

# VNU Journal of Science: Mathematics - Physics





# Original Article

# Effect of Annealing Temperatures on Structural and Luminescence Properties of SnO<sub>2</sub> Nanoparticles

# Trinh Thi Loan\*, Vu Hoang Huong

VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Received 6<sup>th</sup> June 2025 Revised 21<sup>st</sup> June 2025; Accepted 30<sup>th</sup> September 2025

**Abstract:** This study aims to understand the structural and photoluminescence properties of  $SnO_2$  synthesized via the facile sol–gel method by systematically varying annealing temperatures. X-ray diffraction (XRD) analysis reveals that all samples possess a polycrystalline single-phase tetragonal rutile structure with no detectable impurity phases. Both the crystallite size and crystalline quality of the samples increase with rising annealing temperatures. Raman spectroscopy demonstrates the presence of forbidden Raman and IR-active modes in  $SnO_2$  nanoparticles. The positions and intensities of the Raman peaks are significantly influenced by the annealing temperature, which correlates with variations in crystallite size and crystalline quality of the synthesized materials. Additionally, photoluminescence (PL) spectra exhibit peaks in both the ultraviolet (UV) and visible regions. The UV emission peaks arise from electron recombination near the band gap, while the visible emission peaks are attributed to oxygen vacancies  $(V_0^0, V_0^+, V_0^{++})$  and tin interstitials. This research provides valuable foundational knowledge that will support future studies on  $SnO_2$ .

Keywords: Sol-gel, SnO<sub>2</sub> nanoparticles, annealing temperature, Raman, luminescence.

## 1. Introduction

In recent years, many researchers have focused on synthesizing  $SnO_2$  nanomaterials in various sizes and shapes to investigate their unique properties [1]. Tin dioxide is widely studied because it is chemically stable, transparent to light, and an excellent conductor of electricity [2, 3]. These properties make  $SnO_2$  useful in several applications, including batteries [4], dye-sensitized solar cells [5], photocatalysis [6], transparent electrodes [7], and gas sensors [8]. The properties of  $SnO_2$ , such as band gap, crystal structure, morphology, and defects, can be tailored by adjusting the synthesis conditions,

E-mail address: loan.trinhthi@gmail.com

<sup>\*</sup> Corresponding author.

including temperature, precursor materials, and solvents used [9]. In this study,  $SnO_2$  nanoparticles were synthesized using the sol–gel method with  $SnCl_2$  as the precursor material, without adding any capping agents or surfactants. We investigated how the size of the nanoparticles affects their light emission properties. Understanding these photoluminescence properties helps us learn more about the optical behavior of  $SnO_2$  nanomaterials and improves their use in optical devices. The results of this study provide important foundational knowledge for future research and applications of  $SnO_2$  in various technological fields.

## 2. Experimental

 $SnO_2$  nanoparticles were synthesized using the sol-gel method. The precursor,  $SnCl_2.2H_2O$  was dissolved in 30 mL  $C_2H_5OH$  with constant stirring. Next, the 10 ml ethylen glycol was added to the mixture solution under vigorous stirring. The solution was then heated at 100 °C while stirring until a transparent gel was formed, then dried at 100 °C for 24 h. The dried product was annealed at tempertures of 400, 600, 800 and 1100 °C for 3 hours.

The crystalline structure of  $SnO_2$  nanoparticles was studied by an Empyrean X-ray diffractometer (XRD), using Cu-K $\alpha$ 1 irradiation ( $\lambda$  = 1.54056 Å). Raman spectra were obatained using a micro-Raman spectrophotometer LabRAM HR 800 (HORIBA JobinYvon) with a 632.8 nm excited wavelength. The morphologies of the samples were examined using a transmission electron microscope (TEM, JEOL/JEM 1010). Photoluminescence (PL) and photoluminescence excitation (PLE) spectra were recorded at room temperature using a Fluorolog FL3-22 spectrofluorometer (Jobin Yvon Spex) with a 450 W xenon lamp as the excitation source.

#### 3. Results and Discussion

#### 3.1. Structure Characterization





Figure 1. (A) XRD patterns of  $SnO_2$  samples at different annealing temperatures: a- 400 °C, b- 600 °C, c- 800 °C, d- 1100 °C; (B) FESEM image of  $SnO_2$  sample annealed at 600 °C.

The XRD patterns of  $SnO_2$  samples annealed at temperatures of 400, 600, 800 and 1100 °C are presented in Figure 1(A). All the samples have XRD peaks at 20 of ~ 26.44°, 33.70°, 37.81°, 39.98°,

 $51.67^{\circ}$ ,  $54.51^{\circ}$ ,  $57.66^{\circ}$ ,  $61.75^{\circ}$ ,  $64.59^{\circ}$  and  $65.40^{\circ}$ . These peaks correspond respectively to the (110), (101), (200), (111), (220), (002), (310), (112), and (301) crystal planes of the tetragonal rutile structure with the space group  $D_{4h}14$  ( $P_{42}$ /mnm), as referenced in JCPDS No. 21-1250. The positions of the diffraction peaks remain almost unchanged across different annealing temperatures, indicating that the crystalline structure of  $SnO_2$  is stable under elevated temperatures. However, the intensity and sharpness of the peaks increase gradually with higher annealing temperatures. This enhancement suggests an increase in crystallite size and an improvement in crystallinity, which is attributed to thermally promoted crystallite growth and a reduction in specific surface area. The grain size of the crystallites and inter-planner spacing (d-value) were calculated based on Scherer's and Bragg's equations:

$$D = \frac{k\lambda}{\beta \cos \theta}$$
 [10] and  $d = \frac{\lambda}{2\sin \theta}$  [11]

where: D is the mean crystallite size, K is the shape factor taken as 0.89,  $\lambda$  is the wavelength of the incident beam,  $\beta$  is the full width at half maximum and  $\theta$  is the Bragg angle. These results are shown in Table 1.

| Annealing        | 2θ (°) | d- spacing | FWHM (°) | Crystallite | Average crystalline |
|------------------|--------|------------|----------|-------------|---------------------|
| temperature (°C) | ·      | (Å)        |          | size (nm)   | size D (nm)         |
| 400              | 26.44  | 3.3687     | 1.2232   | 6.7         | 6.7                 |
|                  | 33.70  | 2.6574     | 1.1681   | 7.1         |                     |
|                  | 51.67  | 1.7676     | 1.3842   | 6.4         |                     |
| 600              | 26.44  | 3.3683     | 1.0379   | 7.9         | 8.4                 |
|                  | 33.71  | 2.6565     | 0.96572  | 8.6         |                     |
|                  | 51.65  | 1.7682     | 1.0200   | 8.7         |                     |
| 800              | 26.43  | 3.3701     | 0.82288  | 9.9         | 10.4                |
|                  | 33.72  | 2.6558     | 0.78625  | 10.6        |                     |
|                  | 51.65  | 1.7681     | 0.82315  | 10.7        |                     |
| 1100             | 26.48  | 3.3635     | 0.38631  | 21.1        | 20.3                |
|                  | 33.75  | 2.6536     | 0.40635  | 20.4        |                     |
|                  | 51.65  | 1.7679     | 0.44148  | 20.0        |                     |

Table 1. XRD parameters and size of SnO<sub>2</sub> nanoparticles at different annealing temperatures.

Annealing at temperatures of 400 °C, 600 °C, 800 °C, and 1100 °C resulted in average grain sizes of 6.7, 8.4, 10.4 and 20.3 nm, respectively. Figure. 1(B) shows the typical TEM image of SnO<sub>2</sub> sample annealed at 600 °C. The TEM image depicts the irregular aggregated morphology. The SnO<sub>2</sub> nanoparticles are polyhedral or irregular in shape. The optimal annealing condition for SnO<sub>2</sub> samples depends on the desired application. For photocatalytic applications, smaller particle sizes are generally preferred because they increase the surface area for reactions, enhancing the photocatalytic activity. Thus, an annealing temperature range of 400 °C to 800 °C may be suitable.

Raman scattering is a useful technique for the characterizing of nanomaterials and identifying lattice defects in the materials [12]. Figure 2 shows the room temperature Raman spectra of  $SnO_2$  nanoparticles annealed at different temperatures, ranging from 170 to 900 cm<sup>-1</sup>. The positions and intensities of the Raman peaks vary significantly with annealing temperature. Notably, the intensity of the peak around 634 cm<sup>-1</sup> increases rapidly as the annealing temperature rises. These changes may be related to the crystallite size and the crystalline quality of the synthesized  $SnO_2$  [13]. At an annealing temperature of 1100 °C, the Raman spectrum of the sample exhibits nine peaks at 228, 259, 475, 506, 546, 634, 695, 776, and 866 cm<sup>-1</sup>, with the strongest peak at 634 cm<sup>-1</sup> (Figure. 2A). The peaks at 475, 634, and 776 cm<sup>-1</sup> correspond to the  $E_g$ ,  $A_{1g}$ , and  $B_{2g}$  vibration modes, respectively, consistent with the tetragonal rutile

structure [14]. The  $A_{1g}$  and  $B_{2g}$  modes are associated with the expansion and contraction of Sn-O bonds, while the  $E_g$  mode relates to oxygen vibrations within the oxygen plane [14]. Additionally, the peaks at 228 and 259 cm<sup>-1</sup> may correspond to the  $E_{u(1)}(TO)$  and  $E_{u(1)}(LO)$  modes, where TO stands for transverse optical phonons and LO stands for longitudinal optical phonons [15, 16]. The peaks at 506 and 695 cm<sup>-1</sup> may be attributed to the  $A_{2u}(TO)$  and  $A_{2u}(LO)$  modes, respectively [17]. The peak at 546 cm<sup>-1</sup> may correspond to the  $B_{1u}$  mode [17], and the peak at 866 cm<sup>-1</sup> is likely related to surface defects in the SnO<sub>2</sub> nanocrystals [18,19]. In contrast, samples annealed at 600 °C and 800 °C exhibit six peaks at 475 cm<sup>-1</sup> ( $E_g$ ), 634 cm<sup>-1</sup> ( $A_{1g}$ ), 774 cm<sup>-1</sup> ( $B_{2g}$ ), 253 cm<sup>-1</sup> ( $E_{u(1)}(LO)$ ), 301 cm<sup>-1</sup> ( $E_{u(2)}(LO)$ ) [15, 16], and 571 cm<sup>-1</sup> ( $A_{2g}$ ) [20] (Figure. 2B, C). At the lowest annealing temperature of 400 °C, the Raman spectrum shows seven broad and weak peaks at approximately 218, 268, 411, 537, 638, 758, and 870 cm<sup>-1</sup>.



Figure 2. Raman spectra of  $SnO_2$  samples at different annealing temperatures: A- 1100 °C, B- 800 °C, C- 600 °C, D- 400 °C.

The peaks at 218, 268, and 758 cm<sup>-1</sup> are attributed to the  $E_{u(1)}(TO)$ ,  $E_{u(2)}(LO)$ , and  $E_{u(3)}(LO)$  vibrational modes of  $SnO_2$ , respectively [21]. The peaks at 411 and 537 cm<sup>-1</sup> correspond to the  $A_{2g}$  [12] and  $B_{1u}$  [17] vibration modes. The peak at 638 cm<sup>-1</sup> is attributed to the  $A_{1g}$  symmetric Sn-O stretching mode in nanocrystalline  $SnO_2$ , and the peak at 870 cm<sup>-1</sup> is associated with surface defects [18, 19]. It is

well known that the  $A_{2u}$  and  $E_u$  modes are IR-active, while the  $A_{2g}$  and  $B_{1u}$  modes are Raman-silent [13-19]. The presence of forbidden Raman modes ( $A_{2g}$ ,  $B_{1u}$ ) and IR-active modes ( $A_{2u}$ ,  $E_u$ ) in the samples may be due to changes in bond lengths, reduced space symmetry, lattice distortions caused by oxygen vacancies, and local lattice disorders in the SnO<sub>2</sub> nanoparticles [19].

## 3.2. Optical Characterization



Figure 3. PL spectra under excitation wavelengths of (A) 300 nm and (B) 335 nm of the samples annealed at (a) 400 °C, (b) 800 °C and (c) 1100 °C.

Photoluminescence (PL) spectroscopy is a highly sensitive and effective technique for studying charge carrier recombination, trapping, and defects within materials. In SnO<sub>2</sub> nanoparticles, the most energetically favorable intrinsic defects are oxygen vacancies and tin interstitials. Tin interstitials are located within the conduction band, while oxygen vacancies exist in the band gap region [16]. PL spectra were recorded at two excitation wavelengths,  $\lambda_{ex} = 300$  nm and  $\lambda_{ex} = 335$  nm, for samples annealed at different temperatures, as shown in Figure. 3A and Figure. 3B, respectively. When excited at  $\lambda_{ex} = 300$ nm, the sample annealed at 1100 °C exhibited a strong emission peak at 363 nm (3.42 eV) and four weaker peaks at 412 nm (3.01 eV), 436 nm (2.84 eV), 449 nm (2.76 eV), and 468 nm (2.65 eV). The samples annealed at 400 °C and 800 °C showed similar emission peaks but with significantly lower intensities compared to the 1100 °C sample. When excited at  $\lambda_{ex} = 335$  nm, all samples displayed a new emission peak at approximately 395 nm (3.14 eV). Additionally, the samples annealed at 400 °C and 800 °C showed a broad emission band centered around 560 nm (2.21 eV). Emission peaks observed at 363 nm and 369 nm have energies lower than the band gap of SnO<sub>2</sub>, indicating that these emissions are not due to the direct recombination of electrons in the conduction band with holes in the valence band. Instead, they are attributed to near-band edge (NBE) transitions resulting from the radiative recombination of electrons and holes [22]. The emission peak at 395 nm originated from the combination of the electron in the conduction band and the hole in the  $V_0^{++}$  (oxygen vacancy has not captured any electron) [23]. Another emission peak at 412 nm/410 nm was attributed to the  $V_0^0$  (which has captured two electrons and is neutral to the lattice) [24]. The emission peak at 436 nm was attributed to the Sn interstitials [24]. The peak at 449 nm might be attributed to the transitions from the various levels of shallow donor states  $V_0^o$  to acceptor level [16]. The peak at 468 nm was attributed to the  $V_0^+$  (which has captured a single electron) [25]. Finally, the broad peak at 560 nm might be originating because of the transitions from the shallow donor levels of  $V_0^o$  to the surface states and  $V_0^+$  levels [16].

The photoluminescence spectra of the sample annealed at 800 °C were systematically examined under excitation wavelengths of 280 nm, 300 nm, 310 nm, 324 nm, and 335 nm (Figure. 4). Visible emission peaks at approximately 395 nm, 440 nm, 450 nm, and 468 nm, along with a broad peak around 560 nm, were consistently observed across all excitation wavelengths, with their intensities increasing as the excitation wavelength increased, aligning with previous studies on SnO<sub>2</sub> nanomaterials [23]. Additionally, the ultraviolet (UV) emission peaks shifted to longer wavelengths with higher excitation wavelengths, likely due to varying contributions from NBE emissions and their phonon replicas, resulting from recombination involving energy levels near the band gap [22, 25].



Figure 4. The excitation wavelength-dependent emission spectra of the samples annealed at 800 °C.

#### 4. Conclusion

SnO<sub>2</sub> nanoparticles were successfully synthesized using a simple sol–gel method. This study investigated the effect of annealing temperature on the crystal structure and the origin of luminescence peaks in SnO<sub>2</sub> nanoparticles. X-ray diffraction (XRD) analysis revealed that all samples are polycrystalline, with diffraction lines corresponding to the tetragonal rutile phase of tin oxide. Both the crystallite size and crystal quality of the samples increased with higher annealing temperatures. These improvements in crystallite size and quality significantly enhanced the intensity of the  $A_{1g}$  vibration mode. Furthermore, some forbidden Raman and IR-active modes, such as  $A_{2g}$ ,  $B_{1u}$ ,  $A_{2u}$ , and  $E_{u}$ , which are inactive in bulk samples, became active in the SnO<sub>2</sub> nanoparticles. Photoluminescence (PL) spectra exhibited peaks in both the ultraviolet (UV) and visible regions. Visible emission peaks correspond to the  $V_O^0$ ,  $V_O^+$ ,  $V_O^{++}$  and the Sn interstitials in SnO<sub>2</sub> nanoparticles. The existence of oxygen vacancies and Sn interstitials in the sample annealing temperature range of 400 °C to 800 °C creates defect energy levels within the band gap, effectively reducing the energy required for electrons to transition across the gap. This phenomenon can improve the material's solar light absorption and utilization. This research provides valuable foundational knowledge that will support future studies on SnO<sub>2</sub>.

#### References

- [1] I. E. Kolesnikov, D. S. Kolokolov, M. A. Kurochkin, M. A. Voznesenskiy, M. G. Osmolowsky, E. Lähderanta, O. M. Osmolovskaya, Morphology and Doping Concentration Effect on the Luminescence Properties of SnO<sub>2</sub>:Eu<sup>3+</sup> nanoparticles, J. Alloys Compd., Vol. 822, No. 15340, 2020, https://doi.org/10.1016/j.jallcom.2020.153640.
- [2] D. Toloman, A. Popa, M. Stefan, T. D. Silipas, R. C. Suciu, L. B. Tudoran, O. Pana, Enhanced Photocatalytic Activity of Co Doped SnO<sub>2</sub> Nanoparticles by Controlling the Oxygen Vacancy States, Optical Materials, Vol. 110, No. 110472, 2020, https://doi.org/10.1016/j.optmat.2020.110472.
- [3] A. Wang, K. Bushick, N. Pant, W. Lee, X. Zhang, J. Leveillee, F. Giustino, S. Poncé, E. Kioupakis, Electron Mobility of SnO<sub>2</sub> from First Principles, Appl. Phys. Lett., Vol. 124, No. 172103, 2024, https://doi.org/10.1063/5.0198885.
- [4] Y. Kong, Z. Ma, Y. Ye, G. He, Y. Sun, X. Zuo, X. Xiao, and J. Nan, Nanosized Amorphous SnO<sub>2</sub> Particles Anchored in the Wheat Straw Carbon Substrate as the Stabilized Anode Material of Lithium-Ion Batteries, ACS Appl. Energy Mater., Vol. 1, No. 12, 2018, pp. 7065-7075, https://doi.org/10.1021/acsaem.8b01408.
- [5] N. N. Dinh, M. C. Bernard, A. H. Goff, T. Stergiopoulos, P. Falaras, Photoelectrochemical Solar Cells Based on SnO<sub>2</sub> Nanocrystalline Films, C.R. Chimie, Vol. 9, No. 5-6, 2006, pp. 676-683, https://doi.org/10.1016/j.crci.2005.02.042.
- [6] G. Ramanathan, K. R. Murali, Photocatalytic Activity of SnO<sub>2</sub> Nanoparticles, J. Appl. Electrochem., Vol. 52, 2022, pp. 849-859, https://doi.org/10.1007/s10800-022-01676-z.
- [7] J. H. Lee, Y. J. You, M. A. Saeed, S. H. Kim, S. H. Choi, S. Kim, S. Y. Lee, J. S. Park, J. W. Shim, Undoped tin Dioxide Transparent Electrodes for Efficient and Cost-Effective Indoor Organic Photovoltaics (SnO<sub>2</sub> Electrode for Indoor Organic Photovoltaics), NPG Asia Mater, Vol. 13, No. 43, 2021, pp. 1-10, https://doi.org/10.1038/s41427-021-00310-2.
- [8] Y. Kong, Y. Li, X. Cui, L. Su, D. Ma, T. Lai, L. Yao, X. Xiao, Y. Wang, SnO<sub>2</sub> Nanostructured Materials Used as Gas Sensors for the Detection of Hazardous and Flammable Gases: A review, Nano Materials Science, Vol. 4, No. 4, 2022, pp. 339-350, https://doi.org/10.1016/j.nanoms.2021.05.006.
- [9] R. Ponte, E. Rauwel, P. Rauwel, Tailoring SnO<sub>2</sub> Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries, Materials, Vol. 16, No. 12, 2023, https://doi.org/10.3390/ma16124339.
- [10] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3<sup>rd</sup> Ed., Prentice-Hall Inc., ISBN 0-201-61091-4.2001, pp. 96-102.
- [11] W. L. Bragg, The Reflection of X-rays by Crystals, Proceedings of the Royal Society of London, Series A, Vol. 89, No. 611, 1913, pp. 482-493.
- [12] N. Haddad, Z. B. Ayadi, H. Mahdhi, K. Djessas, Influence of Fluorine Doping on the Microstructure, Optical and Electrical Properties of SnO<sub>2</sub> Nanoparticles, J. Mater. Sci.: Mater Electron, Vol. 28, 2017, pp. 15457-15465, https://doi.org/10.1007/s10854-017-7433-1.
- [13] J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, Study of the Raman Spectrum of Nanometer SnO<sub>2</sub>, J. Appl. Phys., Vol. 75, No. 3, 1994, pp. 1835-1836, https://doi.org/10.1063/1.356348.
- [14] S. Sambasivam, I. M. Obaidat, Effect of Iron Doping on ESR and Raman Spectra of SnO<sub>2</sub> Nanomaterials, Materials Today: Proceedings, Vol. 28, 2020, pp. 587-590, https://doi.org/10.1016/j.matpr.2019.12.225.
- [15] N. Ahmad, S. Khan, M. M. N. Ansari, Exploration of Raman Spectroscopy, Dielectric and Magnetic Properties of (Mn, Co) Co-doped SnO<sub>2</sub> Nanoparticles, Phys. Rev. B Condens. Matter., Vol. 558, 2019, pp. 131-141, https://doi.org/10.1016/j.physb.2019.01.044.
- [16] S. Roy, A. G. Joshi, S. Chatterjee, A. K. Ghosh, Local Symmetry Breaking in SnO<sub>2</sub> Nanocrystals with Cobalt Doping and Its Effect on the Optical Properties, Nanoscale, Vol. 10, No. 22, 2018, pp. 10664-10682, https://doi.org/10.1039/C7NR07427A.
- [17] L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, M. Roumyantseva, Structural Characterization of Nanocrystalline SnO<sub>2</sub> by X-Ray and Raman Spectroscopy, J. Solid State Chem., Vol. 135, No. 1, 1998, pp.78-85. https://doi.org/10.1006/jssc.1997.7596.
- [18] N. Bhardwaj, S. Kuriakose, S. Mohapatra, Structural and Optical Properties of SnO<sub>2</sub> Nanotowers and Interconnected Nanowires Prepared by Carbothermal Reduction Method, J. Alloys Compd, Vol. 592, No. 15, 2014, pp. 238-243, https://doi.org/10.1016/j.jallcom.2013.12.268.

- [19] W. B. H. Othmen, B. Sieber, H. Elhouichet, A. Addad, B. Gelloz, M. Moreau, S. Szunerits, R. Boukherroub, Effect of High Fe Doping on Raman Modes and Optical Properties of Hydrothermally Prepared SnO<sub>2</sub> Nanoparticles, Materials Science in Semiconductor Processing, Vol. 77, 2018, pp. 31-39, https://doi.org/10.1016/j.mssp.2017.12.014.
- [20] V. Bonu, A. Das, A. K. Sivadasan, A. K. Tyagi, S. Dhara, Invoking Forbidden Modes in SnO<sub>2</sub> Nanoparticles Using Tip Enhanced Raman Spectroscopy, J. Raman Spectrosc, Vol. 46, No. 11, 2015, pp. 1037-1040, https://doi.org/10.1002/jrs.4747.
- [21] A. Diéguez, A. R. Rodríguez, A. Vilà, J. R. Morante, The Complete Raman Spectrum of Nanometric SnO<sub>2</sub> Particles. J. Appl. Phys., Vol. 90, No. 3, 2001, pp. 1550-1557, https://doi.org/10.1063/1.1385573.
- [22] R. Mani, K. Vivekanandan, K. Vallalperuman, Synthesis of Pure and Cobalt (Co) Doped SnO<sub>2</sub> Nanoparticles and its Structural, Optical and Photocatalytic Properties, J Mater Sci: Mater Electron, Vol. 28, No. 5, 2017, pp. 4396-4402, https://doi.org/10.1007/s10854-016-6067-z.
- [23] M. Xu, X. Ruan, J. Yan, Z. Zhang, J. Yun, W. Zhao, T. Li, Y. Shi, Synthesis, Growth Mechanism, and Photoluminescence Property of Hierarchical SnO<sub>2</sub> Nanoflower-rod Arrays: an Experimental and First Principles Study, J. Mater. Sci., Vol. 51, No. 21, 2016, pp. 9613-9624, https://doi.org/10.1007/s10853-016-0169-0.
- [24] H. Sefardjella, B. Boudjema, A. Kabir, G. Schmerber, Structural and Photoluminescence Properties of SnO<sub>2</sub> Obtained by Thermal Oxidation of Evaporated Sn Thin Films, Current Applied Physics, Vol. 13, No. 9, 2013, pp. 1971-1974, https://doi.org/10.1016/j.cap.2013.08.017.
- [25] I. L. P. Raj, M. S. Revathy, A. J. Christy, N. Chidhambaram, V. G. S. AlFaify, Study on the Synergistic Effect of Terbium-doped SnO<sub>2</sub> Thin Film Photocatalysts for Dye Degradation, J. Nanopart. Res., Vol. 22, No. 359, 2020, https://doi.org/10.1007/s11051-020-05084-2.