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Abstract. Bond-diluted 2D Ising model is essential for understanding the effects of disorder on 

magnetic systems. Although the T-p phase diagram of this model has been developed through 

analytical methods and Monte Carlo simulations, the region near the percolation threshold pc 

remains insufficiently explored. In this work, we investigated the impact of bond dilution on phase 

transitions in the bond-diluted 2D Ising model using a machine learning approach. A convolutional 

neural network, initially trained on data from the pure (undiluted) 2D Ising model, is employed 

through transfer learning to analyze bond-diluted systems. The numerical results show that as bond 

concentration decreases, the critical temperature also decreases, in agreement with previous Monte 

Carlo simulation results. Moreover, these findings are instrumental in estimating the critical bond 

dilution near the percolation threshold pc. As a result, a comprehensive phase diagram for the bond-

diluted 2D Ising model has been constructed. 
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1. Introduction 

The Ising model is a fundamental concept in statistical physics, renowned for its simplicity and 

sufficiently complex to exhibit interesting phenomena such as phase transitions and criticality. Originally 

conceived to understand ferromagnetism, it has become a staple for studying a wide range of phenomena. 

The pure Ising model considers a lattice of spins that interact with their nearest neighbors. 

In real materials, perfect purity is rare and impurities are often inevitable. To investigate the effects 

of such imperfections, variants of the Ising model have been proposed, common ways to model 

impurities include randomly removing spins (site dilution) [1-3] or bonds (bond dilution) [4-6], or by 

randomly modifying the interaction strengths. Bond dilution involves randomly removing bonds 

between neighboring spins with a probability (1 - p), where p is the bond concentration. This introduces 

disorder, affecting properties like the critical temperature for phase transitions. In a two-dimensional 

bonddiluted Ising model, the critical temperature decreases as the bond concentration p decreases, 

reaching zero at the percolation threshold (pc = 0.5) [7, 8]. Studying the phase transitions and critical 

behavior of the diluted Ising model presents challenges for analytical and numerical techniques [6, 9,10]. 

However, increasing availability of data and computational power has led to the successful application 

of machine learning (ML) methods and neural networks (NN) in various fields, including physics, for 

discovering knowledge in complex systems. In the field of physics, machine learning has been 

successfully employed to study phase transitions in Ising models [11-13] and the site-dilution Ising 

model [14]. 

This work examines the use of machine learning, specifically convolutional neural networks 

(CNNs), to analyze the two-dimensional bond-diluted Ising model. By training a CNN on configurations 

from the pure Ising model, the research aims to assess its effectiveness in identifying and characterizing 

different phases, determining critical temperatures for various bond concentrations, and exploring the 

percolation transition. This method leverages the pattern recognition strengths of neural networks to 

address challenges in studying this complex model with traditional techniques. The focus is on how 

machine learning can enhance our understanding of the interaction between disorder and thermal 

fluctuations in magnetic systems 

2. Model and Method  

We consider the bond diluted Ising model on a two-dimensional square lattice of size L × L. This 

model is a variant of the regular Ising model, in which interactions between nearest-neighbor spins are 

randomly removed with a probability (1 - p), where p represents the bond concentration. The 

Hamiltonian of the bond-diluted Ising model can be written as: 

𝐻 = − ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗(𝑖𝑗)
                                                                        (1) 

where 𝜎𝑖̇ and 𝜎𝑗 are Ising spins taking values +1 or -1 at lattice sites i and j, and the summation is over 

nearest neighbor pairs <ij>. The exchange coupling constant 𝐽𝑖𝑗 is non-zero (typically set to 𝐽 > 0 for 

ferromagnetic interactions) only if a bond exists between sites i and j; otherwise, 𝐽𝑖𝑗 = 0. The bond 

configuration is typically generated randomly at the beginning of each simulation based on the bond 

concentration p. 

𝑃(𝐽𝑖𝑗) = 𝑝𝛿(𝐽𝑖𝑗 − 1) + (1 − 𝑝)𝛿(𝐽𝑖𝑗)                                                (2) 

Here we use 𝛿(𝐽𝑖𝑗) is an indicator function that yields one if 𝐽𝑖𝑗 = 0 and zero otherwise. where p 

corresponds to the probability of drawing a ferromagnetic bond with 𝐽𝑖𝑗  = 1, while 1 - p is the probability 

of missing bonds with 𝐽𝑖𝑗  = 0. 
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To train and evaluate our machine learning model, we generate spin configurations of the two-

dimensional bond diluted Ising model using Monte Carlo simulations (5,000 spin configuration for p = 

1 and 1,000 spin configurations for another p). Specifically, we employ the Metropolis algorithm to 

efficiently sample equilibrium configurations at various temperatures T (34 temperatures) and bond 

concentrations p (p = 0.45, 0.49, 0.5, 0.51, 0.55, 0.6, 0.7, 0.8,0.9, and 1.0). For each chosen value of p, 

we perform simulations at a range of temperatures around the expected critical temperature 𝑇𝑐(p). The 

simulations are run for a sufficient number of Monte Carlo steps (e.g., Metropolis sweeps per lattice 

site) to ensure that the system reaches thermal equilibrium. This typically involves a thermalization 

period followed by a production run where spin configurations are stored. We generate datasets of spin 

configurations for different lattice sizes L = 8, 16, 32 to study finite-size scaling effects. To validate the 

convolutional neural network, independent sets of 500 simulated configurations are generated for p = 1 

that are not used during the training phase. 

We utilize a convolutional neural network with two hidden layers, to classify the phases of the bond-

diluted Ising model. The input to the convolutional neural network is typically a flattened representation 

of the spin configuration on the L×L lattice. We construct a CNN architecture similar to that of 

Efthymiou et al., [13]. There are two convolutional layers: a max-pooling layer connected to a fully 

connected neuron network (NN) layer and a softmax output layer for classifying phases. We employ the 

Keras interface as implemented in the Tensorflow package. The cross-entropy loss function (categorical 

cross entropy) is used with the Adam optimizer. We employ the softmax function to convert raw output 

values into probabilities. The output layer consists of neurons representing the different phases of the 

system, such as ferromagnetic and paramagnetic phases. The convolutional neural network is trained on 

a dataset of labeled spin configurations generated from Monte Carlo simulations at various temperatures 

and bond concentrations p = 1. The labels correspond to 0 for spin configuration of 𝑇 > 𝑇𝑐 and 1 for spin 

configuration at 𝑇 < 𝑇𝑐. The convolutional neural network is trained using a supervised learning 

approach, where the network learns to map input spin configurations to their corresponding phase labels 

by adjusting its internal weights and biases to minimize a chosen loss function. Training is performed 

using an optimization algorithm such as stochastic gradient descent. The training process involves 

iterating over the training data for a certain number of epochs = 250, batch size = 32, and the performance 

on a separate validation set is monitored to prevent overfitting. 

After training, the convolutional neural network’s ability to identify and characterize the phases of 

the bond-diluted Ising model is evaluated on a separate test dataset of spin configurations for each p. 

The trained network’s classification accuracy is assessed by comparing its phase predictions with the 

known phases of the test configurations. The network’s output probabilities for different phases can be 

analyzed as a function of the temperature for various bond concentrations to identify the phase transition. 

The critical temperature 𝑇𝑐(p) can be estimated by finding the temperature at which the probabilities of 

the ordered and disordered phases are equal. 

3. Results and Discussion  

This section discusses the learning performance outcomes of the 2D diluted bond Ising model. By 

analyzing the average output of the three softmax neurons in the output layer, we estimate the critical 

temperature for each case. The phase diagram will illustrate the critical temperatures and the nature of 

the phase transitions. 

First, we train and test the model at bond concentration p = 1. Fig. 1 presents the estimated 

probabilities from our convolutional neural network for the ferromagnetic (blue curves) and 

paramagnetic (red curves) phases of the 2D diluted bond Ising model on a square lattice with size L = 
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8, 16, 32 as a function of temperature 𝑇 (in units of J/kB). These probabilities are computed by averaging 

the network’s predictions over 1,000 independent spin configurations at each temperature. 

As seen in Fig. 1, for p = 1 (corresponding the pure Ising model), the probability of the paramagnetic 

phase is close to 1 at high temperatures, indicating a disordered state. Conversely, the probability of the 

ferromagnetic phase approaches 1 at low temperatures, signifying an ordered state. The transition 

temperature 𝑇𝑐 is estimated as the temperature at which the ferromagnetic and paramagnetic probability 

curves intersect, with each phase having a probability of 0.5. For p = 1, this intersection occurs at  
𝑇 = 2.269, consistent with the known analytical 𝑇𝑐 = 2.269 from exact solutions, Monte Carlo 

simulations, and previous machine learning studies [12]. These results validate the accuracy of our 

model in identifying the phase transition in the 2D Ising model. 

 

Figure 1. The output layer averaged (y-axis) over a test set as a function of temperature T/J (x-axis) for p = 1. 

 

Figure 2. The output layer averaged (y-axis) over a test set as a function of temperature T/J (x-axis) for p = 0.8. 

Next, we train at p = 1 and test the model across a range of bond concentrations 0.55 ≤ p ≤ 1, 

including p = 0.9, 0.8, 0.7, 0.6, and 0.55. Fig. 2 shows the temperature dependent of output layer 

probability for p = 0.8. As the system size increases, the probability curves become sharper near the 

transition point, suggesting that larger system sizes yield more precise estimates of the critical behavior. 
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From the crossing points of the curves, we determine critical temperatures of 𝑇𝑐 = 1.652 for p = 0.8. 

Similarly, we also obtain 𝑇𝑐 = 1.968 for p = 0.9, 𝑇𝑐 = 1.329 for p = 0.7, and 𝑇𝑐  = 0.970 for p = 0.6, and 

𝑇𝑐 = 0.748 for p = 0.55, respectively. A clear trend emerges: as the bond concentration p decreases, the 

critical temperature 𝑇𝑐(p) also decreases. This is consistent with physical intuition, as fewer bonds 

weaken ferromagnetic interactions, lowering the temperature necessary for the onset of long-range 

order. These results are in strong agreement with previously published works, particularly Ref. [8, 15]. 

Next, we train at p = 1 and test the model at p < 0.55. Fig. 3 shows the temperature dependent of 

output layer probability for p = 0.51. As the system size increases, the paramagnetic probability 

approaches 1 at high temperatures but increases more gradually at low temperatures. Identifying the 

crossing point yields an estimated critical temperature 𝑇𝑐 = 0.531 for p = 0.51. Similarly, 𝑇𝑐  = 0.595 is 

obtained for p = 0.52. These are the first estimates of critical temperatures for p < 0.55, a regime where 

conventional Monte Carlo simulation methods analysis fail due to the lack of intersection points of 

Binder parameter [8, 15]. 

 

 

Figure 3. The output layer averaged (y-axis) over a test set as a function of temperature T/J (x-axis)  

for p = 0.51. 

 

Figure 4. The output layer averaged (y-axis) over a test set as a function of temperature T/J (x-axis) for p = 0.5. 



N. H. Luu et al. / VNU Journal of Science: Mathematics – Physics, Vol. 41, No. 3 (2025) 80-87 85 

Fig. 4 shows the temperature dependent of output layer probability for p = 0.5. Here, the probability 

curves for different system sizes tend to collapse at low temperatures, suggesting a lack of clear phase 

transition. Although the curves still cross at 𝑇𝑐 = 0.407, the absence of sharp phase separation indicates 

that the nature of the system at p = 0.5 requires further investigation. 

Next, we train at p = 1 and test the model at p < 0.5, including p = 0.49 and p = 0.45 as shown in 

Fig. 5 and Fig. 6. We observe that the ferromagnetic and paramagnetic probability curves may no longer 

intersect at any finite temperature. This behavior indicates the absence of a phase transition and implies 

that the system remains in the disordered paramagnetic phase down to zero temperature. This finding 

suggests that the bond concentration is below the percolation threshold pc = 0.5 for the square lattice. 

 

Figure 5. The output layer averaged (y-axis) over a test set as a function of temperature T/J (x-axis) for p = 0.49. 

 

Figure 6. The output layer averaged (y-axis) over a test set as a function of temperature T/J (x-axis) for p = 0.45. 

Remarkably, our model, trained solely on ordered and disordered configurations at p = 1 without 

explicit exposure to dilution or temperature dependence, accurately classifies phases and estimates 

critical properties for p < 1. This demonstrates its strong generalization ability. It suggests that the 

network’s learned representations of the pure 2D Ising model are sufficiently robust to extrapolate to 

the diluted model. Moreover, compared to Monte Carlo simulation methods which require a large 
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number of samples for accurate estimates the model achieves comparable accuracy using significantly 

fewer samples, as summarized in Table 1. 

Table 1. Comparison of the number of Monte Carlo samples (NMC) and the number of machine learning samples 

(NML) used to measure 𝑇c(p) across various bond concentrations 

p 1 0.8 0.6 0.55 0.51 0.5 0.49 0.45 

NMC 500 20000 200000 400000     

NML 1000 1000 1000 1000 1000 1000 1000 1000 

Finally, we plot the critical temperature 𝑇𝑐(p) versus bond concentration in Fig. 7. The phase 

transition curve separates the ordered phase (below the curve) from the disordered phase (above the 

curve). Our estimated 𝑇𝑐 (p) agree with those reported in [6, 8]. 

4. Conclusion 

This paper employed machine learning to investigate phase transitions in the diluted bond 2D Ising 

model. A convolutional neural network is trained to predict phase transitions directly from spin 

configurations, successfully classifying the high-temperature (paramagnetic) and low-temperature 

(ferromagnetic) phases. The model demonstrates high efficiency, requiring only 1,000 configurations to 

accurately determine the critical temperature for 0.55 ≤ p ≤ 0.8, representing a significant reduction 

compared to the 20,000 - 400,000 samples needed in previous studies for 0.55 ≤ p ≤ 0.8. Furthermore, 

the critical temperature for the range 0.5 ≤ p < 0.55 is determined for the first time in this study. 

However, for p = 0.5, the nature of the phase transition remains unclear and requires further 

investigation. 

 

Figure 7. T - p Phase diagram of critical temperature Tc versus bond concentration p  

in the diluted bond 2D Ising model. 
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