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Abstract: Single-cell analysis offers a more comprehensive approach to disease diagnosis compared
to conventional methods. Electrical properties at a cellular level have been established as reliable
biomarkers, enabling the identification of variations between individual cells. In this work we
introduce a machine learning-based methodology for analyzing electrical impedance signals
obtained from a microfluidic biosensor system for biological cell analysis. The proposed model is
designed to detect and enumerate CD4 T-lymphocytes (CD4), which are a critical component of the
immune system, through a microfluidic impedance flow cytometer. By identifying and analyzing
the bioelectrical signal characteristics of CD4 cells as they traverse the sensing region, the machine
learning models provide accurate cell enumeration while also estimating the size distribution of cell
populations within the sample. A signal classification framework is employed to isolate cell signals
from background noise, followed by the application and evaluation of various machine learning
algorithms to optimize performance. The proposed method demonstrates improved accuracy and
speed in cellular analysis compared to traditional techniques such as flow cytometry. Moreover, this
method presents a significant potential for applications in cell analysis, addressing the demand for
point-of-care diagnostics and enhancing the efficiency of biological diagnostics.
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1. Introduction

Single-cell analysis has emerged as a crucial tool in modern disease diagnostics due to its ability to
provide detailed information at the cellular level, enabling the detection and evaluation of biological
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features that are often inaccessible to traditional methods [1, 2]. However, existing techniques such as
flow cytometry face significant limitations, including operational complexity, high costs, and challenges
in scaling applications beyond specialized laboratory settings [3-6]. In this context, cellular electrical
properties, such as impedance, have been established as reliable biomarkers, allowing precise
differentiation between cells based on their physical and physiological characteristics. The advancement
of microfluidic sensing systems, combined with electrical signal analysis, offers promising new
directions to overcome the limitations of traditional methods while delivering efficient, cost-effective,
and easily deployable solutions for practical applications.

While single-cell analysis holds significant potential, achieving high accuracy and efficiency in
processing signals from individual cells remains a major challenge [7-9]. Electrical signals from single
cells are typically weak and highly susceptible to background noise in microfluidic environments,
reducing the reliability of measurement results [10-12]. This necessitates highly sensitive sensing
systems and advanced signal processing methods to isolate meaningful signals from noise effectively.
Furthermore, the pressing demand for rapid, cost-effective, and easily deployable diagnostic solutions
at point-of-care settings is driving the development of innovative technologies [13]. These solutions
must ensure high performance while being simple enough for widespread application, particularly in
resource-limited settings with constrained infrastructure and manpower.

In recent years, impedance flow cytometry (IFC) has gained significant attention as a powerful label-
free technique for analyzing individual cells based on their electrical properties. This approach allows
for the characterization of cell size, morphology, and internal structure by measuring impedance changes
as cells traverse a microfluidic channel [14-16]. Notable studies have developed microfluidic systems
for applications such as cancer cell detection, immune cell counting, and the analysis of cellular
physiological properties based on impedance signals [17-19]. For instance, systems employing
microelectrodes for impedance measurement have shown promising results in tumor cell detection but
are often limited by sensitivity and signal resolution [20]. These challenges, coupled with the complexity
of processing impedance signals affected by substantial background noise, have driven the adoption of
artificial intelligence (Al) as an effective solution for signal processing and biomedical diagnostics.

Cellular signal analysis relies on impedance values and complex features such as signal shape,
frequency, and correlations between parameters. This complexity makes machine learning methods
highly advantageous, given their ability to handle multidimensional data and extract deeper insights
from signals. Several studies have successfully applied machine learning and deep learning to single-
cell analysis [21, 22]. Wei et al., [23] utilized machine learning to classify cellular states based on
impedance features obtained from impedance flow cytometry (IFC). Their research demonstrated
significant potential for label-free single-cell analysis, achieving near-perfect accuracy in distinguishing
live and dead cell states and drug-inhibited states in cancer cell lines such as H1650 and HelLa. Honrado
et al., [24] developed a neural network-based approach for the real-time characterization of particles and
cells using impedance data from microfluidic cytometry. Their method accurately determined the size,
velocity, and cross-sectional position of particles, red blood cells, and yeast with a processing time of
only 0.4 ms, highlighting its promise for real-time single-cell analysis and sorting. Machine learning
and deep learning algorithms have also been employed to classify cancer cells based on impedance
signals, while other models have successfully detected differences in the size and state of immune cells
[25]. Despite these advancements, there remain challenges in improving accuracy and enabling practical
deployment. This underscores a significant opportunity to integrate Al with microfluidic sensing
systems to optimize performance and expand their application in biomedical diagnostics.

This study presents the development of a machine learning-based framework for analyzing
impedance signals from single cells using a microfluidic sensor system. A custom-designed microfluidic
biochip was fabricated to detect and enumerate CD4 T-lymphocytes (CD4 T cells) through impedance
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measurements, incorporating a cost-efficient signal processing circuit that includes an instrumental
amplifier and a highly sensitive lock-in amplifier. The primary objective is to accurately detect and
count CD4 T cells, a key component of the immune system, to support immune health monitoring and
disease diagnosis. The proposed framework employs a systematic multi-step methodology for signal
processing. A segmentation model is initially utilized to identify and isolate cell-specific signal
segments from the raw impedance data. Subsequently, critical bioelectrical features are extracted and
characterized to facilitate analysis. By exploiting these features, the framework enables precise cell
enumeration and estimates the size distribution of cell populations within the sample. The framework
then evaluates multiple machine learning models to identify the optimal classifier for signal
interpretation, with results demonstrating high accuracy and recall, underscoring the robustness of the
approach. This methodology represents a non-invasive, efficient, and scalable solution tailored to
precision medicine and single-cell analysis demands. Integrating microfluidic impedance sensing with
machine learning addresses critical challenges in modern biomedical diagnostics, offering a versatile
platform for advanced healthcare applications.

2. Materials and Methods

2.1. Cell Detection Using a Microfluidic Chip and Compact Signal Processing Circuit
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Figure 1. Design of a microfluidic IFC for CD4 T cell analysis with excitation
and pick-up electrode configuration.

Figure 1 illustrates the design of a microfluidic chip developed for detecting and enumerating
biological cells using a single microfluidic channel. The sensing structure comprises three coplanar
metal electrodes, one excitation electrode positioned centrally and two pick-up electrodes on either side,
fabricated using microfabrication technology. The differential signal between the two pick-up electrodes
indicates the movement of cells within the fluidic channel, while the impedance values of the central
excitation electrode and the adjacent sensing electrodes are analyzed to measure variations at each cell
position as it traverses the channel. The presence of viable cells is determined based on the impedance
imbalance between the adjacent sensing electrode pairs. A wheatstone bridge circuit is employed to
detect relative impedance changes, and the output signals from the two pick-up electrodes are
differentially amplified before being processed by a lock-in amplifier to suppress background noise. The
previous study performed detailed simulations of impedance variations within the sensing region [26].
The fabricated chip was integrated with a signal processing circuit to conduct experiments for detecting
and counting CD4 T cells within the microfluidic channel.
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The microfluidic chip was fabricated by integrating a glass substrate with impedance-detecting
electrodes and a PDMS microfluidic channel layer. The electrodes were created using metal deposition,
photolithography, and wet etching, with 20 nm of chromium and 100 nm of gold deposited onto the
glass substrate after cleaning with piranha solution. The microfluidic channel was fabricated using soft
lithography, where Polydimethylsiloxane (PDMS, Sylgard-184 Silicone Elastomer Kit, Dow Corning,
Midland, MI, USA) (10:1 is the ratio of prepolymer to curing agent) was poured into an SU-8 mold
(MicroChem Corp., Newton, MA, USA), degassed under vacuum, baked at 65 °C, and punched to create
inlet and outlet ports. The PDMS layer was bonded to the glass substrate using oxygen plasma treatment,
and the assembled chip was baked at 90 °C to complete the fabrication process.

CD4 T cells were used to evaluate the chip's performance and the signal processing circuit.
Peripheral blood mononuclear cells (PBMCs) were isolated from diluted blood using Pancoll gradient
centrifugation, cleaned, and labeled with FC-CD4 before magnetic separation to collect labeled cells
(positive fraction). The signal processing circuit was compactly designed to handle sinusoidal
signals of 1 Vp-p at 100 kHz applied to the excitation electrode. Signals from the pick-up electrodes
were amplified and processed through a Wheatstone bridge, an INA11l (Texas Instruments)
instrumentation amplifier, and an AD630 (Analog Devices) demodulator to suppress noise. The
processed signal was filtered through a low-pass filter and buffered before being transmitted to an
Arduino Mega microcontroller, followed by the data acquisition.

2.2. Data Acquisition from Microfluidic Device

i

0.8 -

Voltage (V)

T\

Sample

Figure 2. Variation of output signals with the passage of CD4 T cells over the counting region. The insets in the
graph indicate the positions of the cell corresponding to the output voltage at each point.

The electrical signals generated by the movement of CD4 T cells through the sensing region were
collected, processed, and analyzed. The passage of the cells caused a time-dependent variation in the
output signal. Figure 2 illustrates the measured voltage changes as a CD4 T cell traverses the electrodes.
The inset images show the cell's position at different locations corresponding to specific points on the
voltage trace. The recorded signal exhibits bipolar peaks, resulting from the cell passing over both pairs
of sensing electrodes. Positive polarity peaks occur as the cell moves across the first pair of electrodes,
while negative peaks are observed as it crosses the second pair. The baseline voltage, approximately
0.14 V, represents the offset voltage when no cell is present in the sensing region. This offset voltage
may be attributed to electrode fabrication imperfections or the precision limitations of the electronic
components. The signal profile indicates that the positive peaks demonstrate a higher amplitude than the
negative ones. The maximum voltage deviations from the baseline were measured to be approximately
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1.4 V for the positive peaks and 1.7 V for the negative peaks. This amplitude disparity is likely caused
by hydrodynamic forces exerted on the cell as it traverses the electrode region, which may affect its
relative vertical position within the microfluidic channel.

2.3. Cell Signal Segmentation from Data

In the time-discrete signal array collected from the microfluidic device, the segmentation and
classification of cell signals are essential to differentiate them from noise. In previous studies, cell
counting was implemented by evaluating the amplitude of the positive peaks against a fixed threshold.
However, this approach has significant limitations when the data contains high-amplitude noise that
exceeds the predefined threshold. Moreover, the unique signal shape, which consists of consecutive
positive and negative peaks (Figure 3), can be leveraged as a distinct feature to detect and count cells
passing through the electrodes more accurately. For each cell signal within the collected data array, key
reference points are defined: Start Point (SP), End Point (EP), Positive Peak (PP), and Negative
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Figure 3. Definition of cell signal segments in the data array. Each signal is characterized by a Start Point (SP),
an End Point (EP), a Positive Peak (PP), and a Negative Peak (NP).

Peak (NP). To construct this 2D signal segmentation model, specific conditions are established as
follows: the voltage values of SP and EP must remain below the baseline (where the baseline is defined
as the signal when the voltage value is approximately 0), the heights of PP and NP are required to be
similar, and any waveforms that deviate noticeably from a bipolar shape are classified as noise. This
refined approach improves the accuracy of cell detection and enumeration accuracy while addressing
previous methods' limitations in noisy environments.

The signal identification and extraction process are conducted in two main steps. The identification
of positive peaks (PP) and negative peaks (NP) is performed using the find peaks function (detects local
maxima in the signal data) from the scipy library, specifically designed for peak detection in signal data.
Specifically, the PPs are detected directly, while the NPs are determined by inverting the input
parameter’s sign in the method. Once the PPs and NPs are collected, their number is reduced by
removing identifiable noise peaks. The remaining PPs and NPs are then balanced in quantity and paired
accordingly. These PP-NP pairs determine the Start Point (SP) and End Point (EP) of the signals. The
SP is identified by tracing backward from the PP's position until the voltage's decreasing trend ends.
Similarly, the EP is located by tracing forward from the NP until the increasing trend ceases. Finally, all
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data points from SP to EP are grouped into a vector, and the process is repeated until no PP-NP pairs
remain. Figure 4 illustrates the workflow, including peak detection, SP and EP identification, and final
signal extraction after noise removal.

(b)

i (a) i

Figure 4. Cell signal segmentation process: (a) Find definition peaks from the entire signal;
(b) Segmentation the cell signal.

2.4. Feature Description for Machine Learning Models
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Figure 5. The definition of features including: segment-width (horizontal distance between Start Point and End
Point); SP-EP-deviation (vertical distance between SP and EP); Standard Deviation (SD) of the data points; left-
slope, mid-slope, and right-slope quantify the peak's slope angles.

The preprocessing procedure filters out signal segments with peak patterns resembling those
generated by CD4-T cells. However, the segmentation model primarily eliminates background noise
and measurement circuit interference. In practice, CD4-T cells are not the only entities passing through
the electrodes and producing such signal patterns. The sample may also contain cell debris, cell clusters,
dust particles, or other impurities, which can generate electrical signals with similar shapes. Despite this
overlap, each type of object in the sample exhibits distinct signal characteristics that can be leveraged
for further classification. Since most detected objects are cells, specific signal features can be defined.
Machine learning models can be applied to accurately determine whether a given signal corresponds to
a cell if it lies within the defined convergence region. This approach enhances the reliability of
identifying CD4-T cell signals while reducing false positives caused by non-cellular artifacts.

In this study, signal features were defined and evaluated using over 1,000,000 data points collected
from experiments. The segment width represents the distance between the SP and the EP and provides
critical information about the duration of the signal in terms of time samples. The SP-EP deviation
guantifies the voltage difference between SP and EP and serves as another key indicator. The discrete
signal segment is also analyzed for smoothness to ensure its validity. Any anomalies or outliers that
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cause a significant increase in the standard deviation (SD) of the segment are not considered valid cell
signals. The slope angles are calcula

Machine Lea ted as left-slope for SP-to-PP, mid-slope for PP-to-NP, and right-slope for NP-to-EP
to capture the signal's shape. These features are illustrated in Figure 5. Most signal instances filtered
from the raw data exhibit similar patterns for the defined features.

2.5. Implementation of rning Models

After defining and extracting the relevant features from the entire dataset, the data were applied to
several widely used machine learning classification models to compare and evaluate their performance.
The data used for training consists of two classes: the majority class, representing instances labeled as
actual cell signals, and the minority class, representing instances labeled as noise. This study proposes
two approaches for training the machine learning models: one-class classification and binary
classification. For the one-class classification approach, models such as Isolation Forest and One-Class
SVM are utilized to identify and isolate cell signal instances without explicitly relying on noise labels.
In contrast, the two-class classification approach employs widely used models, including Decision Tree,
Random Forest, Logistic Regression, Support Vector Classifier (SVC), K-Neighbors Classifier, and
Gradient Boosting Classifier, to differentiate between cell signals and noise instances. The comparative
analysis between these two training strategies evaluates their effectiveness in handling imbalanced datasets
and improving the accuracy of cell signal detection in microfluidic systems.

3. Results and Discussion

Four standard metrics were employed to evaluate the performance of the machine learning models
used in this work: Accuracy, Precision, Recall, and F1-score. These metrics comprehensively assess
each model's ability to distinguish between actual cell signals and noise.

Accuracy measures the overall correctness of the model and is defined as:

TP +TN
TP+ TN + FP +FN
Where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.
Precision reflects the proportion of predicted positive instances that are correct, capturing the
model's reliability:

Accuracy =

TP

TP + FP
Recall (or Sensitivity) measures the model's ability to identify all relevant instances of the positive
class correctly:

Precision =

TP

TP +FN
F1-Score is the harmonic mean of Precision and Recall, providing a balanced measure when dealing
with imbalanced datasets:

Recall =

Precision X Recall
F1 — Score =2 X

Precision + Recall
By applying these metrics, the study ensures a thorough evaluation of the machine learning models'
performance across both one-class and two-class classification approaches. Accuracy highlights overall
correctness, while Precision and Recall provide insights into false positives and false negatives,
respectively. F1-score is a balanced metric, particularly valuable for imbalanced datasets like the one
used in this research.
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3.1. Data Acquisition and Segmentation Model Performance

The dataset utilized in this study comprised over 1,000,000 data points collected from experimental
recordings, which were segmented into a total of 1,473 labeled instances for training and testing
purposes. To rigorously evaluate the performance and generalizability of the machine learning models,
a stratified 5-fold cross-validation technique was employed. Specifically, the dataset was partitioned
into five subsets of equal size, ensuring balanced representation of cell and non-cell signals in each
subset. In each iteration, four subsets were used for model training, while the remaining subset served
as the validation set, with this process repeated five times. The final performance metrics, including
accuracy, precision, recall, and F1-score, were calculated as averages across these five folds. Statistical
significance of model differences was assessed using paired t-tests, with a significance threshold set at p <
0.05. The segmentation model achieved a Precision of 85.33% and a Recall of 96.76% on this dataset. The
results indicate that the segmentation step effectively captures most cell signals while minimizing false
positives. Further analysis revealed that most instances missed during this stage have minimal peak voltage
values of approximately 0.1 V. These findings highlight the model's strong performance while underscoring
the challenge of accurately identifying signals with minimal voltage variation.

[ m False label
e True label

Segment width

SP-EP-devialion

Figure 6. The convergence and distinction between the two features, segment width and SP-EP-deviation,
for cell-labeled data and non-cell-labeled data.

3.2. Features Evaluation

The scatter plot in Figure 6 illustrates the distribution and distinction between two key features,
segment width and SP-EP-deviation, for previously labeled data points representing cell signals (true
labels) and non-cell signals (false labels). The plot demonstrates a clear clustering pattern, where the
actual cell signals predominantly occupy regions with moderate values of SP-EP-deviation and segment
width. In contrast, the non-cell signals exhibit greater dispersion, primarily concentrated in areas with
lower values of these two features. This result highlights the effectiveness of segment width and SP-EP-
deviation in distinguishing between cell signals and background noise. The convergence observed for
these features indicates their strong potential for signal classification tasks. Similar patterns of
convergence are also evident in other extracted features. The following section will present the
classification results using both one-class and two-class machine learning models.

3.3. Classification Model Performance

The performance of the one-class classification models, presented in Table I, demonstrates that
IsolationForest achieves the highest Accuracy of 0.882. However, OneClassSVM outperforms it in
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Precision (0.785) and Recall (0.795), resulting in a higher F1-score of 0.790 compared to 0.720 for
IsolationForest. This result suggests that while IsolationForest captures a broader set of instances, it may
include more false positives, as indicated by its lower Precision. Conversely, OneClassSVM
demonstrates a better balance between correctly identifying cell signals and reducing noise, making it
more reliable for this dataset. Nevertheless, the overall performance of the one-class models remains
suboptimal, which may be attributed to the insufficient convergence of the defined features. The limited
distinction between actual cell signals and noise could hinder the clustering models' ability to classify
the signals accurately.

Table 1. One-Class model performance

Model Accuracy Precision Recall F1-score
IsolationForest 0.882 0.715 0.735 0.720
OneClassSVM 0.842 0.785 0.795 0.790

Decision Tree Random Forest
B 184 B 187
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= E
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0 1 0 1
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1 122 1 142
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Figure 7. Confusion matrix of 6 classification models.

For the evaluation of classification machine learning models, the labeled dataset was divided into a
training set and a testing set, with the model performance on the testing set summarized through
confusion matrices (Figure 7). The confusion matrices provide a comprehensive overview of the
performance of six machine learning models: Decision Tree, Random Forest, Logistic Regression, SVC,
KNeighbors Classifier, and Gradient Boosting in the two-classes classification task. Ensemble-based
methods, such as Random Forest and Gradient Boosting, along with SVC, demonstrated superior
performance with fewer misclassifications than the other models. In contrast, Logistic Regression and
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Decision Tree exhibited higher misclassification rates, reflecting their limitations in capturing the
complex features of the signal data. The KNeighbors achieved competitive results, showing consistent
performance across both classes.

To further evaluate the models, the metrics accuracy, precision, recall, and F1-score were calculated
(Table 2). KNeighbors and Gradient Boosting achieved the highest overall performance, with Accuracy
values of 0.896 and 0.895, respectively. Both models demonstrated exceptional Recall (0.918 for
KNeighbors and 0.903 for Gradient Boosting), making them highly effective in identifying actual cell
signals. The Fl1-score for KNeighbors (0.896) slightly exceeds that of Gradient Boosting (0.895),
highlighting its robustness in balancing Precision and Recall. Notably, the Random Forest model
exhibited the highest Precision (0.908) but slightly lower Recall, indicating that it is particularly
effective at minimizing false positives. Overall, these results suggest that the two-class classification
approach, mainly using KNeighbors and Gradient Boosting, outperforms the one-class models in terms
of accuracy and reliability, making it a preferred choice for this dataset.

Table 2. Two-Classes model performance

Model Accuracy Precision Recall Fl-score
Decision Tree 0.808 0.812 0.855 0.833
Random Forest 0.870 0.908 0.855 0.881
Logistic Regression 0.743 0.748 0.817 0.781
SvC 0.873 0.864 0.918 0.890
Kneighbors 0.881 0.876 0.918 0.896
Gradient Boosting 0.881 0.886 0.903 0.895

Although various classifiers were evaluated in this study, providing a clear justification for selecting
the final model would enhance the persuasiveness of the research findings. Based on the performance
metrics obtained, the two-class classification method, despite requiring extensive labeled data and
supervised training, consistently demonstrated superior performance in terms of accuracy, precision,
recall, and F1-score compared to the one-class classification method. Among the evaluated two-class
models, KNeighbors emerged as the most effective classifier, achieving the highest accuracy and F1-
score. This indicates its balanced capability in classification precision and the accurate identification of
actual cell signals. Therefore, the selection of the KNeighbors model is not solely justified by
guantitative metrics but also by its practical efficacy, thereby enhancing both the reliability and
applicability of the research outcomes.

3.4. Characteristics of Cell

The scatter plot in Figure 8 illustrates the distribution of two key signal features: segment width,
which represents the signal duration, and the PP-NP ratio, which reflects the amplitude ratio between
the positive and negative peaks. These features provide critical insights into the size and distribution of
the cell population within the sample. Most data points are concentrated in regions with moderate
segment width values and low PP-NP ratios, indicating that most cells in the population exhibit similar
sizes and relatively balanced signal peaks. However, a subset of data points with higher PP-NP ratios
and varying segment widths suggests the presence of larger cells or cells positioned unevenly relative
to the electrodes. This distribution highlights the heterogeneity within the cell population and the ability
of these features to differentiate unique cells based on their signal characteristics, thereby enhancing the
accuracy of single-cell analysis.

It would be beneficial to consider comparative studies involving deep learning models, such as
Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs), for
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recognizing distinct cellular characteristics within the same population. Given the capability of deep
learning approaches to capture intricate, high-dimensional patterns in sequential and spatial data,
employing CNNs or LSTMs may offer enhanced accuracy and deeper insights into the subtle variations
among cells that traditional machine learning models might not fully capture. This comparative
evaluation could further establish robust methodologies for single-cell analysis, potentially uncovering
new biomarkers and improving diagnostic precision in complex biological systems.
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Figure 8. The distribution of cell signal segment width and the ratio of the positive peak to the negative peak.

4. Conclusions

This study developed a framework integrating microfluidic impedance sensing and machine learning
to detect and enumerate CD4 T-lymphocytes accurately. A custom-designed bio-microfluidic chip,
combined with a cost-effective signal processing circuit and a highly sensitive amplifier, enabled the
extraction and analysis of key bioelectrical features. The system demonstrated a high accuracy in cell
counting and provided reliable estimates of the size distribution within cell populations, as validated by
evaluating machine learning models. The obtained results confirm the effectiveness and scalability of
the proposed approach, highlighting its significant potential for applications in precision medicine and
modern single-cell analysis.
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