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Abstract: In this work, we establish the complete convergence for sequences of arbitrary random
variables taking values in Hilbert space H with general normalizing sequences. As corollaries, we
present some convergence results for H -valued martingale difference sequences. Finally, the
complete convergence of degenerate von Mises statistics is investigated.
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1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins [1] as follows: A
sequence of random variables {X,,,n > 1} is said to complete convergence to a constant C if
Yoe1 P (X, — C| > ¢) < oo forall e > 0. In the same paper, they proved that a sequence of arithmetic
means of i.i.d random variables converges completely to the expected value of the variables provided
their variance is finite. The results of Hsu and Robbins are a fundamental concept in probability theory
and extended by several authors.

In 2003, Jajte [2] gave a strong law of large numbers for general weighted sums of i.i.d random
variables using the class of function ¢ which satisfies the following conditions:

i) For some d > 1, ¢ is strictly increasing on [d, o) with range [0, «0);

ii) There exist C > 0 and a positive integer ko, > d suchthat ¢(y + 1)/¢(y) < C forall y > ky;

iii) There exist constants a and b such that for all s > d, $2(s) fsw ¢21(x) dx < as+b.

Inspired by Jajte [2], Son et al., [3] developed Jajte's technique to obtain the complete convergence
for randomly weighted sums of negatively associated random variables with general normalizing
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sequences. Recently, Yang (2007) [4] has proved two strong limit theorems for arbitrary stochastic
sequences, which generalized the results of Jardas et al., [5] for sequences of independent random
variables and the results of Liu and Yang (2003) [6] for arbitrary stochastic sequences. Since then, the
results for the convergence of the sequence of arbitrary random variables have been studied by several
authors, for instance, W. Yang and X. Yang (2008) [7], Zhang et al., (2014) [8], Wang et al., (2019) [9]
and so forth.

The aim of this work is to study the complete convergence for arbitrary stochastic sequences. Let
{X,, Fr,m = 1} be a stochastic sequence on the probability space(f2, F, P), that is, the sequence of o -
fields {F,,n = 0} in F which is increasing in n (that is F, T), and F, is adapted to random variables X;,
. Let H be a real separable Hilbert space with norm ||-||. An F -measurable function from 2 to H is
called H -valued random variable. The expected value of a H -valued random variable X, denoted by
EX, is defined by be the Bochner integral (when E|[|X|| < ).

In this work, basing on the class of functions ¢ in [3], we study the complete convergence for
arbitrary stochastic sequences taking values in Hilbert space H with general normalizing sequences.

Definition 1. A sequence of H -valued random variables {X,,n > 1}is said to complete
converegence to a constant Cif

Yn=1P(IXy = C|l > &) <o, Ve>0.

Let » > 1. We consider class X, and class 7., which are defined in the following way. The class
X, consists of all functions ¢ (x), which satisfies the following conditions:

i) ¢(x) is strictly increasing on [0, o) with range[0, «);

ii) There exists positive constant a and a positive number n, such that

© N.T=1
¢2(s)f %deCsr, s>n, )]

It can be seen that the class 7, includes basic and important normalizing functions such as the
function ¢ (x) = xP with 2p > r and the regularly varying function with index p with p > r. We first
obtain the complete convergence for sequences of arbitrary H -valued random variables with general
normalizing sequences ¢ € XK, (see Theorem 9).

The class #;,. includes all functions ¢ (x) which satisfies the following conditions:

iii) There exist positive constants C and a positive integer n, such that for all s > n,,

S ,T—1

X
0 Jl ) dx < Cs'. )

Class +, also contains functions of the form ¢ (x) = xP for any real number p and the regularly
varying function with index p with p > r. We establish the results of the complete convergence for the
sequence of martingale difference with ¢ € K. N 4, in the Corollary 10.

2. Preliminaries

Let H be a real separable Hilbert space. Let (2, % P) be a probability space and suppose we are
given a family of o -field {#;,t = 0} suchthat #;, € %, € Ffor0 <s < tand NgsoFsre = . We
assume further that each &; is complete relative to the probability measure P.

Definition 2. A stochastic sequence of H -valued random variable {X,,%,,n = 1} such that
E||X,|| < o,¥n = 0 is called H -martingale (respectively H -martingale difference) if E(X,,|%,-1) =
Xn_1 (respectively E(X,|%,—-1) = 0).
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Remark 3. The properties of martingale and difference martingale taking values in the Hilbert space
are inherited from the real space. Moreover, the Hilbert space can be seen as a 2-smooth Banach space.

To prove our main results, we need the following lemmas.

Lemma 4. (See [10], [11]) For any t > 0 there exists a positive constant C such that for every H -
valued martingale difference sequence {X,, %,,n = 1}, foralln > 1

E (max |k, %i])°) < T, EIXI2

We recall the definition of regularly and slowly varying functions.

Definition 3. A positive measurable function f defined on [a, ) (a = 0) is called regularly varying
at infinity with index p, written f € RV,, if for each 1 > 0,

A
i L9 _ g,
x>0 f(x)
In particular, when p = 0, the function f is called slowly varying at infinity, written f € RV.
Clearly, x”,x" log, (x),x" log, (log, (x)), x" _log.() are regularly varying functions at
log., (log, (x))

infinity with index p where log, (x): = max{log x, 1}. In particular logfx, § € R, exp(logfx),0 <
B < 1 are slowly varying at infinity. The following result of Karamata is often applicable.

Lemma 6. (Karamata’s theorem, [12]) Let f € RV, be locally bounded on [a, o). Then

i)Foro > —(p+1)

X ()
e rwa OO
i) Foro < —(p + 1) (and for 0 = —(p + 1) if [ =P f(£)dt < oo)
XM )
iﬁm— (0'+,D+1).

It essentially says that integrals of regularly varying functions are again regularly varying, or more
precisely, one can take the slowly varying function out of the integral. For more details regarding
regularly varying functions, the reader may refer to Bingham [13].

Definition 7. (Bingham [13], Theorem 1.5.13) Let £(.)be a slowly varying function. Then, there
exists a slowly varying function £*(.)(unique up to asymptotic equivalence) satisfying

i%f(x)f#(xf(x)) =1 and i@@ﬁ(x)f(xﬁ(x)): 1.

The function ¢* is called the de Bruijn conjugate of ¢, and (¢, ¢*) is called a (slowly varying)
conjugate pair.

For a,b >0, each of (£(ax),£"(bx)), (af(x),a " 2¥(x)), (L(x*)HV, (£ (x)NHY?) is a
conjugate pair by [13] (Proposition 1.5.14). R. Bojanic and Seneta [14] proved that if £(.)is a slowly
varying function satisfying

im0 1y og (e = o, @A)
X—®© f(x)
for some A4 > 1, then for every a € R,
Ot (%))

T I
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Therefore, we can choose (up to asymptotic equivalence) ¢*(x) = 1/¢(x). In particular, if £(x) =
log(x) then €% (x) = 1/ log(x).

Lemma 8. (Bingham [13], Section 1.7.7) If f € RV, with p # 0, then there exists g € RV, /, such
that

i flgx) . g(f(x))
im = lim
X—00 X X—0 X

The function g is determined uniquely up to asymptotic equivalence. In particular, if f(x) =

x .2 (xP) with £(x) is a slowly varying function and a, b > 0, then
gx) = xﬁf#% (x%> 4

Throughout this work, H is a real separable Hilbert space, by saying {X,,F,, n = 1} is a sequence
of H -valued arbitrary random variables, we mean that is the stochastic sequence taking value on Hilbert
space H. Let {a,,n = 1} and {b,, n = 1} be sequences of positive real numbers, we use notion a,, =
0(by,) means that a, < Cb, for some 0 < C < o0. (#,£%) is a slowly varying conjugate pair. The
indicator function of Ais denoted by 1(A). The symbol C denotes a generic positive constant whose
value may be different for each appearance.

The organization of the work is as follows. In Section 3, we list our main results on complete
convergence for the sequence of arbitrary random variables taking value on a Hilbert space. Moreover,

we obtain some conditions for the complete convergence of H -valued martingale difference. Finally,
we present an application of our results to general von Mises statistics in Section 4.

=1.

3. The Main Results

We establish the complete convergence for sequence of the stochastic sequence of an arbitrary
random variable taking value in H with general normalizing sequences.

Theorem 9. Letr > 1 and {X, X,,, F,, n = 1} be a sequence of H -valued arbitrary random variable
and identically distributed. If there exists ¢ € .-such that

E(p~(IXID)" < oo,

o1
> e e Z“ )

Where mnl - E(X I(”X ” < (nb(n))lJL 1)
Proof. Foralln > 1,1 <i < n, denote

then forevery e > 0

2 €¢(n)>

k
Vo = Xl QX S $), Une = D (g = EilFio1))
i=1

For any fixede > 0, We see that

max ZX My
1<ksn
i=1

k
max Z
1<ks

=1
n

< ZP (Xl > $() + P(max Ul > ()

> e¢(n)> SWICTERTO)

11Xl < ¢ () — EQXJ (Xl < () |Fi-1)) 2 8¢(n)>
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On the other hand,
Zfﬂ# L PUIX ] > d(m) = En=an X P (9(k) < IX]] < ¢p(k + 1))
=Y P (k) <Xl < pk + 1) Tk_yn"t
S Yrer kTP <d7M(IXID <k +1)
< E@HCIXID)T <o 5)

Now, we need only to prove that

1
> P (max Ul 2 ep () <

n=1
It is easily seen that {Y,; — E(Y,;|F;—1), Fi,i =1}, is a sequence of H -valued martingale
difference. By Markov's inequality, Jensen's inequality, Lemma 4, we have

oo 1 oo 1
S o P (max Ul ze¢(n))<zn 1—E( max ||Unll?)

e2n?- r¢2(n) 1<ks=n
O RAREE r; s 2 E Vi = E(uil Fi )12
< ;Zn 1m2n=15 (1Y 11
Zn 1 L E AXGIPIAIXG I < ¢(0)).
Under the assumptions qb € X,, we obtaln

St gz Tt B UXGIZIAIX < 9 ) < CE (X117 Sz s (XN < ()

< CE (¢2(6 ™ (1) Eiegr ) o)
< CE(1(IXI)) < =

n2=T$2(n) T¢ m

The proof of Theorem 9 is completed.

Example 1. Let I, denotes the real separable Hilbert space of all square summable real sequences
with the inner product

oo

(x,y) = in Yis

=1
for x = (xq,%3,...) €Ely, y= (Y1, Y2,...) € L,. Let {Yy,,n =1,k = 1} be an array of real valued
identically distributed random variables with the common density function

a
Q) = [2|x|a+l for  |x| > 1, 6)
0 otherwise,

where 0 < a < 2. PutX,{ = a;Y,jforn > 1andj > 1, where a; = 0 forall j > 1 and Y72 1a"‘/2 < oo,
We shall prove that {X,, = (X1, X2,..),n > 1} is a sequence of [,-valued random variables, i.e., for

eachn =1,
Z( Za Yy <o as. )

Puté,; = , njl(|a]yn]|<1), we have that

Zp(aj E &) = ZP(|Y,U| >al) < CZ /2 o
=

From the Borel - Cantelli lemma, we have P(a] nj * $njpl.0.) = 0. Then to prove (7) it is enough
to show that
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Z $nj < e as.
j=1
We have that

2
ZE |§nj — E&nj* < zEfnj z ai E(Ynjl(a;v,1<1) < Cz a;{/ < oo,

'=]_ ]:1
It foIIows from the Khintchine- Kolmogorov convergence theorem that 35_1(§n; — ESpj) < o as..

Moreover,
2
Z Enj = 2 & E(Vl(javngi<n) < CZ a/* <o
j=1 j=1 j=1

Thus, 3721 §nj < o a.s. We consider the standard orthonormal basis of [, is {e,,n = 1} where e,
denotes the element of I, having 1 in its nth position and 0 elsewhere.

When1l < a < 2, let¢p(x) = x/P where 1 < rp < a, we can easily check that¢ (x) € K. SetF, =
o(Xy, X3, ..., Xy), then {X, X,,, F,,n = 1} be a sequence of H -valued arbitrary random variable. We get

0 rp/2 w rp/2
E(p7'(IXID" =E (Z(anlj)2> = E|Yy,|™ <Z a]Z) < o
=1

j=1
foreverye >0

o1
= (m,glx Z(X ma)|| 2 ecp(n)) <o
n=1
where my; = EQGI(1X; ]l < ¢ ()| Fi—1).
Let {X,,, F,, n = 1} be a sequence of H -valued martingale difference and ¢ € X, N H,., we
establish the complete convergence for the sequence of martingale difference in the following corollary.
Corollary 10. Let r > 1 and {X, X,,, F,,n = 1} be a sequence of H -valued martingale difference

and identically distributed. If there exists ¢ € &, N 7, such that E(¢~1(||X]))" < oo then for every

e >0,
© k
1
2t s 2,5 2 o) <
n=1 i=1
In particular, when r = 2 we have

1
b (n) 15k2n

Proof. Thanks to Theorem 9, we obtain

— 0 completely as n — oo.

0

k
D%
i=1
1
D =P | max Z“ M)
n=1

where m,,; = E(X;I(||X;|| < ¢(n))|Z;—1)- Now, we need to show that
max YLy [E(1X]] < ¢ @m)I7-0)|

1sksn - 0asn — . (8)
¢(n)
By {X, X,,, F,,n = 1} be a sequence of H -valued martingale difference and identically distributed,
we have

=>ep(n) | <o,
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max YL IECGIAIX < p()IFi— )l

Zl LEXIUX:]1>¢ (m))|Fi- )l
b

b
= ECGIAIX > g m))I
()

< 3 )E(IIXIIII(IIXII > ¢p(m))).

By ¢ € H, and r > 1 we have
1 o0
;wﬂuxuunxn > $m)) Z

n=

Z E (XN (&0 < IX]] < $Ck + 1))

0
k=1

k
= > E(IXI(pCk) < IXIl < p(k + 1))) Z

8

k

k=1

< CZ E (k"I(p (k) < IX]| < ¢k + 1))
k=

S CE(p7'(IIXIN)T < 0.
By Kronecker's lemma, we obtain

81

R EQIXNICIXN > <—— ) ECIXNCIX] > ¢(k))) -0 - o,
o) AIXNICNXI > ¢(n)) ¢()Z CIXNICUXI > ¢ (k))) asn — o

Hence, the proof is completed.

By letting » = 1 in Corollary 10, we get the Marcinkiewicz-Zygmund type strong law of large
numbers for sequences of H -valued martingale difference in the following corollary. The proof is
standard.

Corollary 11. Let {X,X,,F,,n =1} be a sequence of H -valued martingale difference and
identically distributed. If there exists ¢ € K; N H; such that E(¢~1(]|X|])) < oo then for everye > 0
n

1
MZ a;X; > 0as.asn — .
1=

Proof. For any € > 0, by applying Corollary 10 withr = 1, we have
k

(oo}

w 20411 k
1 1
o> Yar (e [Yr]>eo) -3 3 2o [Yon > o)
n=1 i=1 =0 n=2! i=1
0 2114 L k 1S k
> 5P X; 2! =—ZP Z 2H |
2> Y gt a3 > @) <33 e ([ vy
=0 n=2! i=1 1=0 i=1
Using the Borel-Cantelli lemma, we get

ﬁKml”Zl 1X; || -0 as.as i— o,

©)

For 2% < n < 2k+1 we have
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1
= P2 I, (10)

n k
1
3 x >

0<——
¢(n) i=1 i=1
The conclusion of the corollary follows from (9) and (10).

4. Application to General von Mises Statistics

Statistics of Cramer-von Mises type are an important tool for testing statistical hypotheses. Next, we
will consider general bivariate and degenerate von Mises statistics (V-statistics). Let 1:R* — R be a
symmetric, measurable function. We call

o= D h(GX) (11)
ij=1

be V-statistic with kernel h. The kernel and related V-statistic are called degenerate if E(h(x,X;)) =0
for all x € R. Furthermore, we assume that % is Lipschitz-continuous and positive definite, i.e.

X1z i h(x, x7) = 0.
for all cy,...,cp,%1,...,x, € R, If additionally E(h(x,X;|F;)) =0 for all xeR and % =
o(Xy,X5,...,X;) then by Sun's version of Mercer's theorem (See more detail [15, 16]), we have under
these conditions a representation

W y) = ) B
=1

for orthonormal eigenfunctions (¢;);eny With the following properties

e E(¢;(Xp)|F) =0and E¢pf(X,) =1foralll €N,

e J;=0foralll e Nand 2, 4; <o

Dung and Son [17, 18] gave the almost sure convergence of degenerate von Mises statistics for the
sequence of independent and pairwise independent real-valued data with weights being a sequence of
real numbers. In the section, we use methods for random variables taking values in Hilbert spaces (as a
2-smooth Hilbert space) to obtain the conditions for the complete convergence of degenerate von Mises
statistics with martingale difference real-valued data. By setting r = 2 in Corollary 10, we obtain the
complete convergence of V-statistic following below.

Theorem 12. Let {X,,, F,, n = 0} be a sequence of real-valued martingale difference and identically
distributed. Let / be a Lipschitz-continuous, positive definite kernel function such that

E|h(X,X)| < .
Then, for any 2p > 1

1 2
3 log+p (n)lrglgsagle — 0 completely asn — oo.

Proof. We can treat such V-statistics in the setting of Hilbert spaces. Let H be a Hibert space of real-
valued sequences y = (y;):en €quipped with the inner product

.2y =) hyz, and IyIP =) 4P,
=1 =1
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We consider the H -valued random variablesY,, = (¢;(X;,))ien. Then {Y,,,n = 1} is a sequence of
H -valued martingale difference and identically distributed and

— T, MaxV, = o h(X;, X ;
n’ |0gip(n)£§&)§ < n? Iogz"(n)1<k<nZ (X;,X;)

0

ZZM(X ) (X;)

N ?log?® (n) 1<k<”|J =111
1 o (& ?
pramT MZA(ZWJJ

-~ n”log’ i=1
2

B ZY
nlog® (n) i=ken ||| )

Letp(x) =x logf (x), by Lemma 6 with the condition 2p > 1, itis easy check that ¢ € K, N H,,..
From (3) and (4) we have ¢~1(x) = x/ log? (x). Moreover,

sy ) g IXE .
E((¢CIxD) ) -€ (T <E( [X])’ =EIh(X,X) <. (12)

Kk

Using Corollary 10 with r = 2, we obtain

k
max Y.
1<k<n Z !

nlog? (n)

—0 completelyas n— oo.

This implies that

—————maxV, — 0 completely as n — .
n Iogz”(n)Lk<n pletely
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