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Abstract: In this work, we consider the problem of recovering the heat distribution for a 
homogeneous diffusion equation with white noise. As commonly acknowledged, the problem is 

severely ill-posed according to Hadamard's definition. Consequently, we propose the Fourier 

truncation method to regularize this problem. With different assumptions on the exact solution, the 

estimation of the expectation of the error between the regularized solution and the exact solution 

was obtained. Finally, we provided an example to illustrate our theoretically obtained results. 
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1. Introduction
*
 

The coupling operator of local and nonlocal type of −𝛼Δ(⋅) + 𝛽(−Δ)𝛾(⋅) where 𝛼, 𝛽 > 0, 𝛾 ∈ (0,1) 

arises in various real-world applications. This operator has been used to describe diffusion processes 
involving particles that exhibit both Lévy and Brownian motion simultaneously. From a practical 

standpoint, it plays a role in modeling the dynamics of biological populations, where individuals may 

alternate between short- and long-range random movements. This behavior can, for example, represent 

a combination of local environmental exploration and long-distance foraging or hunting strategies. 
Another concrete application of such coupling operators was found in plasma physics. In astrophysical 

plasmas, for instance, magnetic fields are employed to confine high-temperature plasma [1, 2]. 
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From a theoretical perspective, diffusion operators combining local and nonlocal terms have been 

investigated in several contexts, including boundary value problems, the logistic equation, and shape 
optimization problems involving mixed operators [3-5].  

Inspired by the various applications of nonlinear diffusion with coupling operator, let 𝐷 = (0, 𝜋), 

we investigate the problem of determining the temperature distribution 𝑢(𝑥, 𝑡) for 𝑡 ∈ [0, 𝑇) which 

satisfies the following problem 

                                         𝑢𝑡(𝑥, 𝑡) − 𝛼Δ𝑢(𝑥, 𝑡) + 𝛽(−Δ)𝛾𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝐷 × [0, 𝑇],                        (1)

                                                     𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0, 𝑡 ∈ [0, 𝑇],                                                                    (2)

                                                    𝑢(𝑥, 𝑇) = 𝑔(𝑥), 𝑥 ∈ 𝐷                                                                                        (3)

 

where 𝛼, 𝛽 > 0, 𝛾 ∈ (0,1), 𝑇 > 0, the final data 𝑔 ∈ 𝐿2(𝐷), and (−Δ)𝛾 is the fractional Laplacian 

operator which will be defined in section 2. 
The problem (1) - (3) is widely acknowledged as severely ill-posed, indicating that the solution does 

not exhibit continuous dependence on the input data. In other words, even minor perturbations in the 

input data can lead to significant changes in the solution. Therefore, implementing an appropriate 
regularization process is essential to obtain a stable solution. 

The problem (1) - (3) for the case 𝛼 > 0, 𝛽 = 0 become the backward problem for the classical 

parabolic equation, which has been extensively investigated in [8-10]. For instance, in [8], Denche and 

Bessila used a quasi-boundary value method to regularize the problem. When 𝛼 = 0, 𝛽 > 0, the problem 
(1) – (3) will become the backward problem for the space-fractional diffusion equation has been studied 

by many mathematicians (f.i. see in [11-13]). For example, in [11], Zheng applied the fractional 

Tikhonov regularization method to tackle the problem. 
As far as known, the problem (1) – (3) with white noise has not been explored and this is the 

motivation of our work. Hence, in this work, we study the problem (1) - (3) with the following random 

model: 

                                                               𝑔𝜀(𝑥) = 𝑔(𝑥) + 𝜀𝜉(𝑥),                                                                 (4) 

where 𝜀 > 0 represents the magnitude of the noise and 𝜉 is a Gaussian white noise process. To address 

the regularization of the problem, we will employ the Fourier truncation method. Considering various 

conditions on the exact solution, we aim to determine the convergence rate of Hölder or logarithmic 
type of the expectation of the error between the regularized solution and the exact solution. 

The remainder of this work is organized as follows: In Section 2, we introduce relevant definitions 

and derive the solution to the problem (1) - (3). Section 3 is devoted to proving the illposedness of the 
problem (1) - (3). In Section 4, we propose a regularization method and estimate the expected error 

between the regularized solution and the exact solution. Section 5 presents a numerical example to 

demonstrate the effectiveness of the proposed theory. Finally, Section 6 provides concluding remarks. 

2. Preliminaries and Fundamental Solution 

Throughout this work, we denote 𝐷 = (0, 𝜋). 

Definition 2.1 (see [13]) Let us consider 

𝐿2(𝐷) = {𝑣: 𝐷 → ℝ ∣ 𝑣 is Lebesgue measurable and ∫  
𝜋

0

  |𝑣(𝑥)|2𝑑𝑥 < ∞}, 

with the inner product 

⟨𝑣1, 𝑣2⟩ = ∫  
𝜋

0

𝑣1(𝑥)𝑣2(𝑥)𝑑𝑥, for 𝑣1, 𝑣2 ∈ 𝐿2(𝐷) 

and 
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‖𝑣‖ = (∫  
𝜋

0

  |𝑣(𝑥)|2𝑑𝑥)

1/2

 

Lemma 2.1 (see [13]) Let {𝜆𝑛}𝑛∈ℕ are all the eigenvalues of the operator −Δ, and {𝜙𝑛(𝑥)}𝑛∈ℕ are 
the corresponding eigenfunctions satisfy 

{
−Δ𝜙𝑛(𝑥) = 𝜆𝑛𝜙𝑛(𝑥), 𝑥 ∈ 𝐷

𝜙𝑛(𝑥) = 0, 𝑥 ∈ 𝜕𝐷
 

where Δ =
𝑑2

𝑑𝑥2 is the one-dimensional Laplace operator. Then 

𝜆𝑛 = 𝑛2 and 𝜙𝑛(𝑥) = √
2

𝜋
sin (𝑛𝑥).  

Note that {𝜙𝑛(𝑥)}𝑛∈ℕ is an orthonormal basis of 𝐿2(𝐷). 

Definition 2.2 (see [12]) Let 𝑣 ∈ 𝐿2(𝐷). For every 𝛼 > 0, the fractional Laplacian operator is 

defined as follows 

(−Δ)𝛼𝑣(𝑥) = ∑  

∞

𝑛=1

𝑛2𝛼⟨𝑣, 𝜙𝑛⟩𝜙𝑛(𝑥) 

where 𝜙𝑛(𝑥) = √
2

𝜋
sin (𝑛𝑥). 

Definition 2.3 (see [12]) For 𝑠 > 0, let us consider 

𝐻𝑠(𝐷) = {𝑣 ∈ 𝐿2(𝐷): ∑  

∞

𝑛=1

 𝑛2𝑠|⟨𝑣, 𝜙𝑛⟩|2 < ∞}, 

and 

‖𝑣‖𝐻𝑠(𝐷) = (∑  

∞

𝑛=1

  𝑛2𝑠|⟨𝑣, 𝜙𝑛⟩|2)

1/2

 

where 𝜙𝑛(𝑥) is given by (2.1). 

Notify that 𝐻𝑠(𝐷) is a Hilbert space with the inner product 

⟨𝑓, 𝑔⟩𝐻𝑠(𝐷) = ∑  

∞

𝑛=1

𝑛2𝑠⟨𝑓, 𝜙𝑛⟩⟨𝑔, 𝜙𝑛⟩ 

Definition 2.4 (see [13]) Let us consider 

𝐶([0, 𝑇]; 𝐿2(𝐷)) = {𝑣: [0, 𝑇] → 𝐿2(𝐷) is measurable and sup
0≤𝑡≤𝑇

 ‖𝑣(. , 𝑡)‖ < ∞} 

and 

‖𝑣‖𝐶([0,𝑇];𝐿2(𝐷)) = sup
0≤𝑡≤𝑇

 ‖𝑣(. , 𝑡)‖. 

Definition 2.5 (see [14]) Given a measure probability space Ω. Let us consider the Bochner space 

𝐿2(Ω, 𝐿2(𝐷)) = {𝑣: Ω → 𝐿2(𝐷) is measurable and 𝔼‖𝑣‖2 < ∞} 

and 

‖𝑣‖𝐿2(Ω,𝐿2(𝐷)) = √𝔼‖𝑣‖2 

Definition 2.6 (see [14]) Let us consider the normed space 

𝑉𝑇 = {𝑣: [0, 𝑇] → 𝐿2(Ω, 𝐿2(𝐷)) is measurable and sup
0≤𝑡≤𝑇

 √𝔼‖𝑣(. , 𝑡)‖2 < ∞} 
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and 

‖𝑣‖𝑉𝑇
= sup

0≤𝑡≤𝑇
 √𝔼‖𝑣(. , 𝑡)‖2 

Definition 2.7 (see [15]) Let 𝐻 be a Hilbert space. We say that 𝜉 is a white noise process if Cov𝜉 =

𝐼 and the random variables are Gaussian: for all functions 𝑔1, 𝑔2 ∈ 𝐻, the random variables ⟨𝜉, 𝑔𝑗⟩ have 

normal distributions 𝒩 (0, ‖𝑔𝑗‖
2

) and Cov(⟨𝜉, 𝑔1⟩, ⟨𝜉, 𝑔2⟩) = ⟨𝑔1, 𝑔2⟩. 

Lemma 2.2 (see [15]) Let 𝜉 be a white noise process in a Hilbert space 𝐻 and {𝜙𝑛} be an 

orthonormal basis in 𝐻. Define 𝜉𝑛 = ⟨𝜉, 𝜙𝑛⟩. Then {𝜉𝑛} are independent and identically distributed 

standard Gaussian random variables. 

Theorem 2.8 Let 𝑔 ∈ 𝐿2(𝐷). If the problem (1) - (3) has a solution in 𝐶([0, 𝑇]; 𝐿2(𝐷)) then the 
solution is given by 

                                                           𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

  𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)𝑔𝑛𝜙𝑛(𝑥),                                               (5) 

where 

𝜙𝑛(𝑥) = √
2

𝜋
sin(𝑛𝑥) ,

𝑔𝑛 = ⟨𝑔, 𝜙𝑛⟩,

𝑓𝑛(𝑢)(𝑠) = ⟨𝑓(. , 𝑠, 𝑢(. , 𝑠)), 𝜙𝑛⟩.

 

Proof. If 𝑢(𝑥, 𝑡) represents a solution of the problem (1) - (3), and it takes the form 𝑢(𝑥, 𝑡) =
        ∑  ∞

𝑛=1 𝑢𝑛(𝑡)𝜙𝑛(𝑥), where 𝑢𝑛(𝑡) = ⟨𝑢(. , 𝑡), 𝜙𝑛⟩, then by multiplying both sides of (1) by                                                                               

        𝜙𝑛(𝑥) and integrating over the domain 𝐷 with respect to 𝑥, we obtain: 

                                                             
𝑑

𝑑𝑡
𝑢𝑛(𝑡) + (𝛼𝑛2 + 𝛽𝑛2𝛾)𝑢𝑛(𝑡) = 0.                                                    (6) 

Multiplying both sides of (6) by 𝑒(𝛼𝑛2+𝛽𝑛2𝛾)𝑡 and taking the integral from 𝑡 to 𝑇, one obtain: 

∫  
𝑇

𝑡

(𝑒(𝛼𝑛2+𝛽𝑛2𝛾)𝑠𝑢𝑛(𝑠))
′
𝑑𝑠 = 0. 

 Then 

𝑒(𝛼𝑛2+𝛽𝑛2𝛾)𝑇𝑢𝑛(𝑇) − 𝑒(𝛼𝑛2+𝛽𝑛2𝛾)𝑡𝑢𝑛(𝑡) = 0. 
 It implies that 

𝑢𝑛(𝑡) = 𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)𝑔𝑛. 

 So, one can get 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)𝑔𝑛𝜙𝑛(𝑥). 

This completes the proof of Theorem 2.8. 

In the next section, we will give an example to prove the ill - posedness of the problem (1) – (3). 

3. Example for the Ill-posedness of the Problem (1) - (3) with Gaussian White Noise 

We give an example which shows that the problem (1) - (3) has a solution and its solution is not 

stable. Let us consider the problem 
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                                 {

𝑢𝑡(𝑥, 𝑡) − 0.1Δ𝑢(𝑥, 𝑡) + 0.2(−Δ)𝛾𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ (0, 𝜋) × [0,1],

𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0, 𝑡 ∈ [0,1],
𝑢(𝑥, 1) = 𝑔(𝑥), 𝑥 ∈ (0, 𝜋).

               (7)  

Let 𝑔𝑒𝑥 ∈ 𝐿2(𝐷), 𝑢𝑒𝑥 ∈ 𝐶([0, 𝑇]; 𝐿2(𝐷)). The exact solution of the problem (7) corresponding to 

the exact data 𝑔𝑒𝑥  is 

𝑢𝑒𝑥(𝑥, 𝑡) = ∑  

∞

𝑛=1

𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)(𝑔𝑒𝑥)𝑛𝜙𝑛(𝑥). 

Choose the measured data 

𝑔𝑛(𝑥) = 𝑔𝑒𝑥(𝑥) +
1

𝑛
3
4

∑  

𝑛

𝑝=1

⟨𝜉, 𝜙𝑝⟩𝜙𝑝(𝑥), 𝑛 ≥ 1, 

where 𝜙𝑝(𝑥) = √
2

𝜋
sin (𝑝𝑥). 

We get 

𝔼‖𝑔𝑛 − 𝑔𝑒𝑥‖2 =
1

𝑛
3
2

𝔼 (∑  

𝑛

𝑝=1

 𝜉𝑝
2), 

where 𝜉𝑝 = ⟨𝜉, 𝜙𝑝⟩. 

It follows from Lemma 2.2 that 𝔼(𝜉𝑝
2) = 1. It leads to 

                                                                   𝔼‖𝑔𝑛 − 𝑔‖2 =
1

𝑛
1
2

.                                                                               (8) 

The exact solution of the problem (7) corresponding to the measured data 𝑔𝑛  is 

                                                              𝑢𝑛(𝑥, 𝑡) = ∑  

∞

𝑝=1

 𝑒(𝑝2+2𝑝2𝛾)(𝑇−𝑡)(𝑔𝑛)𝑝𝜙𝑝(𝑥),                                      (9) 

where (𝑔𝑛)𝑝 = ⟨𝑔𝑛, 𝜙𝑝⟩. 

We get 

                                                

𝔼‖𝑢𝑛(. , 𝑡) − 𝑢𝑒𝑥(. , 𝑡)‖2

   = 𝔼(∑  ∞
𝑝=1   [𝑒(0.1𝑝2+0.2𝑝2𝛾)(𝑇−𝑡)(𝑔𝑛)𝑝 − 𝑔𝑝)]

2
)

 ≥ 𝔼 ([𝑒(0.1𝑛2+0.2𝑛2𝛾)(𝑇−𝑡)((𝑔𝑛)𝑛 − 𝑔𝑛)]
2

)

 

 ≥
1

𝑛
3
2

𝑒2(0.1𝑛2+0.2𝑛2𝛾)(𝑇−𝑡)𝔼(𝜉𝑛
2)

 ≥
𝑒2(0.1𝑛2+0.2𝑛2𝛾)(𝑇−𝑡)

𝑛
3
2

.

 

It implies that 

                                                                  sup
0≤𝑡≤𝑇

 𝔼‖𝑢𝑛(. , 𝑡) − 𝑢(. , 𝑡)‖2 → ∞,                                                  (10) 

when 𝑛 → ∞. 
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From (8), we notice that 

                                                                          𝔼‖𝑔𝑛 − 𝑔‖2 → 0,                                                                        (11) 

when 𝑛 → ∞. From (10) and (11), we deduce that the problem (1) - (3) violates the stability. Hence, the 

problem (1) - (3) is ill - posed. 

Next, we will give a regularization method for the problem (1) - (3). 

4. Regularization and Error Estimate 

Lemma 4.1 Given 𝜀 ∈ (0,1) and 𝑠 > 0. Let 𝑔 ∈ 𝐻𝑠(𝐷). Suppose that 𝑁(𝜀) be a positive integer 

such that lim
𝜀→0

 𝑁(𝜀) = +∞ and lim
𝜀→0

 𝜀2𝑁(𝜀) = 0. Put 𝑔𝑁(𝜀) such that 

𝑔𝑁(𝜀)(𝑥) = ∑  
𝑁(𝜀)
𝑛=1

⟨𝑔𝜀 , 𝜙𝑛⟩𝜙𝑛(𝑥). 

Then we have the following estimate 

                                               𝔼‖𝑔𝑁(𝜀) − 𝑔‖
2

≤ 𝜀2𝑁(𝜀) +
1

(𝑁(𝜀))2𝑠
‖𝑔‖𝐻𝑠(𝐷)

2 .                                          (12) 

Proof. We have 

𝔼‖𝑔𝑁(𝜀) − 𝑔‖
2

 = 𝔼 (∑  

𝑁(𝜀)

𝑛=1

  ⟨𝑔𝜀 − 𝑔, 𝜙𝑛⟩2) + 𝔼 ( ∑  

𝑛>𝑁(𝜀)

  ⟨𝑔, 𝜙𝑛⟩2)

 = 𝜀2𝔼 (∑  

𝑁(𝜀)

𝑛=1

 𝜉𝑛
2) + ∑  

𝑛>𝑁(𝜀)

 𝑛−2𝑠𝑛2𝑠⟨𝑔, 𝜙𝑛⟩2.

 

Then we get 

𝔼‖𝑔𝑁(𝜀) − 𝑔‖
2

≤ 𝜀2𝑁(𝜀) +
1

(𝑁(𝜀))2𝑠 ‖𝑔‖𝐻𝑠(𝐷)
2 . 

This completes the proof of Lemma 4.1. 

We know that the terms 𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡) (with large n) is the instability cause. Hence, to obtain the 

stability of the solution, we apply the Fourier truncation method to establish a regularized solution as 

follows: 

                      𝑢𝑁(𝜀)
𝜀 (𝑥, 𝑡) = ∑  

𝐵𝑁(𝜀)

𝑛=1

  𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)(𝑔𝑁(𝜀))
𝑛

𝜙𝑛(𝑥),                                     (13)  

where 𝐵𝑁(𝜀) is a positive integer satisfying lim
𝜀→0

 𝐵𝑁(𝜀) = +∞ and will be chosen later. 

Next we will give the expectation of the error estimate between the regularized solution and the exact 

solution under different conditions. 

Theorem 4.1. Given 𝑠 > 0. Suppose there exists 𝑀1 > 0 such that ‖𝑔‖𝐻𝑠(𝐷) ≤ 𝑀1. Let 𝑢 be the 

exact solution of the problem (1) - (3) corresponding to the exact data 𝑔 and 𝑢𝑁(𝜀)
𝜀  be the regularized 

solution corresponding to the random data 𝑔𝑁(𝜀). 

Suppose there exist 𝑞 > 0 and 𝑄1 > 0 such that 

                             ∑  

∞

𝑛=1

  𝑛2𝑞𝑒2𝑡𝑛2
|𝑢𝑛(𝑡)|2 ≤ 𝑄1, ∀𝑡 ∈ [0, 𝑇].                                             (14)  

Then the following estimate holds 
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         𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 𝑀2 (𝜀

2𝑠(𝑇+𝑡)
(2𝑠+1)𝑇 + (ln (

1

𝜀
))

−𝑞

𝜀
2𝑠𝑡

(2𝑠+1)(𝛼+𝛽)𝑇) , 𝑡 ∈ [0, 𝑇],                  (15) 

where 𝑀2 = 2max {1 + 𝑀1
2, 𝑄1 (

𝑠

(2𝑠+1)(𝛼+𝛽)𝑇
)

−𝑞

}. 

Proof: 

We put 

𝑣𝑁(𝜀)
𝜀 (𝑥, 𝑡) = ∑  

𝐵𝑁(𝜀)

𝑛=1

𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)𝑔𝑛𝜙𝑛(𝑥). 

We have 

                                𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
 

≤ 2𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2

+ 2𝔼‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
.                                   (16) 

Firstly, we estimate 𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2
. We get 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2

 = 𝔼 ( ∑  

𝐵𝑁(𝜀)

𝑛=1

  |𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡) ((𝑔𝑁(𝜀))
𝑛

− 𝑔𝑛)|
2

)

 ≤ 𝑒2(𝛼+𝛽)(𝐵𝑁(𝜀))
2

(𝑇−𝑡)𝔼 (∑  

∞

𝑛=1

  |(𝑔𝑁(𝜀))
𝑛

− 𝑔𝑛|
2

)

 ≤ 𝑒2(𝛼+𝛽)(𝐵𝑁(𝜀))
2

(𝑇−𝑡)𝔼‖𝑔𝑁(𝜀) − 𝑔‖
2

.

 

From Lemma 4.1, we obtain 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2

≤ 𝑒2(𝛼+𝛽)(𝐵𝑁(𝜀))
2

(𝑇−𝑡) (𝜀2𝑁(𝜀) +
1

(𝑁(𝜀))2𝑠
‖𝑔‖𝐻𝑠(𝐷)

2 ) 

                                                   ≤ 𝑒2(𝛼+𝛽)(𝐵𝑁(𝜀))
2

(𝑇−𝑡) (𝜀2𝑁(𝜀) +
𝑀1

2

(𝑁(𝜀))2𝑠
).                               (17) 

Secondly, we estimate ‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
. We obtain 

‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
= ∑  

𝑛>𝐵𝑁(𝜀)

 𝑛−2𝑞𝑒−2𝑡𝑛2
𝑛2𝑞𝑒2𝑡𝑛2

[𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)𝑔𝑛]
2
 

                                             ≤ (𝐵𝑁(𝜀))
−2𝑞

𝑒−2𝑡(𝐵𝑁(𝜀))
2

𝑄1 .
                                                               (18) 

Combining (16), (17) and (18) gives 

 𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
 

≤ 2 [𝑒2(𝛼+𝛽)(𝐵𝑁(𝜀))
2

(𝑇−𝑡) (𝜀2𝑁(𝜀) +
𝑀1

2

(𝑁(𝜀))2𝑠
) + 𝑄1(𝐵𝑁(𝜀))

−2𝑞
𝑒−2𝑡(𝐵𝑁(𝜀))

2

].                              (19) 

We choose 𝑁(𝜀) = 𝜀−
2

2𝑠+1 and 𝐵𝑁(𝜀) = (
𝑠

(2𝑠+1)(𝛼+𝛽)𝑇
ln (

1

𝜀
))

1

2

. Then we have 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2

 ≤ 2 [(1 + 𝑀1
2)𝜀

2𝑠(𝑇+𝑡)
(2𝑠+1)𝑇 + 𝑄1 (

𝑠

(2𝑠 + 1)(𝛼 + 𝛽)𝑇
ln (

1

𝜀
))

−𝑞

𝜀
2𝑠𝑡

(2𝑠+1)(𝛼+𝛽)𝑇] .
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Putting 𝑀2 = 2max {1 + 𝑀1
2, 𝑄1 (

𝑠

(2𝑠+1)(𝛼+𝛽)𝑇
)

−𝑞

}, we get the estimate 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 𝑀2 (𝜀

2𝑠(𝑇+𝑡)
(2𝑠+1)𝑇 + (ln (

1

𝜀
))

−𝑞

𝜀
2𝑠𝑡

(2𝑠+1)(𝛼+𝛽)𝑇). 

This completes the proof of Theorem 4.1.  

Theorem 4.2. Let 𝑔 be as in Theorem 4.1. Let 𝑢 be the exact solution of the problem (1) - (3) and 

𝑢𝑁(𝜀)
𝜀  be the regularized solution corresponding to the random data 𝑔𝑁(𝜀). Suppose there exist 𝑟 > 0 and 

𝑄2 > 0 such that 

∑  

∞

𝑛=1

  𝑒2𝑟𝑛2𝛼
|𝑢𝑛(𝑡)|2 ≤ 𝑄2, ∀𝑡 ∈ [0, 𝑇].                                                   (20) 

Then the following estimate holds 

                     𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 𝑀3 (𝜀

2𝑠(𝑇+𝑡)
(2𝑠+1)𝑇 + 𝜀

2𝑠𝑟
(2𝑠+1)(𝛼+𝛽)𝑇) , 𝑡 ∈ [0, 𝑇],                            (21)(21) 

where 𝑀3 = 2max{1 + 𝑀1
2 , 𝑄2}. 

Proof: 

Now we estimate ‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
. We obtain 

‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
= ∑  

𝑛>𝐵𝑁(𝜀)

 𝑒−2𝑟𝑛2
𝑒2𝑟𝑛2

[𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)𝑔𝑛]
2
 

                  ≤ 𝑒−2𝑟(𝐵𝑁(𝜀))
2

∑  

∞

𝑛=1

  𝑒2𝑟𝑛2
[𝑒(𝛼𝑛2+𝛽𝑛2𝛾)(𝑇−𝑡)𝑔𝑛]

2
 

                                                     ≤ 𝑒−2𝑟(𝐵𝑁(𝜀))
2

𝑄2.                                                                       (22)                                                                  
Combining (16), (17) and (22) gives 

                               𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
 

                       ≤ 2 [𝑒2(𝛼+𝛽)(𝐵𝑁(𝜀))
2

(𝑇−𝑡) (𝜀2𝑁(𝜀) +
𝑀1

2

(𝑁(𝜀))2𝑠
) + 𝑄2𝑒−2𝑟(𝐵𝑁(𝜀))

2

] .
                        (23) 

We choose 𝑁(𝜀) = 𝜀−
2

2𝑠+1 and 𝐵𝑁(𝜀) = (
𝑠

(2𝑠+1)(𝛼+𝛽)𝑇
ln (

1

𝜀
))

1

2

. 

Then we have 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 2 [(1 + 𝑀1

2)𝜀
2𝑠(𝑇+𝑡)

(2𝑠+1)𝑇 + 𝑄2𝜀
2𝑠𝑟

(2𝑠+1)(𝛼+𝛽)𝑇]. 

Putting 𝑀3 = 2max{1 + 𝑀1
2, 𝑄2}, we obtain 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 𝑀3 (𝜀

2𝑠(𝑇+𝑡)
(2𝑠+1)𝑇 + 𝜀

2𝑠𝑟
(2𝑠+1)(𝛼+𝛽)𝑇). 

This completes the proof of Theorem 4.2. 

5. Numerical Example 

In this section, we construct an illustrate example for our regularization method. We consider the 

following problem 
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                                {

𝑢𝑡(𝑥, 𝑡) − 0.1Δ𝑢(𝑥, 𝑡) + 0.2(−Δ)𝛾𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ (0, 𝜋) × [0,1],

𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0, 𝑡 ∈ [0,1],
𝑢(𝑥, 1) = 𝑔(𝑥), 𝑥 ∈ (0, 𝜋),

               (24) 

where 𝛾 = 0.7 and 

𝑔(𝑥) = 𝑒−0.3sin (𝑥). 

The exact solution of the problem (24) is 

𝑢exact (𝑥, 𝑡) = 𝑒−0.3𝑡sin (𝑥). 

We get the regularization parameters 

𝑁 = [𝑁(𝜀)] = [𝜀
−2
3 ]  and 𝐵𝑁 = [𝐵𝑁(𝜀)] = [(

10

9
ln (

1

𝜀
))]

1
2

. 

Consider the random data 

𝑔𝑁(𝑥) = 𝑒−0.3sin (𝑥) + 𝜀 ∑  

𝑁

𝑛=1

⟨𝜉, 𝜙𝑛⟩𝜙𝑛(𝑥), 

where 𝜙𝑛(𝑥) = √
2

𝜋
sin (𝑛𝑥) and ⟨𝜉, 𝜙𝑛⟩ is Gaussian random variable with mean 0 and variance 1. 

From (13), we get the regularized solution at the point (𝑥, 𝑡) 

𝑢𝑁
𝜀 (𝑥, 𝑡) = ∑  

𝐵𝑁

𝑛=1

𝑒(0.1𝑛2+0.2𝑛2𝛾)(1−𝑡)(𝑔𝑁)𝑛𝜙𝑛(𝑥), 

where 

(𝑔𝑁)𝑛 = ⟨𝑔𝑁 , 𝜙𝑛⟩. 

The results of our computational method are shown in Figs. 1-2, and listed in Table 1. 
 

            

Figure 1. The graph of the exact solution 𝑢exact (. ,0) and the regularized solution 𝑢𝑁
𝜀 (. ,0) corresponding  

to 𝜀 = 0.1,0.01,0.001. 
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Figure 2. The graph of the exact solution 𝑢exact (. ,0.5) and the regularized solution 𝑢𝑁
𝜀 (. ,0.5)  

corresponding to 𝜀 = 0.1,0.01,0.001. 

Table 1. The expectation of the error between the regularized solution 𝑢𝑁
𝜀 (. , 𝑡) and the exact solution 𝑢exact (. , 𝑡) 

at different values of time corresponding to 𝜀 = 0.1,0.01,0.001. 

𝔼‖𝑢𝑁
𝜀 (. , 𝑡) − 𝑢exact (. , 𝑡)‖2 

𝑡, 𝜀 𝜀 = 0.1 𝜀 = 0.01 𝜀 = 0.001 

𝑡 = 0 4.6283𝑒 − 02 5.0135𝑒 − 04 4.5053𝑒 − 06 

𝑡 = 0.1 4.3588𝑒 − 02 4.7215𝑒 − 04 4.2430𝑒 − 06 

𝑡 = 0.2 4.1049𝑒 − 02 4.4465𝑒 − 04 3.9959𝑒 − 06 

𝑡 = 0.3 3.8659𝑒 − 02 4.1876𝑒 − 04 3.7632𝑒 − 06 

𝑡 = 0.4 3.6408𝑒 − 02 3.9437𝑒 − 04 3.5440𝑒 − 06 

𝑡 = 0.5 3.4287𝑒 − 02 3.7141𝑒 − 04 3.3376𝑒 − 06 

𝑡 = 0.6 3.2291𝑒 − 02 3.4978𝑒 − 04 3.1433𝑒 − 06 

𝑡 = 0.7 3.0410𝑒 − 02 3.2941𝑒 − 04 2.9602𝑒 − 06 

𝑡 = 0.8 2.8639𝑒 − 02 3.1022𝑒 − 04 2.7878𝑒 − 06 

𝑡 = 0.9 2.6971𝑒 − 02 2.9216𝑒 − 04 2.6255𝑒 − 06 

𝑡 = 1 2.5401𝑒 − 02 2.7514𝑒 − 04 2.4726𝑒 − 06 

6. Conclusion 

In this work, by Fourier truncation method, we regularized the nonlinear diffusion equation with 
coupling operator and Gaussian white noise. With some conditions on the exact solution, we obtained 

the error estimate between the regularized solution and the exact solution. We also gave a numerical 

experiment results to illustrate our theoretical method. In further work, we will consider the problem in 

the nonhomogeneous or the nonlinear case of the source term. 
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