘‖2) 

 ≤
𝐶

𝜀2
∑

1

𝑛2−𝑟𝜙2(𝑛)
∞
𝑛=1 ∑ 𝐸𝑛

𝑖=1 ‖𝑌𝑛𝑖 − 𝐸(𝑌𝑛𝑖|ℱ𝑖−1)‖2 

 ≤
𝐶

𝜀2
∑

1

𝑛2−𝑟𝜙2(𝑛)
∞
𝑛=1 ∑ 𝐸𝑛

𝑖=1 ‖𝑌𝑛𝑖‖2 

 =
𝐶

𝜀2
∑

1

𝑛2−𝑟𝜙2(𝑛)
∞
𝑛=1 ∑ 𝐸𝑛

𝑖=1 (‖𝑋𝑖‖2𝐼(‖𝑋𝑖‖ ≤ 𝜙(𝑛))). 

Under the assumptions 𝜙 ∈  𝒦𝑟, we obtain 

 ∑
1

𝑛2−𝑟𝜙2(𝑛)
∞
𝑛=1 ∑ 𝐸𝑛

𝑖=1 (‖𝑋𝑖‖2𝐼(‖𝑋𝑖‖ ≤ 𝜙(𝑛))) ≤ 𝐶𝐸 (‖𝑋‖2 ∑
𝑛𝑟−1

𝜙2(𝑛)
∞
𝑛=1 𝐼(‖𝑋‖ ≤ 𝜙(𝑛))) 

   ≤ 𝐶𝐸 (𝜙2(𝜙−1(‖𝑋‖)) ∑
𝑛𝑟−1

𝜙2(𝑛)

∞
𝑛=[𝜙−1(‖𝑋‖)] ) 

   ≤ 𝐶𝐸(𝜙−1(‖𝑋‖))   < ∞. 
The proof of Theorem 9 is completed. 

Example 1. Let 𝑙2 denotes the real separable Hilbert space of all square summable real sequences 

with the inner product 

⟨𝑥, 𝑦⟩ = ∑ 𝑥𝑖

∞

𝑖=1

𝑦𝑖 , 

for 𝑥 = (𝑥1, 𝑥2, . . . ) ∈ 𝑙2, 𝑦 = (𝑦1, 𝑦2, . . . ) ∈ 𝑙2. Let {𝑌𝑛𝑘, 𝑛 ≥ 1, 𝑘 ≥ 1} be an array of real valued 

identically distributed random variables with the common density function 

𝑓(𝑥) = {

𝛼

2|𝑥|𝛼+1
 for |𝑥| > 1,

0  otherwise,
 (6) 

where 0 < 𝛼 < 2. Put 𝑋𝑛
𝑗

= 𝑎𝑗𝑌𝑛𝑗 for 𝑛 ≥ 1 and 𝑗 ≥ 1, where 𝑎𝑗 ≥ 0 for all 𝑗 ≥ 1 and ∑ 𝑎𝑗
𝛼/2∞

𝑗=1 < ∞. 

We shall prove that {𝑋𝑛 = (𝑋𝑛
1, 𝑋𝑛

2, … ), 𝑛 ≥ 1} is a sequence of 𝑙2-valued random variables, i.e., for 

each 𝑛 ≥ 1, 

∑(𝑋𝑛
𝑗
)2

∞

𝑗=1

= ∑ 𝑎𝑗
2

∞

𝑗=1

𝑌𝑛𝑗
2 < ∞  a.s. (7) 

Put 𝜉𝑛𝑗 = 𝑎𝑗
2𝑌𝑛𝑗

2 𝐼(|𝑎𝑗𝑌𝑛𝑗|<1), we have that 

∑ 𝑃

∞

𝑗=1

(𝑎𝑗
2𝑌𝑛𝑗

2 ≠ 𝜉𝑛𝑗) = ∑ 𝑃

∞

𝑗=1

(|𝑌𝑛𝑗| > 𝑎𝑗
−1) ≤ 𝐶 ∑ 𝑎𝑗

𝛼/2

∞

𝑗=1

< ∞. 

From the Borel - Cantelli lemma, we have 𝑃(𝑎𝑗
2𝑌𝑛𝑗

2 ≠ 𝜉𝑛𝑗, 𝑖. 𝑜. ) = 0. Then to prove (7) it is enough 

to show that 
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∑ 𝜉𝑛𝑗

∞

𝑗=1

< ∞  a.s. 

We have that 

∑ 𝐸

∞

𝑗=1

|𝜉𝑛𝑗 − 𝐸𝜉𝑛𝑗|2 ≤ ∑ 𝐸

∞

𝑗=1

𝜉𝑛𝑗
2 = ∑ 𝑎𝑗

4

∞

𝑗=1

𝐸(𝑌𝑛𝑗
4 𝐼(|𝑎𝑗𝑌𝑛𝑗|<1)) ≤ 𝐶 ∑ 𝑎𝑗

𝛼/2

∞

𝑗=1

< ∞. 

It follows from the Khintchine-Kolmogorov convergence theorem that ∑ (𝜉𝑛𝑗 − 𝐸𝜉𝑛𝑗)∞
𝑗=1 < ∞ a.s.. 

Moreover, 

∑ 𝐸

∞

𝑗=1

𝜉𝑛𝑗 = ∑ 𝑎𝑗
2

∞

𝑗=1

𝐸(𝑌𝑛𝑗
2 𝐼(|𝑎𝑗𝑌𝑛𝑗|<1)) ≤ 𝐶 ∑ 𝑎𝑗

𝛼/2

∞

𝑗=1

< ∞. 

Thus, ∑ 𝜉𝑛𝑗
∞
𝑗=1 < ∞ a.s. We consider the standard orthonormal basis of 𝑙2 is {𝑒𝑛, 𝑛 ≥ 1} where 𝑒𝑛 

denotes the element of 𝑙2 having 1 in its 𝑛th position and 0 elsewhere. 

 When 1 < 𝛼 < 2, let 𝜙(𝑥) = 𝑥1/𝑝 where 1 ≤ 𝑟𝑝 < 𝛼, we can easily check that𝜙(𝑥) ∈ 𝒦𝑟. Setℱ𝑛 =
𝜎(𝑋1, 𝑋2, … , 𝑋𝑛), then {𝑋, 𝑋𝑛, ℱ𝑛, 𝑛 ≥ 1} be a sequence of ℍ -valued arbitrary random variable. We get 

𝐸(𝜙−1(‖𝑋‖))𝑟 = 𝐸 (∑(𝑎𝑗𝑌1𝑗)2

∞

𝑗=1

)

𝑟𝑝/2

= 𝐸|𝑌11|𝑟𝑝 (∑ 𝑎𝑗
2

∞

𝑗=1

)

𝑟𝑝/2

< ∞ 

for every 𝜀 > 0 

∑
1

𝑛2−𝑟

∞

𝑛=1

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑(𝑋𝑖 − 𝑚𝑛𝑖)

𝑘

𝑖=1

‖ ≥ 𝜀𝜙(𝑛)) < ∞ 

where 𝑚𝑛𝑖 = 𝐸(𝑋𝑖𝐼(‖𝑋𝑖‖ ≤ 𝜙(𝑛))|ℱ𝑖−1). 
  Let {𝑋𝑛, ℱ𝑛, 𝑛 ≥ 1} be a sequence of ℍ -valued martingale difference and 𝜙 ∈ 𝒦𝑟 ∩ ℋ𝑟, we 

establish the complete convergence for the sequence of martingale difference in the following corollary. 

Corollary 10. Let 𝑟 ≥ 1 and {𝑋, 𝑋𝑛, ℱ𝑛, 𝑛 ≥ 1} be a sequence of ℍ -valued martingale difference 

and identically distributed. If there exists 𝜙 ∈ 𝒦𝑟 ∩ ℋ𝑟 such that 𝐸(𝜙−1(‖𝑋‖))𝑟 < ∞ then for every 

𝜀 > 0, 

∑
1

𝑛2−𝑟

∞

𝑛=1

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑ 𝑋𝑖

𝑘

𝑖=1

‖ ≥ 𝜀𝜙(𝑛)) < ∞. 

In particular, when 𝑟 = 2 we have 

1

𝜙(𝑛)
𝑚𝑎𝑥

1≤𝑘≤𝑛
‖∑ 𝑋𝑖

𝑘

𝑖=1

‖ → 0 completely as 𝑛 → ∞. 

Proof. Thanks to Theorem 9, we obtain 

∑
1

𝑛2−𝑟

∞

𝑛=1

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑(𝑋𝑖 − 𝑚𝑛𝑖)

𝑘

𝑖=1

‖ ≥ 𝜀𝜙(𝑛)) < ∞, 

where 𝑚𝑛𝑖 = 𝐸(𝑋𝑖𝐼(‖𝑋𝑖‖ ≤ 𝜙(𝑛))|ℱ𝑖−1). Now, we need to show that 

𝑚𝑎𝑥
1≤𝑘≤𝑛

∑  𝑘
𝑖=1 ‖𝐸(𝑋𝑖𝐼(‖𝑋𝑗‖ ≤ 𝜙(𝑛))|ℱ𝑖−1))‖

𝜙(𝑛)
→ 0 as 𝑛 → ∞. (8) 

By {𝑋, 𝑋𝑛, ℱ𝑛, 𝑛 ≥ 1} be a sequence of ℍ -valued martingale difference and identically distributed, 

we have 
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𝑚𝑎𝑥

1≤𝑘≤𝑛
∑ ‖𝐸(𝑋𝑖𝐼(‖𝑋𝑖‖≤𝜙(𝑛))|ℱ𝑖−1)‖𝑘

𝑖=1

𝜙(𝑛)
≤

∑ ‖𝐸(𝑋𝑖𝐼(‖𝑋𝑖‖>𝜙(𝑛))|ℱ𝑖−1)‖𝑛
𝑖=1

𝜙(𝑛)
 

≤
∑ ‖𝐸(𝑋𝑖𝐼(‖𝑋𝑖‖ > 𝜙(𝑛)))‖𝑛

𝑖=1

𝜙(𝑛)
 

≤
𝐶𝑛

𝜙(𝑛)
𝐸(‖𝑋‖|𝐼(‖𝑋‖ > 𝜙(𝑛))). 

By 𝜙 ∈ ℋ𝑟 and 𝑟 ≥ 1 we have 

∑
1

𝜙(𝑛)

∞

𝑛=1

𝐸(‖𝑋‖𝐼(‖𝑋‖ > 𝜙(𝑛))) = ∑
1

𝜙(𝑛)

∞

𝑛=1

∑ 𝐸

∞

𝑘=𝑛

(‖𝑋‖𝐼(𝜙(𝑘) < ‖𝑋‖ ≤ 𝜙(𝑘 + 1))) 

= ∑ 𝐸

∞

𝑘=1

(‖𝑋‖𝐼(𝜙(𝑘) < ‖𝑋‖ ≤ 𝜙(𝑘 + 1))) ∑
1

𝜙(𝑛)

𝑘

𝑛=1

 

≤ 𝐶 ∑ 𝐸

∞

𝑘=1

(𝜙(𝑘)𝐼(𝜙(𝑘) < ‖𝑋‖ ≤ 𝜙(𝑘 + 1))) ∑
𝑛𝑟−1

𝜙(𝑛)

𝑘

𝑛=1

 

≤ 𝐶 ∑ 𝐸

∞

𝑘=1

(𝑘𝑟𝐼(𝜙(𝑘) < ‖𝑋‖ ≤ 𝜙(𝑘 + 1))) 

                                          ≤ 𝐶𝐸(𝜙−1( ‖𝑋‖))𝑟 < ∞. 

By Kronecker's lemma, we obtain 

𝐶𝑛

𝜙(𝑛)
𝐸(‖𝑋‖𝐼( ‖𝑋‖ > 𝜙(𝑛)) ≤

𝐶

𝜙(𝑛)
∑ 𝐸

𝑛

𝑘=1

( ‖𝑋‖𝐼( ‖𝑋‖ > 𝜙(𝑘))) → 0 as 𝑛 → ∞. 

Hence, the proof is completed. 

By letting 𝑟 = 1 in Corollary 10, we get the Marcinkiewicz-Zygmund type strong law of large 

numbers for sequences of ℍ -valued martingale difference in the following corollary. The proof is 

standard. 

Corollary 11. Let {𝑋, 𝑋𝑛, ℱ𝑛, 𝑛 ≥ 1} be a sequence of ℍ -valued martingale difference and 

identically distributed. If there exists 𝜙 ∈ 𝒦1 ∩ ℋ1 such that 𝐸(𝜙−1(‖𝑋‖)) < ∞ then for every𝜀 > 0, 

1

𝜙(𝑛)
∑ 𝑎𝑖

𝑛

𝑖=1

𝑋𝑖 → 0 a.s. as 𝑛 → ∞. 

Proof. For any 𝜀 > 0, by applying Corollary 10 with 𝑟 =  1, we have 

∞ >  ∑
1

𝑛

∞

𝑛=1

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑ 𝑋𝑖

𝑘

𝑖=1

‖ > 𝜀𝜙(𝑛)) = ∑ ∑
1

𝑛

2𝑙+1−1

𝑛=2𝑙

∞

𝑙=0

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑ 𝑋𝑖

𝑘

𝑖=1

‖ > 𝜀𝜙(𝑛)) 

≥ ∑ ∑
1

2𝑙+1

2𝑙+1−1

𝑛=2𝑙

∞

𝑙=0

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤2𝑙

‖∑ 𝑋𝑖

𝑘

𝑖=1

‖ > 𝜀𝜙(2𝑙)) =
1

2
∑ 𝑃

∞

𝑙=0

( 𝑚𝑎𝑥
1≤𝑘≤2𝑙

‖∑ 𝑋𝑖

𝑘

𝑖=1

‖ > 𝜀𝜙(2𝑙)). 

Using the Borel-Cantelli lemma, we get 
1

𝜙(2𝑖)
𝑚𝑎𝑥

1≤𝑘≤2𝑖
‖∑ 𝑋𝑖

𝑘
𝑖=1 ‖ → 0 a.s. as  𝑖 → ∞. (9) 

For 2𝑘 ≤ 𝑛 < 2𝑘+1, we have 
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0 ≤
1

𝜙(𝑛)
‖∑ 𝑋𝑖

𝑛

𝑖=1

‖ ≤
1

𝜙(2𝑖)
𝑚𝑎𝑥
1≤𝑘≤𝑛

‖∑ 𝑋𝑖

𝑘

𝑖=1

‖. (10) 

The conclusion of the corollary follows from (9) and (10). 

4. Application to General von Mises Statistics 

Statistics of Cramer-von Mises type are an important tool for testing statistical hypotheses. Next, we 

will consider general bivariate and degenerate von Mises statistics (V-statistics). Let ℎ:ℝ2 → ℝ be a 

symmetric, measurable function. We call 

𝑉𝑛 = ∑ ℎ

𝑛

𝑖,𝑗=1

(𝑋𝑖 , 𝑋𝑗) (11) 

be V-statistic with kernel ℎ. The kernel and related V-statistic are called degenerate if 𝐸(ℎ(𝑥, 𝑋𝑖)) = 0 

for all 𝑥 ∈ ℝ.  Furthermore, we assume that ℎ is Lipschitz-continuous and positive definite, i.e. 

∑ 𝑐𝑖
𝑚
𝑖,𝑗=1 𝑐𝑗ℎ(𝑥𝑖, 𝑥𝑗) ≥ 0. 

for all 𝑐1, . . . , 𝑐𝑛, 𝑥1, . . . , 𝑥𝑛 ∈ ℝ. If additionally 𝐸(ℎ(𝑥, 𝑋𝑖|ℱ𝑖)) = 0 for all 𝑥 ∈ ℝ and ℱ𝑖 =
𝜎(𝑋1, 𝑋2, . . . , 𝑋𝑖) then by Sun's version of Mercer's theorem (See more detail [15, 16]), we have under 

these conditions a representation 

ℎ(𝑥, 𝑦) = ∑ 𝜆𝑙

∞

𝑙=1

𝜙𝑙(𝑥)𝜙𝑙(𝑦) 

for orthonormal eigenfunctions (𝜙𝑙)𝑙∈ℕ with  the following properties 

 𝐸(𝜙𝑙(𝑋𝑛)|ℱ𝑛) = 0 and 𝐸𝜙𝑙
2(𝑋𝑛) = 1 for all 𝑙 ∈ ℕ, 

 𝜆𝑙 ≥ 0 for all 𝑙 ∈ ℕ and ∑ 𝜆𝑙
∞
𝑙=1 < ∞. 

Dung and Son [17, 18] gave the almost sure convergence of degenerate von Mises statistics for the 

sequence of independent and pairwise independent real-valued data with weights being a sequence of 

real numbers. In the section, we use methods for random variables taking values in Hilbert spaces (as a 

2-smooth Hilbert space) to obtain the conditions for the complete convergence of degenerate von Mises 

statistics with martingale difference real-valued data. By setting 𝑟 = 2 in Corollary 10, we obtain the 

complete convergence of V-statistic following below. 

Theorem 12. Let {𝑋𝑛, ℱ𝑛, 𝑛 ≥ 0} be a sequence of real-valued martingale difference and identically 

distributed. Let ℎ be a Lipschitz-continuous, positive definite kernel function such that 

𝐸|ℎ(𝑋, 𝑋)| < ∞. 

Then, for any 2𝑝 > 1 

1

𝑛2
𝑙𝑜𝑔+

2𝑝
(𝑛) 𝑚𝑎𝑥

1≤𝑘≤𝑛
𝑉𝑘 → 0 completely as 𝑛 → ∞. 

Proof. We can treat such V-statistics in the setting of Hilbert spaces. Let ℍ be a Hibert space of real-

valued sequences 𝑦 = (𝑦𝑙)𝑙∈ℕ equipped with the inner product 

⟨𝑦, 𝑧⟩ = ∑ 𝜆𝑙

∞

𝑙=1

𝑦𝑙𝑧𝑙 ,  and ‖𝑦‖2 = ∑ 𝜆𝑙

∞

𝑙=1

𝑦𝑙
2. 
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We consider the ℍ -valued random variables𝑌𝑛 = (𝜙𝑙(𝑋𝑛))𝑙∈ℕ. Then  {𝑌𝑛, 𝑛 ≥ 1} is a sequence of 

ℍ -valued martingale difference and identically distributed and 

2 2 1

1
max

log ( )
kp k n

V
n n  



2 2 1
, 1

1
max ( , )

log ( )

k

i jp k n
i j

h X X
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Let 𝜙(𝑥) = 𝑥 𝑙𝑜𝑔+
𝑝

(𝑥), by Lemma 6 with the condition 2𝑝 > 1, it is easy check that 𝜙 ∈ 𝒦𝑟 ∩ ℋ𝑟. 

From (3) and (4) we have 𝜙−1(𝑥) = 𝑥/ 𝑙𝑜𝑔+
𝑝

(𝑥). Moreover, 
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Using Corollary 10 with 𝑟 = 2, we obtain 

1
1

max

0  completely as .
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This implies that 
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