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Abstract:  In this work we studied the robust stability for implicit integro-dynamic equations on 
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1. Introduction* 

Implicit integro-dynamic equations have been extensively utilized in various disciplines, including 

demography, materials science, and actuarial science, with the renewal equation playing a prominent 

role in these applications [1-3]. Despite this, only a small fraction of such equations and systems can be 

solved in an explicit manner. As a result, much of the academic focus has shifted towards devising 

approaches to study the qualitative properties of solutions without directly solving them. One of the 

primary difficulties in this type of analysis is evaluating the robust stability of these systems. 

Previous research has addressed robust stability in singular difference equations and dynamic 

equations on time scales [4, 5]. However, most of this work has been confined to systems that either 

lack memory or have only finite memory. This highlights the necessity of further investigating the robust 

stability of implicit integro-dynamic systems 
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with 
0t t  and ( ), ( )A B  , ( , ), ( )K f    are specified later.  

We address the issue of stability preservation in this dynamic equation when subjected to small 

perturbations. Given that the derivative of the state process ( )x t  at any given time t  depends on its entire 

path 
0( ),  x s t s t  , a more generalized version of the Gronwall-Bellman inequality is required to 

establish an upper bound for the perturbations. 

This paper is structured as follows: The next section delves into the solvability of implicit integro-

dynamic equations. In Section 4, we examine the conditions under which the uniform or exponential 

stability of solutions to implicit integro-dynamic equations remains intact under small Lipschitz 

perturbations. Finally, in the Appendixes, we provide a brief overview of fundamental concepts and 

preliminary results related to time scales.  

2. Solutions of Implicit Dynamic Equations with Nabla Derivative  

Let T be a time scale (see A1, Appendixes) and f   denote the nabla derivative for the function ( )f 

. Consider the linear implicit dynamic equations (IDE) on time scales  

                                    

0

( ) ( ) ( ) ( ) ( , ) ( ) ( ),

t

t

A t x t B t x t K t s x s s f t                                                      (1)     

where ( ),  ( )A B   are two continuous functions defined on 
0t

 , valued in the set of n n -matrices, 

0
( ),loc n

p tf L  ¡  and (.,.)K  be a two-variable continuous function defined on  0( , ) : ,t s t s t  

valued in 
n n¡ . 

Suppose that ker ( )A  is smooth, i.e., there exists a continuously  -differentiable projector ( )Q t  onto 

ker ( )A t  and 2Q Q , ( ) ker ( )ImQ t A t  for all 
0

 tt  . By setting P=I-Q we can rewrite the equation 

(1) as  

                                     
0

( ) ( ) ( ) ( ) ( , ) ( ) ( ),
t

t
A t Px t B t x t K t s x s s f t


                                             (2) 

where :B B A P
  . It is seen that the solution ( )x   of the equation (2), if it exists, is not necessarily 

differentiable but it is required that the component ( )Px   is  -differentiable almost everywhere on 
0
.t  

Consider the space 
0

1C ( ); n

A t ¡  being the set of 
0

);( n

ty C  ¡ such that ( )Py   is almost everywhere-

differentiable on 
0t

 . Define the linear operators : .G A BQ   It is clear that 
0
; .( )loc n n

tG L 

  ¡   

Definition 2.1 The IDE (1) is said to be index-1 if ( )G t is invertible for all 
0

 tt  . For any 
0 T t , 

consider two subspaces: 

1

1

0 0([ , ); ) { ([ , ); ) : ( ) ( )}, Imn n

QG
C t T v C t T v t QG t

  ¡ ¡

0 0([ , ); ) { ([ , ); ) : ( ) ( )}. Imn n

PC t T u C t T u t P t  ¡ ¡  

Lemma 2.2 Let S be a function defined on 0 0[ , ] [ , ];( )n

Pt T C t T ¡ , valued in 
n¡ , such that ( , )S t y  

depends only the values of u  on 
0[ , ]t t  for every 

0( )[ , ]; n

Py C t T ¡  and satisfies the Lipschitz 

condition, i.e., there is a constant 0k  such that 

0

1 2 1 2 0 1 2 0, ( ).( , ) ( , ) sup ( ) ( ) [ , ], , [ , ]; n

P
t s t

S t y S t y k y s y s t t T y y C t T
 

     ¡
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Then, the equation 1 1( ) ( , ),y P PG B y PG S t y       with the initial condition 
0 0 0( ) ( )y t P t x  has a 

unique solution in 
0 )[ , ]( ; n

PC t T ¡ . Moreover, there exists a constant c such that if y(t) and z(t) are two 

solutions of above equation then 0 0( ) ( ) ( ) ( ) .y t z t c y t z t    

The proof of this lemma can be easily obtained by using Picard's approximation method and usual 

procedures. In the next step, we will use above lemma for the proof of next theorem. 

Theorem 2.3 For any 
0 0t   and 

0  nx  ¡ , the equation (2) has a unique solution 
0

1 ( )( ) ; n

A tx   ¡ , 

with the initial condition     

                                                           0 0 0( ) ( ) 0P t x t x  .                                                                    (3) 

Proof  i) Let ( ) ( )u Px    and ( ) ( ).v Qx    Multiplying both sides of (2) with 1 1  ,PG QG   and using 

Lemma A.3.2 we obtain  

                           
0

1 1 1( ) ( ) ( ) ( ) ( , ) ( ) ( ) ,( ) ( )
t

t
u t P PG B t u t PG f t PG K t s u s v s s                        (4) 

                           
0

1 1 1

0( ) ( ) ( ) ( , ) ( ) .( ) ,    ( )
t

t
v t QG Bu t QG f t QG K t s u s v s s for t t                       (5) 

ii) Consider the operator    0 0:  [ , );  [ , );n nH C t C t  ¡ ¡  defined by   

0

1( )( ) ( ) ( , ) ( ) .
t

t
Hv t v t QG K t s v s s  

 
Follows from Theorem 3.1[1] and the continuity of 1( ) (.,.)QG K  , it implies the invertibility of H 

because 
0( )( ) ( ),  Hv t y t t t   is a Volterra integral equation of second kind. Precisely,    

                                        
0

1

1

( )( ) ( ) ( , ) ( )
t

n
t

n

H y t y t tU s y s s






    

where, 
nU  is defined by induction 

1 1

1 1( , ) ( ) ( , ), ( , ) ( , ) ( ) ( , ) ,
t

n n
s

t s QG t K t s U t sU t QG K sU     

    

for 
0 , 1t s t n   .  On the other hand, for any 

0T t we have  

                                   0 0

1 0( )
sup ( , ) sup ( ) ( , ) .

!

n n

n
t s t T t s t T

T t
t s QU G t K t s

n



     

 
  
                              (6) 

This implies that the series 
1

( , )n

n

I t sU




  is uniformly convergent on the set  0( , ) :  t s t s t T   and 

1

( , ) ( , )n

n

R t s I U t s




   is a continuous funtion. Thus, 
1H 
 is also a second kind linear Volterra 

operator with the kernel (.,.)R . This means that H is a continuous bijection on  0[ , ]; nC t T ¡ . Then, 

the equation (5) can be rewritten 

0

1 1 1 1

1 1 1 1 1

( ) ( , ) ( ) ( ) ( )( )

      ( ) ( )( ) ( ) ( )( ),

[ ]
t

v t H QG Bu K s u s s t H QG f t

H QG Bu t H u t u t H QG f t


   

    

    

   



 
or                       

                                     1 1 1ˆ( ) ( )( ) ( ) ( )( ),v t H Pu t u t H Q G f t

                                                          (7) 

where 1ˆ ˆQ I P QG B     is the canonical projector onto ker A . 
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iii) Combining (7) with (4), we obtain            

             
0

1 1 1 1 1

0
ˆ( ) ( ) .(( ) ( ) ( , ) )( ) ,    

t

t
u t P PG B u t PG f t PG K t s H Pu QG f s s t t                     (8) 

By using Lemma 2.2, we see that the equation (8) has a unique solution ( )u   with initial condition 

0 0 0( ) ( )u t P t x . Then, we use the formula (7) to obtain the solution of (2) as                              

                       1 1 1ˆ( ) ( ) ( ) ( )( ) ( )( ),x t u t v t H Pu t H QG f t                                                     (9) 

for 
0t t . The proof is complete. W 

Remark 2.4  i) Follow the above decoupling procedure, we state the initial condition 
0 0 0( ) ( )u t P t x , 

or equivalent to                                                

                                         0 0 0 0( ) ( ) 0  ,   nP t x t x x   ¡ .                                                            (10) 

We note that the above condition does not depend on the chosen projector opertor 
0( )Q t . 

ii) Let u(t) be the solution of the equation (8). Then we have Q u Q P u 

  . Furthermore,

2( )Q Q Q Q Q Q

       which implies ( ) .Qu Q u Q u Q Qu QP Q Q u Q Quu  

           

Thus, if 
0 0( ) ( ) 0Q t u t   then ( ) ( ) 0Q t u t  , for all 

0t t . This means that (8) has the invariant property: 

every solution starting in 
0Im ( )P t remains in 

0Im ( )P t  for all  
0 0 ) I( ) (m x t P t  then ) I  ( ) (mx t P t , 

for all 
0t

t . 

iii) Since 1QG  is independent of the choice of Q , so is the operator H and 1 0([ , ]; )n

QG
C t T ¡  is 

independent of the choice Q  and the space 1 0([ , ]; )n

QG
C t T ¡  is invariant under the the operator H.  

Next, we try to give the variation of constants formula for the solution of equation (2). Consider the 

homogeneous equation   

                           
0

( ) ( ) ( , ) ( ) .
t

t
A Px t Bx t K t s x s s


                                                                 (11) 

Define by 
0( , ),  t s t s t    the Cauchy matrix  generated by homogeneous system (11) as the 

solution of the equation 

         ( ) ( , ) ( ) ( , ) ( , ) ( , ) ,
t

s
A t t s B t t s K t s                                                 (12) 

and  ( ) ( , ) 0P s s s I   . Then, we have the variation of constants formula for the solution of (2). 

Theorem 2.5 The solution ( )x   of the equation (2) with the initial condition  0 0 0( ) ( ) 0P t x t x   can be 

expressed as 

 
0 0

1 1 1 1 1

0 0 0( ) ( , ) ( ) ( , ) ( ) ( ) ( , )( )( ) ( )( ),     (13)
t

t t
x t t t P t x t PG f K h H QG f h h H QG f t



                  

for all
0.t t   

Proof A similar procedure to split the solution of the equation (10) into ( ) ( ) ( )y u v      obtains           

0

1 1 1 ˆ( ) ( ) ( , )  ( ) ,( ) ( )
t

t

t

u t P PG B u t PG K t s H P u s s         and  
1 ˆ( ) (  )( ).y t H P u t             (14) 

Denote by 
0 (.,.)  the Cauchy operator of (13), i.e., it is the solution of the matrix equation 

1 1 1

0 0 0
ˆ( , ) ( , ) ( ) ( , ) ( , ) ( )( ) ( )

t

s

t s P PG B t s PG t K t H P s             
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and 
0 0( , ) , .s s I t s t    Then, by directly differentiating both sides we obtain the variation constants 

formula for the solution ( )u   of (8) with the initial condition    0 0 0u t P t x , 

0

0

1 1 1

0 0 0 0 0( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) .( )
t

t
t

u t t t P t x t PG f K h H QG f h h


                               (15) 

On the other hand, since 
0 0 0 0( ) ( , ) ( )u t t t P t x  and by (14) we have the relation between ( , )t s  and          

                        
1

0
ˆ( , ) ( , ) ( ) ( ).( )t s H P s P s t                                                                (16) 

By acting 
1 ˆH P

 to both sides of (15) and paying attention to the expression (9) it is seen that the unique 

solution ( )x   of (2) with the condition  0 0 0( ) ( ) 0P t x t x   can be given by the formula (13). The proof 

is complete. W 

Assumption 1 There exists a differentiable projector ( )Q   onto ker ( )A   such that 1QG  and P  are 

bounded on 
0t

 .  

Definition 2.6 i) The IDE (11) is uniformly stable if there exists a constant
0 0M   such that 

0( , ) , .t s M t s    

ii) Let   . The integro - equation (11) is said to be exponentially stable if there exists a constant 

0M   such that   

( , ) ( , ), .t s Me t s t s    

In the next section, we consider the effect of small nonlinear perturbations to the stability of IDE (11). 

3. Robust Stability of Implicit Dynamic Equation with Nabla Derivative 

Consider the perturbed equation of the form  

      
0

0

( ) ( ) ( ) ( ) ( , ) ( ) ( , ( )), .
t

t
t

A t x t B t x t K t s x s s F t x t t                                         (17)  

Assume that ( ,0) 0F t   for all 
0 ,t t  which follows that the equation (17) has the trivial solution ( ) 0x  

. First at all, we consider the solvability of (17). 

Assumption 2 For all 
0 ,t t  the functions 1( ) ( , )PG t F t x  and 1( ) ( , )QG t F t x  are Lipschitz in x with 

Lipschitz coefficient 
tl  and 

t , respectively. Suppose further that l  and  
 are continuous functions. 

We endow 1 0([ , ]; )n

QG
C t T ¡  with the norm inherited from 

0([ , ]; )nC t T ¡ and understand that 1H   

mean that the norm of operator 
1H 
 in 1 0([ , ]; )n

QG
C t T ¡ . By denoting 

0

supt s
t s t

 
 

  for 
0t t , we have  

Lemma 3.1 Let 
0T t . If 1 1 T H   , then the equation (17) with the initial condition 

 0 0 0( ) ( ) 0P t x t x  is solvable on 
0[ , ]t T . Further, there exists a constant 

TM  such that 

0 0 0( ) ( ) ( ) , for all .  Tx t M P t x t t t T    

Proof    Put ( ) ( )u Px    and ( ) ( )v Qx   , for 
0T t t    we have 

       
0

1 1 1 1 1ˆ( ) ( ) ( ) ( , ) )( ) , ( ) .(
t

t
u t P PG B u t PG K t s H Pu QG f s s PG F t x t                  (18) 
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And  1 1 1ˆ( ) ( ) ( ) ( )( ) ( , ( ) ( ),x t u t v t H Pu t H QG F x t         for 
0.T t t   Fix 

0 ,( )( ) [ ]; n

Pu C t T  ¡  and 

consider the mapping 
0 0( ) ( ): [ , ]; [ , ];n n

u C t T C t T ¡ ¡  defined by  

 1 1 1ˆ( )( ) ( )( ) , ( ) ( )u x t H Pu t H QG F x t       for 
0.T t t   

It is easy to see that 
0 0

1sup ( )( ) ( )( ) sup ( ) ( ) ,u u T
t t T t t T

x t x t H x t x t 

   

     for any 0 )., ([ , ]; nx x C t T ¡  

Since 1 1T H   , 
u  is a contractive mapping. Hence, by the fixed point theorem, there exists uniquely 

an *

0 )([ , ]; nx C t T ¡  such that * *( ).ux x   Denote * ( )x g u  we have 

 1 1 1ˆ( )( ) ( )( ) , ( ( )) ( ).g u t H Pu t H QG F g u t       Further,  

0 0 0

1

[ , ] [ , ] [ , ]

sup ( )( ) ( )( ) sup ( ) ( ) sup ( )( ) ( )( ) , T T
t T t T t T

g u t g u t u t u t H g u t g u t          

with 1 ˆ
T H P  . Letting 1

1

T
T

T

L H







 deduces 
0 0

sup ( )( ) ( )( ) sup ( ) ( ) . T
t t T t t T

g u t g u t L u t u t
   

     

This means that g is Lipschitz continuous with the Lipschitz coefficient 
TL . In particular, 

                                            
0 0

sup ( )( ) sup ( ) .T
t t T t t T

g u t L u t
   

                                                (19) 

Substituting ( )x g u into (18) obtains 

0

1 1 1( ) ( ) , ( ) ( ) ( , ) ( )( ) .( ) ( )
t

t
u t P PG B u t PG F t g u t PG K t s g u s s          

Note that for any 
0T t t  , the function  1 , ( )( )PG F t g u t  is Lipschitz in u. By applying again Lemma 

2.3, we can solve ( )u   from above equation with the initial condition 
0 0 0( ) ( )u t P t x . Then the solution 

of (17) is given by 
0( ) ( )( ), .x t g u t T t t    Further, by Lemma 2.2  

0 0( ) ( ) , .u t c u t T t t    

Combining two inequalities with (19), we obtain 

0 0) ,( ) ( (0) ,Tx t M P t x T t t    

where 
T TM cL . The proof is complete.W 

From Lemma 3.1, it follows that the solution ( )x    of the equation (17) with the initial condition 

    0 0 0 0P t x t x   exists on 
0[ , )t   if 1 1 T H    for all 

0T t  and the constant-variation formulas 

(13) can be written as 

0 0

1 1 1 1 1

0 0 0( ) ( , ) ( ) ( , ) ( ) ( , ) ( , ) ( , )( ) ( , ( )),  (20)( )
t

t t
x t t t P t x t PG F x K s H QG F x s s H QG F t x t



                
with 

0.t t  

To proceed, firstly, we consider the boundedness of solutions of the equation (11) under small 

nonlinear perturbations. 

Theorem 3.2 Assume that the assumptions 1, 2 hold, the solutions of (11) is uniformly stable and 
1H 
 

is a bounded operator acting on  1 ,  [0 ), n

QG
C   ¡  with 1

1H K  . Then, if 
11 0,L K     we can 

find a constant 
2 0M   such that the solution x(.) of (11) with the initial condition (10) satisfies 

2 ( )

2 0 0( ) ( ) ,M N tx t M e P t x for all 
0t t , 
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where 
0

0

1

1( ) ( , ) ( ) .( )
t

s
t

t

N t l K PG K s Q s s


         

Proof By Lemma 3.1 the condition 
11 0L K     implies that the solution (.)x  of (17) with the initial 

condition (10) exists on 
0[ , )t   and the uniform stability of solutions of (11) says that  

0 0( , ) , .t s M t s t     

Therefore, from the formula (20), it follows that for all 
0t t  

 

 
0 0

1 1

0 0 0

1 1 1 1

0

( ) ( ) , ( ) ( )

( ) ( , ( )) ( ) ( , ) ( ) ( , ( ))( ) .
t

t t

x t M P t x H QG F x t

M PG F x PG K s H QG s F x s s


     

 

   

   

      
 

By virtue of the Lipschitz conditions of  1 , ( )PG F x    and  1 , ( )QG F x   , we get 

0

0 0
0 0 1

0 0 0 1

1

0 1

( )  ( ) sup ( )

           sup ( ) ( , ) ( ) sup ( ) .( )

t s t

t

s
t tt s t s s

x t M P t x K x s

M l x s K PG K s Q s x s s







  


 



   

 

     
 

Letting 
0

2

M
M

L
 , we have  

  
0 0

0 0 0 1

1

2 0 0 2 1sup ( ) ( ) sup ( ) ( ) ( , ) ( ) sup (  .)
t

s
t tt s t t s t s s

x s M P t x M l x s K PG K s Q s x s





   

     

 
     

 
   

Following the generalized Gronwall-Bellman inequality in Lemma A.2.2  

1

0

2 0 0 ( ) 0( ) sup ( ) ( ) ( , ) N
t s t

x t x s M P t x e t t
 

  , 

for all 
0 ,t t where  

0

1

1 2 1( ) ( ) ( , ) ( ) .s
t

N M l K PG K s Q s s


       Since 
1( )N   is positive,  

   1
0 0 0

1

( ) 0 1 2 1( , ) exp ( ) exp ( ) ( , ) ( ) .( )
t t

N s
t t t

e t t N M l K PG K s Q s s


     

           

Thus, 
( )

2 0 0( ) ( )N tx t M e P t x , for all 
0t t . The proof is complete.W 

From Theorem 3.2, we obtain the corollary  

Corollary 3.3 Assume that Assumptions 1, 2 hold, the solutions of (11) is uniformly stable and 
1H 
is 

a bounded operator acting on  1 ,  [0 ), n

QG
C   ¡  with 1

1H K  . If 
11 0L K     and  

0

0

1

1 ( , ) ( ) ,( )s
t

t

N l K PG K s Q s s


   


      ‖ ‖  

then, the solution of the equation (17) is uniformly stable, this mean that there exists a a certain constant

3M such that 
3 0 0 0.( ) ( ) ,x t M P t x t t   

     Next, we consider the robust exponential stability of (11). For any 0  , let  

( ), ( , ) ( ( ), ) ( , , ) ) (G G I Q K t h e t s K t h e h s    % % . 

In a similar way to Theorem 2.3, we define the operators  

0

1( )( ) ( ) ( , ) ( ) .
t

t
Hv t v t QG K t s v s s  %% %  



N.T. Ha et al. / VNU Journal of Science: Mathematics – Physics, Vol. 41, No. 1 (2025) 105-115 112 

Then we have the following theorem about exponential stability of solutions of the equation (11) under 

small nonlinear perturbations. 
Theorem 3.4 If the equation (11) is  -exponentially stable and there exists an (0, )  , with 

  ¡  such that 
1H %  acts continuously on  1 [0, ), n

QG
C   ¡  with 1

1H K % % satisfying 

11 0KL   %% . Suppose further that  

 
0

1

1
2

.l sim up ( , ) ( ) ( , ) ( )h
t

L

M
l e h PG K h QK h h



 



    



   
%

% ‖ ‖  

Then, there is a positive number 
1  such that the perturbed equation (17) is 

1 -exponentially stable.  

Proof Let 
0  be a positive number such that 0 .

2

L

M


  

%
 Then, from the assumption of theorem, there 

is a positive number 
0 0T   such that  

0

1

1 0 0( , ) ( ) ( , ) . ( ) ,
2

t

t h
t

L
l K e t h PG t K t h Q h h t T

M



      

%
%  

Let 
0( ) ( , ) ( ),  .z t e t s x t t s t   , where (.)x is the solution of (11) with the initial condition (10). Since 

( ) ( ( ), ) ( ) ( , ) ( )z t e t s x t e t s x t     . 

It is easy to see that y satisfies the equation  

 

   

( )( ) ( ) ( )( ( , ) ) ( ) ( ) ( ( ), )( ) ( ) ( , ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( ( ), ) ( , ) ( , ) ( )

( ( ), ) , ( , ) ( ) ( ) ( , ) ( ) , ( ) ,    

[ ]
t

s

t

s

A t Pz t A t e t s Px t A t e t s Px t e t s A t Px t

t B t A t P t z t e t s K t h e h s z h h

e t s F t e t s z t By t K t h y h h F t z t

  

 

 

 

  



    

    

    



% % %                    (21)         

 

where t s  and 

( ) (1 ( )) ( ) ( ) ( ), ( , ) ( ( ), ) ( , ) ( , ),    

, ( ) ( ( ), ) , ( , ) ( ) .( ) ( )

B t t B t A t P t K t h e t s K t h e h s

F t z t e t s F t e t s z t

 

 

  



   



% %

%
 

and 1(1 ) ( ).[ ] ( )G A B AP Q G BQ G I G BQ G I Q             %  

We see that 
1 1 1

( ) (1 )
1

( )I Q P Q P Q 


      


, which implies G%  is invertible, and 

1 11
,

1
( )G P Q G



  


%  it is seen that the equation (21) is index-1. 

 Furthermore,
1 1 1 1,  (1 ),PG PG QG QG     % % and

   1 1 1 1( , ( )) ( ), , ( , ) ( ) ,    ( , ) ( , ) , ( , ) ( ) .( )PG F t z t e t s PG F t e t s z t QG F t e t s QG F t e t s z t         % %% %  

Further, 
1 ( ,.)PG F t% %  and 

1 ( ,.)QG F t% %  are  1 ( ) tt l and 
t -Lipschitz, respectively. Consider the 

corresponding homogeneous equation to (21)  

                                    ( )( ) ( ) ( ) ( ) ( , ) ( ) .
t

s
A t Pz t B t z t K t h z h h   % %                                                   (22) 

By definition, the Cauchy operator ( , ),  t h t h s  %  of (22) and ( , )t h  of (11) have a relation  

( , ) ( , ) ( , ), .t h e t h t h t h s    %  
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Therefore, for all t h s  , ( , ) ( , ) ( , ) ( , ) .t h e t h t h Me t h M      %  

This means that (22) is uniformly stable, and the solution of (21) is expressed by  

1 1 1

0

1 1

( ) ( , ) ( ) ( , ) ( ) ( , ( )) ( , ) ( , ( ))( )

( , ( )).

t

s
s

z t t s P s z t PG F z K h H QG F z h h

H QG F t z t



       

 

 
         

 



 % %% % % %% %

%% %

 

We have 

 
0 1

0 0 1

0

1

0 1 1

1

1 0 1 1

1

( ) ( ) 1 ( ) ( ) ( , ) ( ) sup ( )  

    sup ( ) ( ) ( ) ( , ) ( ) sup ( )

sup ( ) .

( )

( )

t

h
s s t h h

t

h
s st h t t h h

t h t

z t M P s z M l z PG K h Q h K z h h

K z h M P s z M l z PG K h Q h K z h h

K z h









      

    





 




   


 

 
       

 

 
      

 



 

 

% % %

%% % %

%

 

By using Theorem 3.2, with 2

M
M

L
%

% we have 0( , )
( ) ( , ) ( ) , ,   

N s
z t Me t s P s x t s


 %

% where 

 1

2 1( , ) ( , ) ( ) ( , ) ( ) .h
s

N s M l K e h PG K h Q h h


        % % %  

Consider the cases, when 
0 0t T s t   . We see that  

0 0 0 0

0 0 0 0 0 0

( ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( ) ,

N N N

N N N N

x t e t s z t Me t s e t s P s x Me t s e t T e T s P s x

Me t s e t s e T t P s x Me t s e T t P s x

  

 

  

 

% % %

% % % %

% %

% %
 

where  

1

2 1

0 2
2 0

( , ) ( ) ( , ) ( )

( ) / 2 / 2
( ) .

1 ( ) 1 ( ) 1 ( ) / 2 2

[ ]h
s

N M l K e h PG K h Q h h

M
M



      

     
 

      

   

   
     

  

% % %

%
%

 

Thus, 21 0/( ) ( , ) ( ) ,x t K e t s P s x  where 1 0 0( ) 
( , )e

N
K M T t


 %

% . 

In case 
0t s T t   , using a similar argument as above we get /2( ) ( ) ( , ).x t M x s e t s  

Consider the remaining case 
0 0t s t T   . By virtue of the positivity of L% and Lemma 3.1 we get   

0 0 /2 /2( ) ( ) ( , ) ( , ) ( ) .T Tx t M x s M e t s e t s x s    

Combining the above estimates yields 
1

( ) ( , ) ( )x t Ke t s x s  for all 
0 ,t s t  where 

1 / 2,   

0 /1 0 02max{ , , ( , )}.TK M K M e T t The proof is complete. W 

4. Conclusion 

In this work, we have explored the robust stability of linear time-varying IDEs on time scales with 

Nabla derivative. Several characterizations of robust stability for IDEs under Lipschitz perturbations 

have been derived. This work unifies and extends many previous results on the robust stability of time-
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varying ordinary differential and difference equations, time-varying differential-algebraic equations, 

and time-varying implicit difference equations. 

Appendixes 

A.1. Time Scales 

A time scale T is a nonempty closed subset of the real numbers ¡ , enclosed with the topology 

inherited from the standard topology on ¡ . We define the backward operator is defined as 

 ( ) sup :t s s t     and the backward graininess is ( ) ( ).t t t    A point tT  is said to be right-

dense  if ( ) ,t t  right-scattered if ( )t t  , left-dense  if ( )t t  ,  left-scattered  if ( )t t   and  isolated 

if  t is simultaneously right-scattered and left-scattered.  

A function f  is called  ld-continuous  if it is continuous at every left-dense point and its right-sided 

limits exist. The set of ld-continuous functions defined on the interval J  valued in X will be denoted 

by  ,ldC J X . A function f from T to ¡  is regressive (resp., positively regressive) if for every ,tT

then 1 ( ) ( ) 0t f t   (resp., 1 ( ) ( ) 0t f t  ). 

We denote by   (resp., 
 ) the set regressive (resp., positively regressive) functions, and 

ldC   

(resp., 
ldC  ) the set of ld-continuous (resp., positively regressive) regressive functions from T to ¡ . 

For all ,p q , we define ,   .
1

p q
p q p q pq p q

q





    


 It is easy to verify that

,  p q p q   . Hence,   with the calculation   forms an Abelian group. 

Definition A.1.1 (see [5]).  (Nabla Derivative). A function : df T ¡ is called nabla differentiable 

at t if there exists a vector ( )f t : for all ε >0, there exists a neighborhood U  of  t such that 

                                                 
 ( ( )) ( ) ( ) ( ) ,f t f s t s t s      

 

for all s U and for some δ >0. The vector ( )f t  is called the deltaderivative of f at t. 

A.2. Exponential Functions 

For any regressive ld-continuous functions (.)p  from T to ¡ , the solution of the dynamic equation 

( ) ,x p t x   with the initial condition   1x s  , defines a so-called exponential function. We denote 

this exponential function by ˆ ( , )pe t s . For the properties of exponential function ˆ ( , )pe t s  the interested 

reader can see [5].  

Lemma A.2.1 (see [5]). If ,  p q are regressive, rd-continuous functions and , ,  t r s   then the 

following hold: 

( , ) ( , ) ( , ), ( ( ), ) (1 ( ) ( )) ( , ),

( , )1
( , ), ( , ), ( , ) ( , ) ( , ).

( , ) ( , )

p q p q p p

p

p p p p p p

p p

e t s e t s e t s e t s t p t e t s

t s
t s t s e t s e s r e t r

t s e

e
e

s r
e

e

   

  

 

It is known that for any positively regressive number  , we have the estimate 0 0( )

0 ,ˆ0 ( , )
C t t

e t t e
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where 
0C  is a constant depending on the bounds of   (see [5]).  

 To consider the robust stability we need the Gronwall-Bellman's inequality. It will be introduced 

and applied in the following lemma. 

Lemma A.2.2 (Extended Gronwall-Bellman’s lemma, see [6]) Let the functions ( ),  ( ),  ( , )u t v t w t r  be 

nonnegative and continuous for ,a r t   and let  
1c and 

2c  be nonnegative. If for  at   

1 2 ) ( ) ( ) ( ) ( ( , ) ( )  ,   
t s

u t t c c v s u s w s r u r r s
 

            
 

then with 2 2( ) ( ) ( , ) ,p c v c w r r




      we have  
1 ( )

ˆ( ) ( ) ( , ), .pu t c t e t t      

  We denote by 
T  the Caratheodory  extention of the set funtion 

2m  associated with the family 

2 {( , ] },a b    where 
2( , ]a b b am   . The Lebesgue integral of a measurable function f with respect 

to 
T  is denoted by ( )

b

T
a

f s s (see [7]). 

A.3. Some result for Linear Algebra 

    Let A and B be given n n  matrices, Q be a projector onto ker .A  Denote } { m:  IS x Bx A  . 

Then, we have some results on linear algebra that have been proven in [8] as follows. 

Lemma A.3.1 The following assertions are equivalent 

a)  er 0S K A  .        

b) The matrix G A BQ  is nonsingular.      

c) ern S K A ¡ . 

Lemma A.3.2 Suppose that the matrix G is nonsingular. Then, there hold the following relations: 

a)  1 1,   P G A G BQ Q     and  1Q QG B % is the projector onto KerA along S. 

c)  If  Q̂  is a projector onto KerA then 
1 1 ˆ,PG B PG BP   and 

1 1 1 ˆˆ .QG B QG BP H Q      

d) 1 1,  PG QG  do not depend on the choice of  Q.  
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