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Abstract: In this work, we consider the problem of recovering the heat distribution for a
homogeneous diffusion equation with white noise. As commonly acknowledged, the problem is
severely ill-posed according to Hadamard's definition. Consequently, we propose the Fourier
truncation method to regularize this problem. With different assumptions on the exact solution, the
estimation of the expectation of the error between the regularized solution and the exact solution
was obtained. Finally, we provided an example to illustrate our theoretically obtained results.
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1. Introduction

The coupling operator of local and nonlocal type of —aA(-) + B(—A)Y () where @, § > 0,y € (0,1)
arises in various real-world applications. This operator has been used to describe diffusion processes
involving particles that exhibit both Lévy and Brownian motion simultaneously. From a practical
standpoint, it plays a role in modeling the dynamics of biological populations, where individuals may
alternate between short- and long-range random movements. This behavior can, for example, represent
a combination of local environmental exploration and long-distance foraging or hunting strategies.
Another concrete application of such coupling operators was found in plasma physics. In astrophysical
plasmas, for instance, magnetic fields are employed to confine high-temperature plasma [1, 2].
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From a theoretical perspective, diffusion operators combining local and nonlocal terms have been
investigated in several contexts, including boundary value problems, the logistic equation, and shape
optimization problems involving mixed operators [3-5].

Inspired by the various applications of nonlinear diffusion with coupling operator, let D = (0, m),
we investigate the problem of determining the temperature distribution u(x,t) for t € [0,T) which
satisfies the following problem

ur(x, t) — alu(x, t) + (=AY u(x,t) =0,(x,t) € D X [0,T], (D
u(0,t) = u(m,t) =0,t € [0,T], (2)
ulx,T) =gkx),x€D 3

where @, > 0,y € (0,1),T > 0, the final data g € L?(D), and (—A)" is the fractional Laplacian
operator which will be defined in section 2.

The problem (1) - (3) is widely acknowledged as severely ill-posed, indicating that the solution does
not exhibit continuous dependence on the input data. In other words, even minor perturbations in the
input data can lead to significant changes in the solution. Therefore, implementing an appropriate
regularization process is essential to obtain a stable solution.

The problem (1) - (3) for the case @ > 0, 8 = 0 become the backward problem for the classical
parabolic equation, which has been extensively investigated in [8-10]. For instance, in [8], Denche and
Bessila used a quasi-boundary value method to regularize the problem. When a = 0, 8 > 0, the problem
(1) — (3) will become the backward problem for the space-fractional diffusion equation has been studied
by many mathematicians (f.i. see in [11-13]). For example, in [11], Zheng applied the fractional
Tikhonov regularization method to tackle the problem.

As far as known, the problem (1) — (3) with white noise has not been explored and this is the
motivation of our work. Hence, in this work, we study the problem (1) - (3) with the following random
model:

ge(x) = g(x) + &5 (), “4)
where € > 0 represents the magnitude of the noise and ¢ is a Gaussian white noise process. To address
the regularization of the problem, we will employ the Fourier truncation method. Considering various
conditions on the exact solution, we aim to determine the convergence rate of Holder or logarithmic
type of the expectation of the error between the regularized solution and the exact solution.

The remainder of this work is organized as follows: In Section 2, we introduce relevant definitions
and derive the solution to the problem (1) - (3). Section 3 is devoted to proving the illposedness of the
problem (1) - (3). In Section 4, we propose a regularization method and estimate the expected error
between the regularized solution and the exact solution. Section 5 presents a numerical example to
demonstrate the effectiveness of the proposed theory. Finally, Section 6 provides concluding remarks.

2. Preliminaries and Fundamental Solution

Throughout this work, we denote D = (0, ).
Definition 2.1 (see [13]) Let us consider

s

L*(D) = {v: D - R | v is Lebesgue measurable and j

[v(x)|?dx < 00},
0

with the inner product
T

(vy,v,) = f v, (x)v,(x)dx, for vy, v, € L>(D)
0

and
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- 1/2
o]l = ( fo |v(x>|2dx>

Lemma 2.1 (see [13]) Let {1, },,en are all the eigenvalues of the operator —A, and {¢,, (x) },en are
the corresponding eigenfunctions satisfy
{_A¢n(x) = AnPn(x),x €D
¢n(x)=0,x € 3D

az . . .
where A = ez 18 the one-dimensional Laplace operator. Then

A, =n? and ¢, (x) = \[gsin (nx)
n n T "

Note that {¢,, (x)},,en is an orthonormal basis of L2(D).
Definition 2.2 (see [12]) Let v € L2(D). For every a > 0, the fractional Laplacian operator is
defined as follows

o)

(—A)ap(x) = z n2%(v, ¢ ) by ()

n=1

where ¢, (x) = \Esin (nx).
Definition 2.3 (see [12]) For s > 0, let us consider

H (D) = {v e 2(D): ) 1%l gl < oo},
n=1

o) 1/2
Wllusco) = (Z w2, ¢n>|2>

n=1

and

where ¢, (x) is given by (2.1).
Notify that H® (D) is a Hilbert space with the inner product

[ee)

o)y = Y. 15 Bug, )

n=1

Definition 2.4 (see [13]) Let us consider

c([0,T]; L*(D)) = {v: [0,T] — L?(D) is measurable and sup ||v(.,t)|| < 00}

0<t<T
and

v 2 = sup [|[v(., )]
I ||C([0,T],L (D)) OStST” GOl

Definition 2.5 (see [14]) Given a measure probability space (). Let us consider the Bochner space
L?(Q,12(D)) = {v:Q - L*(D) is measurable and E||v||? < oo}

10l 2(0,20y) = VEIVIP

Definition 2.6 (see [14]) Let us consider the normed space

and

Vr = {v: [0,T] » L?(Q, L*(D)) is measurable and sup /E|v(.,t)|]? < 00}
0<t<T
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and
Ivlly, = sup VE[v(,DI?
0<t<T

Definition 2.7 (see [15]) Let H be a Hilbert space. We say that ¢ is a white noise process if Covg =
I and the random variables are Gaussian: for all functions g;, g, € H, the random variables (f g j) have

normal distributions N (0, gj ||2) and Cov({¢, g1), (¢, 92)) = (91, 92)-

Lemma 2.2 (see [15]) Let ¢ be a white noise process in a Hilbert space H and {¢,} be an
orthonormal basis in H. Define &, = (¢, ¢,,). Then {§,,} are independent and identically distributed
standard Gaussian random variables.

Theorem 2.8 Let g € L2(D). If the problem (1) - (3) has a solution in C([0,T]; L>(D)) then the
solution is given by

o)

ulx,t) = z e(an2+ﬁn27)(T—t)gn¢)n(x), (5)

n=1

Pn(x) = \Esin(nx),

In =g, Pn),
fa@)(s) =(f(.,5,u(.,$)), n).
Proof. If u(x,t) represents a solution of the problem (1) - (3), and it takes the form u(x,t) =
Yome1 Un () (x), where u,(t) = (u(.,t),¢,), then by multiplying both sides of (1) by
¢, (x) and integrating over the domain D with respect to x, we obtain:

where

%un(t) + (an? + Bn? )u, (t) = 0. (6)

Multiplying both sides of (6) by elan®+pn®)t ang taking the integral from t to T, one obtain:
T !
f (elan®+Bn™)sy () ds = 0.
t

Then
elan®+pn)Ty Ty — glan®+pn™)ey 4y =
It implies that
U, (8) = e(an2+ﬂn27)(T—t)gn.
So, one can get

uGet)= ) eI, ()
n=1
This completes the proof of Theorem 2.8.
In the next section, we will give an example to prove the ill - posedness of the problem (1) — (3).

3. Example for the Ill-posedness of the Problem (1) - (3) with Gaussian White Noise

We give an example which shows that the problem (1) - (3) has a solution and its solution is not
stable. Let us consider the problem
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us(x, t) — 0.1Au(x, t) + 0.2(—=A) u(x,t) = 0, (x, t) € (0,m) x [0,1],
u(0,t) = u(m,t) =0,t € [0,1], (7
u(x,1) = glx),x € (0,m).
Let gex € L2(D), uey € C([0,T]; L?(D)). The exact solution of the problem (7) corresponding to
the exact data g, is

o)

Uex (x,8) = z e(an2+BnZY)(T_t) (Gex)nPn (x).

n=1
Choose the measured data

1 n
9n() = gox () +—3Z (& dp)dp (O = 1,

4;

where ¢, (x) = \Esin (px).

We get
1 n
Ellgn_gexllz __3E f}% ,
E p=1
where &, = (g‘ ¢p)
It follows from Lemma 2.2 that E(¢2) = 1. It leads to
1
Ellgn — glI* = (8)
nz
The exact solution of the problem (7) corresponding to the measured data g, is
u () = ) eI (g,), 4, (), 9
p=1

where (gp,)p = (gn, ¢p>
We get

Ellun(- ) t) - uex(-' t)llz
= IE(Z;O=1 [6(0'1p2+0'2p2y)(T_t) (.gn)p - gp)]z)
>E ([6(0.1n2+0.2nzy)(T—t) ((gn)n — gn)]z)

> lg 32(0'1n2+0'2n2y)(T_t)E(frzz)

nz
e2(0.1n2+0.2n2Y)(T—t)
>
3
nz
It implies that
sup Ellu,(.,t) —u(.,t)||? > oo, (10)
0<t<T

when n — oo.
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From (8), we notice that
Ellg, — glI> =0, (11)
when n — oo, From (10) and (11), we deduce that the problem (1) - (3) violates the stability. Hence, the
problem (1) - (3) is ill - posed.
Next, we will give a regularization method for the problem (1) - (3).

4. Regularization and Error Estimate

Lemma 4.1 Given € € (0,1) and s > 0. Let g € H*(D). Suppose that N(¢) be a positive integer
such that lin(l)N(s) = 400 and linéezN(e) = 0. Put gy such that
£ £

I @) = T8 (ger )P ().
Then we have the following estimate

1
Ellgne — 9l < 2N @) + e 19 iscoy (12)
Proof. We have
N(e)
Elgve — 9l =E( D (0= 9.7 | +E[ D (.60
n=1 n>N(g)
N(e)
= ¢°E z &2 |+ z n=2n%(g, P,)%.

n=1 n>N(g)

Then we get

2 1
Ellgnc = 91" < N @) + G 19lls o)
This completes the proof of Lemma 4.1.

We know that the terms e(an*+8n*)(T-0) (with large n) is the instability cause. Hence, to obtain the
stability of the solution, we apply the Fourier truncation method to establish a regularized solution as
follows:

Bn(e
2 2 _
ui](s)(x’ t) = Z e(an +Bn V)(T t) (gN(S))nd)n(x); (13)
n=1
where By 1s a positive integer satisfying lirré By =+ and will be chosen later.
E—
Next we will give the expectation of the error estimate between the regularized solution and the exact

solution under different conditions.
Theorem 4.1. Given s > 0. Suppose there exists My > 0 such that |[g||gspy < M;. Let u be the

exact solution of the problem (1) - (3) corresponding to the exact data g and ufv(g) be the regularized
solution corresponding to the random data gy ).
Suppose there exist ¢ > 0 and Q1 > 0 such that

D e |, (0 < 04, Ve € [0,T], (14)
n=1
Then the following estimate holds



N. Q. Huy / VNU Journal of Science: Mathematics — Physics, Vol. 41, No. 4 (2025) 67-77

2 2s(T+t) 1T\ 4 2st
Ellufy o (.0 —ul, D" <M, <e(25+1)T + (ln (E)) 5(25+1)(a+ﬂ)T>’t e [0, 7],

where M, = Zmax{l + M?,0Q, (m)_q}.

Proof:
We put
Bn(e
V(oD = ) el Hrr-0g, ¢, ()
n=1
We have

E||u,‘f,(e)(. ) —u(., t)HZ
< 28l 00 = w0 O + 2B ) — o O
Firstly, we estimate E||ufv(5) (1) = Ve G t)”z. We get

IE||ufv(£) .- Vzg\r(s) G, t)“Z
BN (g)

—E z |e(an2+BnZY)(T—t)((gN(S))n_gn)r
n=1

o)

< 2@B (Br) T-OF (Z |(9N(s)) - gn|2>
n=1 "
< oD ) 0| gy — gl
From Lemma 4.1, we obtain

2
Elli o) (. 1) = vy (O] < e2@P(Bra) -0 (SZN(S) +

2(a+B)(Br) (-1 (g2 _ME
<e N(Z) (s N(e) + (N(g))ZS).
Secondly, we estimate ||u( ,t) — v,f,(g) G, t)|| . We obtain
2
uC 0y = v Ol = D ez pagzen lentsprna-og,
n>BN(g)

-2q _ 2
< (BN(s)) e~ 2t(Bn(e) Q; .
Combining (16), (17) and (18) gives
2
Ellufe) (. 0) —ul, 0

2 _ MZ -2q _ 2
< 2 [e2@AEN@) T-0 (2N (e) + (N(E;)ZS) + Qi (Buo) e BN@) ],

NP

2
We choose N(€) = & 2s+1 and By(g) = (Wln G)) . Then we have

Bl (0 = uC, )|

25(T+t) s 1 —a 2st
< 2|1+ M2)eC@s+D)T 4 1 (_) @s+)(a+p)T | |
(1 +M)e “Nvnarpr &) ¢

1
Wllgllisw))

73

(15)

(16)

(17)

(18)

(19)
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N

-q
m) }, we get the estimate

Putting M, = 2max{1 + M7, Q4 (

2 2s(T+t) 1T\ 9 2st
Ellus o), ) —u(, )| < M, <s(25+1)T +(1n (E)) gi(zmxaww).

This completes the proof of Theorem 4.1.
Theorem 4.2. Let g be as in Theorem 4.1. Let u be the exact solution of the problem (1) - (3) and
u,f,(g) be the regularized solution corresponding to the random data gy ). Suppose there exist 7 > 0 and

Q, > 0 such that

o)

> e uy (O < Qe € 0,7 (20)
n=1
Then the following estimate holds
2 2s(T+t) 25T
El[uf e 0 —ul, | < Ms <s(25+1)T + 3(25“)(‘”3”) ,t €[0,T], (21)

where M; = 2max{1 + M?,Q,}.
Proof:

Now we estimate ||u(.,t) — Ve G t)”z‘ We obtain
2 2
[ul,t) = vie (Ol = z g=2rn’g2rn’ [e(an2+ﬁnzy)(T—t)gn]
71>BN(£)
2 2
< e 27(Bn) z g2 [glan®+pn®)(T-0) g |
n=1

< e (Enw)q,. 22)
Combining (16), (17) and (22) gives

Ellu o) (., ) = uC, 0|

<2 [eZ(a+,B)(BN(£))2(T—t) (SZN(E) + (NZ;Z)ZS) + Qze—Zr(BN(g))z] ) (23)

1
2

2
We choose N(g) = & 2s+1 and By(,) = (Wln G)) .

Then we have

2s(T+t) 2sT ]

Bl (0 - uC, O < 2|1+ MDeET + g et

Putting M3 = 2max{1 + M%, Q,}, we obtain

2 25(T+t) 28T
El[ufie) (o 0) —ul, D" < M; <e<zs+m + s<zs+1><a+ﬁ>T).

This completes the proof of Theorem 4.2.

5. Numerical Example

In this section, we construct an illustrate example for our regularization method. We consider the
following problem
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ur(x, t) — 0.1Au(x, t) + 0.2(=A) u(x,t) = 0, (x, t) € (0,m) X [0,1],
u(0,t) = u(mt) =0,t € [0,1], (24)
u(x,1) = g(x),x € (0,m),
where y = 0.7 and
g(x) = e %3sin (x).
The exact solution of the problem (24) is
Uexact (X, £) = e7%3tsin (x).

We get the regularization parameters

N =[N(¢)] = [s_TZ] and By = [By(o)] = K%ln G))F

Consider the random data
N
g () = e™03sin (1) + & ) () ),
n=1

where ¢, (x) = \Esin (nx) and (¢, ¢,,) is Gaussian random variable with mean 0 and variance 1.

From (13), we get the regularized solution at the point (x, t)
By

Ul (x, ) = z e(0.1n2+0.2n2V)(1—t) (QN)nd’n(x)»
n=1
where

(gN)n = <gNl ¢n)-
The results of our computational method are shown in Figs. 1-2, and listed in Table 1.

12

_uml[x.ﬂ}
- = _uk[x.[)}for e=0.1

........... u;\[x.[)}for e=0.01 ]

—g—uy(x.0) for ¢ = 0.001

0.8
S 06T
04r

g
02r g
g

0 0.5 1 15 2 25 3 3.5
X

Figure 1. The graph of the exact solution u.,, (.,0) and the regularized solution u§ (.,0) corresponding
to € = 0.1,0.01,0.001.
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09
— o (X0.5)

08l - — - UL x05)for = 0.1
.......... UL (x.0.5) for ¢ = 0.01

07t - - —o— ui (xD5) for « = 0.001
06 4
06 .
041 .

031 (]

oz2r A

o1r

X

Figure 2. The graph of the exact solution v, (.,0.5) and the regularized solution ug (.,0.5)
corresponding to € = 0.1,0.01,0.001.

Table 1. The expectation of the error between the regularized solution uj (., t) and the exact solution v, (-, t)
at different values of time corresponding to € = 0.1,0.01,0.001.

Elluls\l(-:t — Uexact (-'t)llz

t, e e=0.1 e =0.01 e =0.001

t= 4.6283e — 02 | 5.0135e — 04 | 4.5053e — 06
t=0.1|4.3588e — 02 | 4.7215e — 04 | 4.2430e — 06
t=0.2|4.1049e — 02 | 4.4465e — 04 | 3.9959e — 06
t=0.3|3.8659 — 02 | 4.1876e — 04 | 3.7632e — 06
t =04 | 3.6408e — 02 | 3.9437e — 04 | 3.5440e — 06
t=0.5]|3.4287e — 02 | 3.7141e — 04 | 3.3376e — 06
t=0.6 | 3.2291e — 02 | 3.4978e — 04 | 3.1433e — 06
t =0.7 | 3.0410e — 02 | 3.2941e — 04 | 2.9602e — 06
t =0.8| 2.8639¢ — 02 | 3.1022¢ — 04 | 2.7878e — 06
t=09| 2.6971e — 02 | 2.9216e — 04 | 2.6255e — 06
t=1 2.5401e — 02 | 2.7514e — 04 | 2.4726e — 06

6. Conclusion

In this work, by Fourier truncation method, we regularized the nonlinear diffusion equation with
coupling operator and Gaussian white noise. With some conditions on the exact solution, we obtained
the error estimate between the regularized solution and the exact solution. We also gave a numerical
experiment results to illustrate our theoretical method. In further work, we will consider the problem in
the nonhomogeneous or the nonlinear case of the source term.
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