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Abstract: This paper presents a comprehensive analytical framework to characterize the nonlinear
vibration behavior of a three-phase composite. The cylindrical panels are supported by a Pasternak-
type elastic foundation and subjected to combined thermal environment and mechanical loads. A
sophisticated mathematical model is formulated basing on Reddy's higher-order theory to precisely
capture the complex interactions between elastic foundation. The material properties of a three-
phase composite are meticulously determined through analytical expressions that nonlinearly
account for the interactions between the constituent materials. The volume fractions of the
components in the magneto-electro-elastic face sheets are assumed to be equal. Analytical vibration
solutions for the laminated plate are obtained by applying Galerkin method in conjunction with
fourth-order Runge-Kutta method. Numerical results are provided to clarify the impact of geometric
and material parameters, temperature increase, magnetic and electric potentials and elastic
foundations on the vibration behavior of a three-phase composite.

Keywords: Vibration; thermal environment; elastic foundations; three-phase composite; Reddy’s higher-
order shear deformation shell theory.

1. Introduction

In recent years, polymer composite materials have found extensive applications across various
sectors, including construction, shipbuilding, and civilian uses such as household goods and industrial
plastic production. These materials owe their versatility to reinforcing components like fibers, fabrics,
and particles, each playing a distinct role in enhancing the performance of composite. Fibers and fabrics
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are instrumental in boosting the structural load-bearing capacity, while particles contribute to reducing
cracking, minimizing plastic deformation, and improving impermeability and fire resistance. By
integrating both fibers and particles, three-phase composites are created, offering a superior balance of
strength and durability. This synergy enables materials to better meet the evolving demands of modern
engineering and design. Therefore, the combination of fibers and particles in composite materials results
in a three-phase composite, making the materials more advanced and better suited to meet the demands
of modern engineering. This presents a promising research direction with high practical potential. As of
late, research on three-phase composite materials and structures has expanded significantly. Sharma et
al., [1] demonstrated that incorporating core-shell particles into carbon fiber-reinforced PAG6
significantly enhances the material's fatigue life. Liu etal., [2] investigated the nonlinear forced vibration
of a novel functionally graded three-phase composite cylindrical shell, anticipated to be a common
structure in future carrier rockets, considering the effects of aerodynamic forces, external excitations,
and hygrothermal environments. Ghovehoud et al., [3] explored how stiffeners, as well as the geometric
and mechanical properties of the core and composite layers, impact the dynamic instability of the plate,
in their research on typical three-phase composites, Duc et al., [4] proposed a method to determine the
bending deflection of three-phase composite plates with glass fiber reinforcements and TiO: particles.
The method considers particle-matrix interaction and shear deformation, providing expressions for
material properties to support design and optimization.

Vibration analysis of structures is essential for ensuring safety, preventing damage, and enhancing
comfort through the control of excessive deflections. It also contributes to improved structural
performance and durability by managing dynamic loadings and avoiding resonance. Numerous authors
have explored vibration analysis issues for various types of structures, including plates, to achieve these
objectives [5-7]. The vibration analysis of structures is influenced by their shape and geometric
dimensions, leading to the application of various theoretical frameworks, including classical theory,
first-order shear theory, higher-order shear deformation theory, and nonlocal theory [8-10]. Vannin and
Duc pioneered a theoretical framework for calculating the elastic modulus of spherical particle-
reinforced composites, incorporating critical matrix-filler interactions [11-13]. Their model provides a
foundational approach for predicting the mechanical behavior of such heterogeneous materials. Building
on this theoretical groundwork, Minh et al., [14-16] conducted experimental studies to fabricate three-
phase composites, demonstrating close alignment between empirical results and the proposed theoretical
predictions. Furthermore, Minh work expanded to analyze plate bending mechanics, integrating shear
deformation and time-dependent creep effects a crucial advancement for applications requiring long-
term structural integrity. Thu et al., [17-19] explored the buckling stability of three-phase composite
plates under hydrodynamic loading conditions. Employing first-order shear deformation theory, the
study accounted for transverse shear strains, offering insights into the dynamic response of composite
structures under hydrodynamic loads.

This work employs an analytical approach to investigate the nonlinear vibration behavior of three-
phase composite panels subjected to mechanical and thermal loading. The key contributions of this
research are as follows:

The material properties of three-phase composites are formulated in a nonlinear manner, explicitly
incorporating the volume fractions of fiber and particle reinforcements.

A mathematical model is developed for laminated three-phase composite panels resting on elastic
foundations within a thermal environment.

For the first time, Reddy’s higher-order shear deformation shell theory is utilized to analyze the
vibration characteristics of thick three-phase composite panels, including natural frequencies, phase
plane trajectories, and dynamic responses.



D. V. Dat, T. Q. Quan / VNU Journal of Science: Mathematics — Physics, Vol. 41, No. 1 (2025) 81-104 83

2. Modelling and Material Properties of Three-phase Composite Panels

Consider a thick three-phase composite cylindrical panel with dimensions defined by its thickness
h, length a, width b and radius of curvature R, positioned within the Cartesian coordinate system Oxyz,
illustrated in Fig. 1. The origin O is located at the corner of the panel, with the Oxy plane being the mid-
plane of the plate (corresponding to z=0) and the z axis extends through the thickness direction. It is
assumed that the layers of the panel are perfectly bonded to each other. The displacement components
in the x,y,z directions are denoted by u,v and w,respectively. ¢ and ¢, represent the rotations of the

normal to the middle plane relative to the y and x axes, respectively. The plate is considered to be placed
on a Winkler-Pasternak elastic foundation, where the interaction between the elastic foundations and

the panel is modeled by a system of springs with stiffness k;, combined with a shear layer between the
spring system and the plate with modulus K, .

Figure 1. Schematic of three-phase composite cylindrical panels on elastic foundations.

&nmiér and &, are the volume fraction, E,,E,,E; are Young’s modulus, v,,,v,,v, are Poisson’s ratio

and «a,,,a,,a, are thermal expansion coefficients of matrix, fiber and particle components, respectively.

The values of material properties including Young’s modulus, Poisson’s ratio and thermal expansion
coefficients for each phase of three-phase composite materials are presented in Table 1.

Table 1. Material properties for each phase of three-phase composite materials [4]

Phase Young’s modulus Poisson’s ratio Thez?e?‘:‘ii)i(gr?gs'on
Polyester matrix 1.43 GPa 0.345 14x107°K ™
Glass fiber 22 GPa 0.24 8x10°K ™
Titanium oxide particle 5.58 GPa 0.20 10x107°K™

Vanin and Duc [11, 12] proposed a method to determine the material properties of three-phase
composite materials by dividing it into two steps. In Step 1, the matrix and particle components are
combined to form a “hypothetical matrix”, assumed to be the isotropic material. The Young's modulus
and Poisson's ratio of this hypothetical matrix are:
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The hypothetical matrix and fiber component form the three-phase composite materials in the second

step. At this point, the three-phase composite materials exhibit transversely isotropic properties with six
independent elastic moduli as follows:
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where

X=3-4v,x, =3-4v,. (4)
The thermal expansion coefficient of the "hypothetical matrix" are determined as follows [14]
K, (3Km +4G,, )fc
K. (3K, +4G, ) +4(K, - K, )G, &

a*=a, +(a,—a,)

®)
Afterward, two thermal expansion coefficients of the three-phase composite material are be

determined from the thermal expansion coefficients of the "hypothetical matrix" and the fiber
component from following expressions:
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It is assumed that Pasternak-type elastic foundations support the panels. The interaction between the
sandwich plate and the elastic foundations is defined as follows:

Q. = 1a)—k2V2a) (7
2 2

where V? =(2—\2/+2—\2/ is the deflection of the sandwich panel, ki and k; are Winkler foundation
X y

stiffness and shear layer stiffness of Pasternak foundation, respectively.

3. Basic Equations

In this study, Reddy's higher order shear deformation plate theory [20] is used to establish the
fundamental equations for investigating the vibration of three-phase composite cylindrical panels. The
strain components at points a distance z from the mid-plane is determined as:
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are the normal strain components; »; ,y, and y;, are the shear strain

components; u,v and w are the mid-surface displacement components in the coordinate directions X,y

and z; ¢, and ¢, are the rotations of the mid-surface normal about the axes x and y, respectively.

The constitutive equations for the kth (kzl,_N) layer with fiber angle g, of the three-phase
composite cylindrical panels can be expressed as follows

Oy Q_lkl Q_1k2 Q_lkﬁ 0 0 &, —ay, AT

oy, Qlkz ng an 0 0 &y — apAT

oy | =|Qk Q% Q% 0 0 Yo | (10)
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inwhich AT isthe temperature difference of the environment containing the plate from the initial value,
where the cylindrical panels have no thermal deformation, to the final value, also known as the

temperature increment. Qi? are the components of the stiffness matrix which are determined as follows:
QF =Qkcosd,* +Q.sin‘d, + 2(Qty +2Qf )sin’g,cos’6,
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The results of internal force and moment for N layers are calculated as follows:

(N,,M,,P) =i.[zz“ai (1,2,23)dz, i=X,Y,
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Substituting Egs. (8) and (9) into Eq. (10), then substituting the results into Eq. (13), the expressions
for internal forces and moments are obtained as
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(A(,,Dk,,Fk,)ziLzm(ﬁkf, (1L.2%,2%)dz, k.1 =(4,5).

The equations of motion of the cylindrical panels subjected to uniformly distributed external
pressure g and viscous damping coefficient & are written according to Hamilton’s principle and Reddy's
higher order shear deformation shell theory as [20]:
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where the coefficients A}“ (i =13 j :1,_9) are expressed in Appendix A.

To reduce the number of unknowns and equations, the stress function f(t,x,y) is introduced to
satisfy the condition as:
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Substituting Eq. (20) into Egs. (17a) and (17b), collecting the second order derivatives of U and V
, then substituting them into Eqgs. (17c) — (17¢) yeilds
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Substituting Eq. (19) into equations (15b) — (15e), and then substituting the results into Eq. (21) to
obtain the following motion equations
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with coefficients 1 (i=1, ] =18,i=235,9,j=16;i=4,j=15,i=6,810,12, j=1,4) are expressed
in Appendix B.
In this study, the imperfection in the initial shape of the three-phase composite plate is considered

and characterized by the function w'(x,y), which is small compared to the thickness of the plate. In
this case, the motion equations (23) becomes

U22(¢x): Ig1¢x + I
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The geometric compatibility equation represents the relationship between the strain components at
the mid-surface of the imperfect plate, determined from Eq. (9) as
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Four edges of the three-phase composite cylindrical panel are assumed to be simply supported and
immovable within the plane Oxy of the cylindrical panel. These boundary conditions are specifically
expressed as follows:

w=u=¢ =M, =N, =0, N, =N,; at x=0,a,
w=v=¢ =M =N, =0, N =N, aty=0b,

The boundary condition (30) serves as the basis for selecting the form of the deflection and rotation
angle functions. In this study, these unknown functions are chosen in the form of single-term double
trigonometric functions that precisely satisfy the boundary conditions for displacement and
approximately satisfy the boundary conditions for internal forces and moments. Specifically, the chosen
forms of the solutions are

w(x,y,t)=W (t)sin, xcoss,y,
$. (X, y,t) =D, (t)cosA, xsings,y, (31)
, (X, y,t)=d (t)sini, xcoss,y,

(30)

m n . ) .
where A, =—7[,5n =?ﬂ,W|th m, N are the natural numbers of half waves in the corresponding
a

direction X, Y, and W,®,,®, are amplitude functions dependent on time.

To be able to replace w with w+w" and to consider the greatest impact of initial imperfection, w"
is assumed to have the same form as the deflection function as

W (X, y,t) = uhsind, xsing, y, (32)

with x(0< <1) is initial imperfection parameter.

Substituting Eqgs. (31) and (32) into Eq. (28), we obtain the general form of the stress function
f(x,y,t) as follows

f = ACOS24, X+ A,C0828, Y + ASinA, xsind, X + A,COS A, XCOSA, X + % N, y*+ % N,oX?, 539
in which
Ai_W(t)&f(Z,uh+W(t)) _W ()47 (2uh+W (1))
- R21A, e 3257 A, ’ (34)

Ko Koz Koz Kos Kos Kos
A=— (1)+—=0 (t)+—W(t),A,=—=0,(t)+—=D, (t)+—=W (1),
A, x()+ A, y()+ A, ()A4 A, x()+ A, y( )+ A, ()
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with the coefficients K, (i :1,_6) are expressed in Appendix C.
Then, substituting equations (31) — (33) into the system of motion equations (25) and applying the

Galerkin method, we obtain

LW +1,®@, + 1,0, +1, (W +gh)®, +1 (W + uh)® +|:r1 =N, A2 — Nyoﬁﬂ(w + ph)

AW (W + 2h) + EW (W + 22e0) + LW (W + h)(W +2uh) + rS%NwHSq
W W =00, =00
(Jl /12 i, — 52 17) o +28J1 P 115?_515&—;,, (35)
=0'Dd, , =W
LW + 1, @, + 1@, + W + ph) + EW (W +2ph) = j—* = ~nls—7 e
=00, =W
LW +1,@ + 1, @ + 5, (W + h) + W W +2,h) = sz—é‘n Js R

where coefficients I;; (=1, j =15,1=2,3,j=123),r, (k=19) are expressed in Appendix D.
The condition that the four edges x=0,a and y =0,b of the cylindrical panel immovable in the

xOy plane cannot be directly satisfied but can only be satisfied in the average sense as follows
(36)

b a ab
”a—udxdy = O,”%ydx =0.
00 OX 50 OX

The derivatives of the displacement components with respect to the x and y directions are determined

from Eqgs. (9) and (19) as
au SR NTGLE BT, L SRV} op, op, 9, az
- = + — + — X -
Alay Ao Ry Ao A{ax vt vy

+A18[a¢ % j Aig[a(/ﬁ %, —+2 82W}-ATO&ﬁ(WJFW )_l(a_wjz_@%*’
oy ox OX oxoy R 2\ oX OX OX
2f o*w o, o, o°'w 0
ov « 0 .
_:AZl ayz +A22 A23 A24 (5X X2 ] Aze A27( oy WJ

d 2 ?
N LA N 1 ﬂ+zaw +ATe, -2 2 —a—W%.
8y ox X OXoy 2\ oy oy oy
Substituting Egs. (31) — (33) into Eq. (37) and then substituting the results into Eq. (36), we can
collect the fictitious compressive edge loadings as
=gW +9,®, +9;®, + 9, (W +2uh)W + g5 (W + uh) + g,AT, )
= fW+ f,0 + f.0 +f,(W+2uh)W + f (W + uh)+ f,AT.
Suppose the uniformly distributed load has a harmonic form g =QsinQt, where Q is the amplitude
and Q is the frequency, and substituting Eq. (38) into Eqg. (35) we get
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LW +1,®, + 1,0, + 1, (W + ph) D + 1 (W + ph) D+ (W + uh)+ W (W + uh)

+EW (W +2uh)+ W (W +24h)(W + gh)+ 15 (W + uh ) (W + ph) + r5%gGAT +1,QsinQt

L= LTE\OW oW =8, SO0

RO e R (39)
=00, ='W

LW +1,,®, +I23CDy +1r, (W + ) + EWW +2h) = 13?—/1,“ 15?,
=00, = oW

I31W+I32d)x+l33(by+r8(\N +,uh)+r9W(\N+2,uh):Js =0, Js 5

ot ot
in which
1 1 1
|111 z(lll—'_nSEglj'lllz Z(Ilz +n5Egzj'I113 Z(Ila +n5§93j'|114 =l _(92/1; + fzé‘nz)’
1 by —(0,42 + 1,87) 5 =1, — (942 + 1,87 )AT +r5%gs,r21 1, — (9,42 + 1,62), (40)

=" +I’5%g4,r41 =1, _(94&31 + f45n2)'r51 2_(95&3‘ * f55”2)'

Eq. (39) is a nonlinear differential equation used to determine the vibration characteristics of the
three-phase composite cylindrical panel. The dynamic response of the plate is determined using the

| _dw| _do,| _d®,
Y=o dt |, dt |, dt o

Eqg. (39), the natural frequency of the cylindrical panel is determined as the smallest value among the
solutions of the following equation

Galerkin method with the initial condition W| =@, | =® =0. From

1 1 : 2T w2 )2 T 2 o5 .
I, + 1, "'(Jl_/lm i =6, 17)0) I, — 4 Js0™ |3 =6, js@

Ly +1,— A .o L, + j,0° L, -0. (41)

: 2 -k 2
Iy + 6, -6, Js@ I, lys + Jy0

4. Results and Discussion

To verify the reliability of the present results, the dimensionless natural frequencies
&6=2haw, /2p(1+v)/ E of a homogeneous isotropic plate are determined and compared with numerical

results of Farsangi et al. [21] based on the Mindlin plate theory and the analytical results of Srinivas et
al. [22] using the three-dimensional linear theory for small deformation cases. Four cases of vibration
modes are considered. Two cases of the geometric parameter are a/h=24 and a/h=40. From the
results in Table 2, it can be seen that the present results show good agreement with the published results
of other authors. The maximum error is of 6.32%, which can be explained by the differences in the
theories used.
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Table 2. Comparison of the dimensionless natural frequencies &6= 2hao, /2p(1+ v)/ E
of homogeneous isotropic plate

Source
Mode a/h Farsangi et al. [21] Srinivas et al. [22] Present Maximum error
1 40 0.0589 0.0589 0.0554 6.32%
24 0.1576 0.1581 0.1501 5.33%
5 40 0.0930 0.0931 0.0879 5.92%
24 0.2444 0.2455 0.2345 4.69%
3 40 0.1481 0.1485 0.1408 5.47%
24 0.3788 0.3811 0.3673 3.76%
4 40 0.2218 0.2226 0.2123 4.85%
24 0.5497 0.5544 0.5391 2.84%

The effects of the elastic foundations coefficients ki, k,, temperature increment AT and the ratio
b/h on the natural frequency (rad/s) of three-phase composite plate is indicated in Table 3. The
cylindrical panel is considered square (a = b). The fiber and particle volume fractions are &, =0.2 and

& =0.3, respectively. The results show that the natural frequency of the three-phase composite
cylindrical panel increases significantly when the values of the elastic foundations coefficients increase.
This is explained due to the positive effect of the elastic foundations in increasing the stiffness of the
three-phase composite cylindrical panel, thereby increasing the natural frequency. Furthermore, we
observe that the influence of the Pasternak foundation coefficient on the natural frequency of the
cylindrical panel is significantly larger than that of the Winkler foundation coefficient. Additionally,
increasing the value of the temperature increment AT , the stiffness of the three-phase composite
cylindrical panel decreases. As a result, the natural frequency of the cylindrical panel decreases with
increasing temperature increment. The results in Table 3 also show that the ratio b/ h positively affects
the natural frequency, an increase in b/ h ratio leads to an increase in natural frequency.

Table 3. Effect of the elastic foundation’s coefficients k;, k, , temperature increment AT and the ratio b/h on
the natural frequency of three-phase composite cylindrical panel

AT b/h k,(GPa/m),k, (GPa.m)
(0.1, 0.01) (0.1, 0.02) (0.1, 0.05) (0.2,0.02) | (0.2,0.05)
10 2525.5 2683.7 31104 2760.3 3176.8
100K 20 2758.7 3043.4 3770.7 3177.9 3880.1
30 2975.6 3366.4 4332.4 3548.1 4475.0
10 2496.2 2656.2 3086.7 2733.6 3153.6
300K 20 2731.9 3019.2 3751.1 3154.7 3861.1
30 2950.7 3344.5 4315.4 3527.3 4458.5
10 2466.6 2628.4 3062.8 2706.6 3130.2
500K 20 2704.8 2994.7 3731.4 3131.3 3841.9
30 2925.7 33224 4298.3 3506.3 4442.0

Table 4 presents data on the effect of fiber and particle volume fraction, along with the a/b ratio,
on the natural frequency of a cylindrical panel in the absence of elastic foundations. Below there are
several key academic observations based on the data. As the value of &, increases, the natural frequency
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of the cylindrical panel generally decreases. This trend can be attributed to the increased particle content,
which reduces the overall stiffness of the cylindrical panel, leading to a decline in natural frequency.
This aligns with the fact that the fiber component significantly enhances the stiffness of materials and
structures, while the particle component has a relatively minor impact on stiffness but improves other

mechanical properties, such as impermeability and fire resistance. When the & ratio increases, the
natural frequency decreases, indicating that the fiber's contribution positively impacts the stiffness of
the plate. For each value of &, the natural frequency decreases as the a/b ratio increases. This can be
explained by the fact that as the plate becomes longer, the structural stability of the plate diminishes,
leading to a reduction in natural frequency. The combined effect of &£, and aspect a/bon the natural
frequency is significant.

Table 4. Effect of fiber and particle volume fraction and a/b ratio on the natural frequency of cylindrical panel

& alb S
0.05 0.1 0.15 0.2 0.25 0.3
1 5441.5 5197.5 4989.4 4810.1 4654.2 4517.8
0.05 2 11166 10644 10196 9808.2 9468.4 9168.6
3 18705 17815 17049 16384 15800 1528.3
1 5352.3 5125.3 4930.8 4762.5 4615.8 4487.1
0.1 2 10959 10472 10052 9686.6 9365.3 9081.1
3 18338 17506 16788 16160 15607 15115
1 5273.5 5061.9 4879.7 47215 4583.2 4461.8
0.15 2 10772 10316 9921.6 9576.5 9272.3 9002.5
3 18002 17223 16547 15954 15429 14962
1 5204.8 5007.0 4836.1 4687.2 4556.7 4442.0
0.2 2 10603 10175 9803.8 9477.7 9189.4 8933.1
3 17695 16964 16326 15765 15266 14822

1

Velocity dW/dt(m/s)

(mp)=(1.1), wb=1, b'h=20, R'b=2,
kl 0.1 GPa'm, k,~0.02 GPam, £ ~0.2

ol 2 (0 2 ) O

Deflection Amplitude W(m) 10°

Figure 2. Effect of fiber volume fraction on the phase plane trajectory
of three-phase composite cylindrical panel.
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Velocity dW/dt(m/s)

(mny={L1), ab=1, hh=20, Rb=2,
k=01 GPw'm, k2002 GPam, £

5 1) h

Deflection Amplitude W(m) 1o~

Figure 3. Effect of particle volume fraction on the phase plane trajectory
of three-phase composite cylindrical panel.

Figures 2 and 3 illustrate the influence of fiber volume fraction &, and particle volume fraction &,

on the phase plane trajectory of the three-phase composite cylindrical panel. When the fiber volume
fraction is varied from 0.1 to 0.3, while maintaining the other variable constant, the geometric
parameters considered are a/b=1and b/h=20. As observed, both the deflection amplitude W and
the velocity dwW /dt initiate from zero. The phase plane trajectory narrows with an increase in the fiber
volume fraction and expands as the particle volume fraction increases. Furthermore, the plate's velocity
decreases with an increase in the fiber volume fraction and conversely increases with an increase in the
particle volume fraction. Thus, the findings presented in Figs. 2 and 3 reaffirm the positive contribution
of the fiber component and the negative contribution of the particle component to the stiffness of the
three-phase composite cylindrical panel.

« L0

Deflection Amplitude W(m)

(may=(11), a’'b=1, bh=20, Rb=2,
kl 0.1 GPa/my, k,=0.02 GPa.m. 3 0.2

0 0008 0.01 0015 002
Time(s)
Figure 4. Effect of fiber volume fraction on the dynamic response of three-phase composite cylindrical panel.

Figures 4 and 5 respectively illustrate the influence of fiber and particle volume fractions &, and &,
on the dynamic response of a three-phase composite cylindrical panel without elastic foundations. The
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plate is subjected to an external uniformly distributed load with amplitude of Q = 1,600N/m? and
frequency of Q = 1,500 rad/s. Interestingly, the obtained results show that the deflection amplitude
decreases when the fiber volume fraction increases while keeping the particle volume fraction constant
or when the particle volume fraction increases while keeping the fiber volume fraction constant. It seems
that both fiber and particle components have a positive impact on the dynamic response of the three-
phase composite cylindrical panel, even though the particle component previously had a negative effect
on the natural frequency.

g

=

-

g

<

2

- .

<

= (mnp=(1,1), a’b=1, bh=20, R'b=2,
0 k, =01 GPa/m, k,=0.02 GPam, § 0.2
-8 4 A 4

0 0.005 0.01 O0nLs 002
Time(s)

Figure 5. Effect of particle volume fraction on the dynamic response
of three-phase composite cylindrical panel.

<10~
— i =)
H | —eee k =03 GPa/'m

........ k, 0.5 GPw/m

Deflection Amplitude W(m)

-6 | fmany=(h 1) a/b=1, bh=20, Rb-2,
AT=100K, &.=0.02 GPam

0N 00058 00l 0015 002 0025 noi

Fime(s)

Figure 6. Effect of Winkler foundation stiffness on the dynamic response
of three-phase composite cylindrical panel.

Figures 6 and 7 depict the effects of a Winkler foundation with stiffness k;and Pasternak foundation

with modulus k, on the dynamic response of a three-phase composite. With a temperature increment is
AT =100K and specified geometric parameters are a/b=1b/h=20. It is evident that as the stiffness
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k, and modulus k, of the elastic foundation increase, the deflection amplitude of the plate significantly
decreases, particularly with k, showing a stronger effect. This phenomenon can be attributed to the fact
that, when the elastic foundation is modeled with independent spring systems of stiffness k, and shear

layers with modulus k,, the reaction force from the foundation opposing the external pressure on the
plate's surface diminishes the vibration of the cylindrical panel.

=0
«k 2002 GPam

0.04 GPam

Deflection Amplitude W{m)

{mn)=(1,1), a’b=1, h'h=20, R’b=2
AT=100 K, k =0.1 GPaw'm

] 0nons 001 0015 0no2 0.025 003

Time(s)

Figure 7. Effect of Pasternak foundation modulus on the dynamic response
of three-phase composite cylindrical panel.

5. Conclusions

This study employs Reddy's higher-order shear deformation plate theory to derive the fundamental
equations and determine the vibrational characteristics of a three-phase composite cylindrical panel
including the natural frequency, amplitude-time relationship, and phase plane trajectory. The key
findings are as follows:

- The natural frequency of the cylindrical panel is significantly influenced by the elastic foundations.
As the elastic foundation coefficients increase, so does the natural frequency, which highlights the
crucial role of foundation stiffness in vibration control.

- The increase in temperature leads to a reduction in the stiffness of the cylindrical panel, causing a
corresponding decrease in natural frequency and a significant increase in deflection amplitude. This
behavior is consistent across both the natural frequency and dynamic response analysis, where higher
temperatures reduce the structural integrity of the cylindrical panel.

- Higher mode numbers correspond to more complex vibration patterns, which increase the stiffness
of the cylindrical panel, leading to an increase in the natural frequency. This relationship emphasizes
the importance of considering mode shapes in vibration analysis.

- An increase in both fiber and particle volume fractions results in a reduction in the deflection
amplitude of the cylindrical panel, with fibers exerting a more pronounced effect than particles. This
suggests that fibers contribute more effectively to enhancing the stiffness and mitigating dynamic
deflections.
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* -A BZG’BZZ’BZG’BZZ’Blz’BIZ * __y EzeiEzzaEzeiEzszlzi 2

= Pl ) - P B B B )

* -A Beesze’Beeszsv 6' P16 * -A Eee’Eze’Eee’Eze’ 6’E16

A= A, ( B, Bl),Azgz Ay ( E )_

A A
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Appendix B

I, = BnAIl + Ble;1 + BlGAZ;l’ l, = BuAIz + BlZAZZ + BleAgza |5 = BllAI3 + Ble;3 + BlsAzsv
= B11AI4 + BleZ4 + BlGA;l +Dy, s = BnAIs + B12A;5 + B16A;5 +Fy,
e = BnAIe + Ble;e + BlGA;6 +Dp, ;= BnA; + Ble; + BlGA;7 +Fy,
s = BnAIa + BlZAZB + BlGA;S + Dy, g = BllAIQ + Blezg + BlGA;9 + Fg,
Iy = BleL + BzzA; + BzeA;v I, = Blezz + BZZAZZ + BZGA;Z' I = Bleza + BZZAZS + BzeA;w
= Ble; + BZZA;4 + stA; + Dy, 1y = BlZAIS + BzzA;5 + BzeA;5 +Fy,
6 = Bleze + BZZAZG + BzeAge +Dy, 1, = Ble; + BzzA; + stA; +Fy,
I = Blezs + BZZAZS + BzeAgs + Dy, 1y = BlZAIQ + BzzAZQ + BzeA;9 + Fy,
s, = BlsAL + BzeA; + BseAzl’ 5, = BlGAIZ + BzeA22 + BGBA;Z’ Iy = BleAzs + stA; + BeaAgsv
I3 = Bl6AI4 + BzeA;4 + BaeA;4 + Dy, I35 = BlSAIS + BZBAZS + BeeAgs +Fg,
I3 = BlsAzs + BZGAZG + BssAge + Dy 1y = BlGA; + BzeA; + BesA; + Fy,
I3 = BlGAIB + BZGAZB + BGGA;B + D 1y = BlsAzg + BZGAZQ + BesA;s) + Fe.
Iy = EllAzl + E12A;1 + EleA;v I, = EnAIz + E12A;2 + E16A22’ Iy = EnAIa + E12A;3 + ElGA;S’
Iy = E11A*1k4 + E12A;4 + E16A;4 +Fy = EllAIS + E12A;5 + ElGA;5 +Hy,
I = EllA;s + E12A;6 + EleA;s +F, 0, = E11AI7 + E12A;7 + ElGA; +H,y,,
Iy = EnAIs + Ele;S + ElGA;S + Pl = E11AI9 + E12A;9 + ElGA;9 +Hg,
|51 = EleL + E22A;1 + E26A;l' |52 = E12AI2 + E22A;2 + EzeA;w |53 = E12AI3 + EzzAzs + EzeA’;s’
ls, = Ele; + EzzA;t + E26A24 +Fp s = Elezs + EZZAZS + E26A;5 +Hp,,
I = Eleze + EzzAze + EzeAze +Fy e = E12AI7 + E22A27 + EzeA; +Hy,,
lss = ElZAIS + EZZAZB + E26AZ‘8 +Fy g = E12AI9 + EzzAzg + E26A;9 +Hy,
le, = EleAzl + EZGAZI + EeeAglv le, = EleAzz + E26A;2 + EeeAgzi le; = EleAzs + EZGAZS + EeeAgsi
e, = ElGA; + E26AZ4 + E66A24 +Fg les = ElGAIS + EZGAZS + E66A;5 +Hyg,
les = EleAzﬁ + EZGAZG + E66A;6 +Fy g = ElGA; + EZGA; + EaeA; +Hy,
les = ElGAIS + EZGAZS + EeeA;a +Felgo = ElBAIQ + E26A;9 + EeeAgg + Hg,
I,y = Ay =360y 17, = Ay =3¢, Dy |75 = Ay =3¢, Dy, 17, = Ais =30, Dy,
g, = Dgy =3¢ Ry, 1, = Dgg =30, Fg, gy = Dy =30, Fyy lgy = Dys — 30, Fgs.
Il*l ==3lg,C + 15, |1*2 = (_3|81 _3|84)C1 + o+ 1y,
|1*3 =—3lgC + o5, |1*4 :_012|45' I1*5 = _2C12(|49 +1gs),
2

* 2 * 2 *
|16 =—C (|47 + I55 +4|69)’ |17 :_201 (|59 + |67)’ |1s =—C I,
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I2*1 =350 + 1y, I2*2 =—3lg,C + 1y, |;3 =C(—Clstly),

|;4 =C1[(_| _2|65)Cl+|48+2|64]’ |;5 =C1[(_ |55 _2|69)C1 + |54 + 2'68]’ Ize :CI(_C1|59+|58)1
I =-3lgC + |71’I =—3lgC + 173, 15 =C1(_C1|49+|4s)’

|;4 zcl[(_ |47 - 69)C1+|46+2|68]’ |35 :Cl[(_ |59 _2|67)C1+|56+2|66]’ I;«s :Cl(_cl|57+|56)’
IZl =Cily,, |:2 =C (=1t 2'62)":3 L U P _2|63)’|:4 =c, (- |53+2|61)’|25 =Gl

I;l =3lg,C — 14, |;2 =3lg,C — 17y, |;3 2012|45 —Cilys,

I;A :_CJ.[(_2|49 - |65)C1+2|19+|35:|7 |;5 Z_Cl[(_lu _2|69)Cl+|17+2|39:|’ I.:e :C12|67 —Cly,

* * 2
IGl =3|82C1 - |72’ Iez =C I45 +(_Ils - |44)C1 + |14v

|;3:(|49+|65)C2+(_|1 _|35_|48_|64)C1+|l8+|34’| l|69 ( |39_|68)Cl+|38'
|;1:3|81C1 00 1o, C1|49 ( |48)C1+|187
I;s :(|47 + Isg)C1 +(_|17 o |39 - |46_ Iss)c + |16+ |38’|;4 :C12|67 +(_|37 _Iee)C1+ |36’
|;1:_|4201+|12’|;2:(|43_|62)C1 |+|32’| (_|41+|63)C1+|1l_|337|;4:_|61Cl+|31’
|;1=3|84C1_|747|;2=3|83C1 250 lgs = C1|65 Clss,

C[ 69 C1+|25+2|39] |95 Cl[(_2|59 |67)C +2|29+|37] Ige C1|57 Cly,
101:3|84C1_|741|1*02 =0 |65+(_|35_| )C + 1y,
|1*03:(|55+|69)C2+(_| _|39_|54 )C1+|24+|38’ 104 — C1|59 ( 29 |58)C1+|28’

I1*11 :3|83Cl 7sv 112 C1 |69 ( 39 I )C + |38’
I1*13 =(|59 + |67)Cl +(_Izg - |37 - |58 Iee)c + |28 + |367 114 — C1 |57 ( 21 56)C1 + Izev
|1*21 :_|62C1 + |32’ I1*22 :(_|52+|63)C1+ I22 - |33' |1*23 :(Isa - IGl)Cl - |23+ |31 ) |1*24 :_|51C1+|21-
Appendix C

- R(k2 Zm + k0558 (2k01k03 - kgz )Awiéf + (2k01k05 + k§3 - 2k02ko4)/11;15|:1 + (Zkoakos - k(i: )ﬂﬁé‘:)
+(k01k06/1m - k02k095n )/151 + (koskos + k01k08 - k02ko7 )/1:15nz
+(k03k08 + kos koe - k04ko7 )ﬂ;&: + (kos k085n3 - k04k09)“:1 )ﬂ’mgr?
(kos k13§r$ + (k01k11 - koz k10 )ﬂ'r?] )5n
+(k03k11 + k01k13 - kozklz - k04k10 )1;55 + (k03k13 + kOSkll - k04 klZ )ﬂ;é‘:
4 k01k14lr?1 + kos k185r? + (k01k16 + k03k14 - koz k15 )/135}12
Kos =- +(k05 k14 + koskle + k01k18 - koz k17 - ko4k15 )/135: + (k03k18 + k05k16 - I(04 k17 )/1:15:
_(koﬂé + l<03,/1rr215r12 + k05§: )5r12

R
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K — +(k01k09/1; +(kosko7 - k04k08)5r15)/1m + (k01ko7 - kozkos)lnswé‘n
i +(k03k07 - kozkos - ko4kos)/1ri5: + (koskogﬂni + k05k09§nz)/1ri§nz
K. - +k01k10ﬂ~r?1 +(k05k12 - k04k13)§: +(k01k12 + kozklo _kozkll)/mé‘anl R
05 m
+(ko3k12 + kosklo - koz k13 - k04k11)/1§5:
K. = (k01k15;tr§ - k02k14ﬁri - k02k165r12)ﬂ’n“1|5n +(k01k17 + k03k15 _k04k14)ﬂvni5nsz +(k 12 +k 52)53 1
06 — 027"m 04%n n m
+(k03k17 + k05k15 - koz k18 - k04k16 )/1n215r? + (k05k17 - k04k18 )5n7
Appendix D
R e e )
Ak Ay Ak Ay Ak Ay
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|, = 1 Ad =0 17 438, % 4 1 4267~ 17 A 63 2% 4 15— 15 A+ 13,25 + 1A, 62 — =867 —%,
12 41 Ak 42 Ak 43 Ak 44 Ak 45 Ak 21 23 25 R )
« .. K . K . K " K « K N N N 1 .,K
=140 22 172385 =% 4 1 4202 —2 |7 A 52 =5 4 150 =2 — 11,5, + 15,425, + 15,0° - =67 —%2,
13 Zil Ak 42 A, 43 Ak 44 A, 45 A, 32 34 36 A,
322 6, K 3246, K ) . . . . 3246, K
14 :WA_T,IH :WA_T'W :_|11/1n21 - |135r§ + |14/1:1 + |16/1n215r§ + |185r§’n2 :WA_OSI
_ V84S, V84S, 1 2% An & 16
° A, 3ab A, 3ab RA;35ab’ * 16A, 16A,' ° 1 6,ab
* K * K * * * K * * K
|y __Ielﬁﬂni + Iszﬂlnzﬁ —lgg—2 4 57+ |84£53’|22 :_Isliﬁ - Iez/lri + Iszi/lnié‘
Ak Ak n Ak m~n Ak n Ak m Ak n
* K * * K * * K * K * * K
oy =23 52— 1,02 4 1y =253 4 1y ==l =223 41, =B 225 — 14 5 — |y —2 152
BSAkmn 64%n 84Akn 61723 BlAkm 82Akﬂ’mn 737*'m%n 83Akﬂ'mn
* K * * * I* 86
gy =565 ,0g = —lgg Ao + 15y A — s A, 0,0y =S —,
84 Ak nt'ls 53/1111 51ﬂm 55/1m m1'7 A22 3ab
* K * K * K * K * K * K
ly; = |121ﬂir?1 - |122£ﬂr$15 + 1y —2 4 5t - |124£53’|32 = |121ﬂ/13 - |122iﬂ~25
Ak Ak n Ak m>n Ak n Ak m Ak m~n
* * K * K * K * * K * K
—li03 A0y + 1123 A_O4/1m5n2 — iy A_Ol5n3’|33 = IlZlA_OSA; - |112/7~r$1 — iy A_Ozinzﬁn + 13 A_Osiméf
k k k k k

* * K * * * * I* 8 ﬂfm
2 02 8 _ 2 3 _ lig
~l11407 = 1 A G + 11, Mg = lgp0, =gy A6,y = lgs6y,Ng = —< 3
k A, 3a



