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Abstract: In this work, we consider the problem for the homogeneous space fractional damped wave
equation with Gaussian white noise. As commonly acknowledged, the problem is severely ill-posed
according to Hadamard's sense. Consequently, we propose the Fourier truncation method to
regularize the problem. With different assumptions on the exact solution, the estimation of the
expectation of the error between the regularized solution and the exact solution in L? - norm is
obtained. Finally, we provide an example to illustrate our theoretically obtained results.
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1. Introduction

Damped wave equations appear across many branches of mathematics and physics, with a range of
significant applications in both science and engineering. For instance, in physics these equations are
used to describe wave phenomena such as sound, light, and electromagnetic waves. In engineering, they
help analyze the stress and strain experienced by elastic materials under different loading conditions. In
control theory, they are applied to model and manage dynamic systems where wave propagation and
diffusion effects interact. Space fractional damped wave equations, which include fractional derivatives,
provide a more detailed and accurate representation of physical phenomena than traditional integer-
order equations. These equations have a wide array of applications. In biology, for example, they help
model the diffusion of molecules within cells, accounting for the intricate geometry and varying
conditions of the environment [1-7].
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Motivated by various applications of space fractional damped wave equation, in this paper, we study
the problem of finding the function u(x, t) satisfying the homogeneous space fractional damped wave
equation

U + (A u +up + (—A)Yu; =0, (x,t) € (0,1) X [0,T], (D
with the following conditions
u(0,t) =u(1,t) =0,t € [0,T], (2)
ulx,T) = g(x),x € (0,1), 3
u;(x,T) = h(x),x € (0,1), 4

where y € (0,1) and (—A)Y is the fractional Laplacian which will be defined later. The functions g, h €
L2(0,1) are given final value data.

The widely recognized fact is that the problem outlined in Egs. (1) - (4) is severely ill-posed as the
solution lacks continuity with respect to the input data. In other words, even
a minor alteration in the input data can lead to a significant variation in the solution. Consequently, to
attain a stable solution, it is necessary to implement an appropriate regularization process.

In addition, there is the error in the measurement, so we need to assume the presence of the
approximation g, and h,. If the error comes from controllable sources, it is assumed to be bounded by
a fixed € > 0 and has been studied much in previous papers. However, evaluating the error of the
solution becomes more complex because the solution itself is a random variable. White noise is a
commonly used random process, valued for its wide range of applications in fields like engineering,
science, and business. It plays a key role in areas such as electronic systems, signal processing,
econometric modeling, and acoustics, among others [8 - 11].

As we know, the problem (1) - (4) with Gaussian white noise has not been explored and this is the
motivation of our paper. Hence, in this work, we study the problems (1) - (4) with the following random
model

9:0) = 9(x) + £, -
he(x) = h(x) + & (x),
where € > 0 represents the magnitude of the noise and ¢ is a Gaussian white noise process. For
regularizing the problem, we will employ the truncation method. Subject to various conditions on the
exact solution, we will establish the convergence rate of Holder or logarithmic type of the expectation
of the error between the regularized solution and the exact solution in L? - norm.

The structure of the remaining sections of this work is organized as follows: In Section 2, we
introduce some definitions and derive the solution of the problem. In Section 3, we prove the ill-
posedness of the problem. In Section 4, we present the regularization method and provide an estimate
for the expectation of the error between the regularized solution and the exact solution. Section 5
includes a numerical example to demonstrate the effectiveness of the theory. Finally, in Section 6, we
conclude our findings.

2. Preliminaries and Fundamental Solution

Definition 2.1. (see [12]) Let us consider
1

L?(0,1) = {v: (0,1) » R | v is Lebesgue measurable and f lv(x)|?dx < 00}
0

with the inner product
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1

(vy,v,) = f v, (), (x)dx, for v,,v, € L2(0,1),
0

lvll = (f |v(x)|2dx)2.
0

Definition 2.2. (see [7]) Let v € L2(0,1) and y € (0,1). The fractional Laplacian operator
(—A)?:1%(0,1) - 12(0,1) is defined as follows

and

(—8Yv() = ) (P2 0, (0,

where 1, (x) = V2sin (nmx).
Definition 2.3. (see [7]) For s > 0, let us consider

H5(0,1) = {v € LZ(O,l):Z (n2m2)S v, P )% < OO},

and

1
. =

I¥lliso = (Z (n2n2)5|<v.¢n>|2> .

n=1

Notify that H®(0,1) is a Hilbert space with the inner product

foson = ). (T ,ha)g ),
n=1

Definition 2.4. (see [12]) For a Hilbert space X , we consider
c([0,T]; X) = {v: [0,T] — X is measurable and sup ||v(.,t)||x < 00},

0<t<T
and

IVllcqoryx = sup llv(, Ollx.
0stsT

Definition 2.5. (see [13]) For a measure probability space (, let us consider the Bochner space
L*(Q,12(0,1)) = {v: Q > L2(0,1) is measurable and E||v||? < oo},
and

12ll2(q 12017) = VEIVIZ
Definition 2.6. (see [13]) Let us consider the normed space
V= {v: [0,T] = L?(Q,L?(0,1)) is measurable and Os<1:£)T E|lv(., t)? < 00},
and N
lvlly = Sup Ellv(., Ol

Definition 2.7. (see [14]) ¢ is a white noise process if Covg =1 and the random variables are
Gaussian: for all functions g, g, € L?(0,1), the random variables (f, g j) have normal distributions

N (0,]lg;1I°) and Cov((£, g1), (&, 92)) = (g1, g2).
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Lemma 2.1. (see [14]) Let & be a white noise process in Hilbert space L?(0,1) and {1,,} be an
orthonormal basis in L?(0,1). Define &, by &, = (§,3,),n € N. Then {§,} are independent and
identically distributed standard Gaussian random variables.

Lemma 2.2. (see [6]) Leta, b, T > 0,t € [0, T], we have some following inequalities

i)|le® —e7?| < |a—b|,

e (T—t)_ o(nm)2Y (T-t)
(nm)2¥-1
()2 eT—t) e (nm?Y (T-t)
(nm)2¥-1
Theorem 2.1. If the problem (1) - (4) has a solution in C ([0, T]; L?(0,1)) then the solution is given by

o [(n)2 eT=0) — () (T=t) e(T=t) _ o(m?Y(T-1)
ulet) = Z [ D —1 It T —1

<(T- t)e(1+(nn)2y)(T—t),

ii)

iii) < V2 + 4T2e(1+m™)(T-0),

ho | ¥ (),
n=1
where
In = (g' lpn)' h, = (h, lpn)
Proof. Suppose the solution of the problem (1) - (4) has the form

u( ) = ) un O (o),
n=1
where u, (t) = (u(:, t), Yn).
By multiplying both sides of (1) with 1, (x) and integrating with respect to x over the domain (0,1),
we obtain

up () + (1 + (nm)?up () + (nm)?uy (8) = 0. (6)
Solving the characteristic equation
A2+ 1+ nn)*)A+ (mm)? =0, N
we get
A =-1,2, = —(nm)? . (8)
It implies from (6) that
u, (t) = Cie™t + C,e~ ™t (9

Using the conditions u, (T) = g, and u,(T) = h,, we get

{Cle‘T + Cpe~ T = g (10)
—Ce T — (nm)? C,e~ ™ 'T = p
Solving the system (10), we obtain
(o _ @u(m? +h)e”
1 (nm)?r — 1 (11
o ~Gn+ h)em T
2 (nm)?r — 1
Substituting (11) into (9), we get the solution of the equation (2.1) as follows
(nm)27eT~0) — oM (T-0) e(T—t) _ o(mm? (T-1)
Un @)= Int hy.
(nm)?r — 1 (nm)?r — 1

It implies that
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o (nn)Zye(T—t) — oM (T-t) e(T—t) _ g(nm?Y(T-0)
u(t) = ) [ e L R e OO} (12)

n=1
This completes the proof of Theorem 2.1.
In the next section, we will give an example to prove the ill - posedness of the problem (1) - (4).

3. Example for the Ill-posedness of the Problems (1) - (4) with Gaussian White Noise

We give an example which shows that the problem (1) - (4) has a solution and its solution is not
stable. Let us consider the problem of finding the function u(x, t) that satisfies
Uy + (—A)u +up + (—A)u, =0,(x, t) € (0,1) X [0,T],
u(0,t) =u(1,t) =0,t €[0,T], (13)
ulx,T) = glx),x € (0,1),
u.(x, T) = h(x),x € (0,1),
where

g,h € 12(0,1),,,(x) = V2sin (nmx).

Let Gex, hex € L?(0,1) and u,, € C([0,T]; L*(0,1)). The exact solution of the problem (13)
corresponding to the exact data g,, and h,, is

_ - (nn)zye(T—f) — e (T-1) (T _ o(nm)?Y(T-t)
Uey (x,8) = nZl [ ()2 — 1 (GexIn + () — 1 (hex)n [ n (). (14)
Let ¢ be as in Lemma 2.1, g,,, by, € L*(0,1)(p € N) be the measured data as follows
14

1

o) = Gex () +5 ) (a1 0O,
pZ n=1

1 14

By () = her () +—5 Y (€ (0,

4ptn=1

where ¥, (x) = V2sin (nmx).
We get

14
1
#loy - ool = 8 ( ). 3).
2 n=1

p
1 14
2
#lhy -l = 55( Y 52),
pf n=1

where &, = (¢, Y5).
From Lemma (2.2), we get E(§2) = 1. It leads to

p 4
2 1 1 D 1
IE”gp _gex” = _32 E(2) = _32 1= =7
P2 n=1 P2 n=1 p2 p2?
2 1 1 1
Ellhy = hexll” = 530, BGED =530, 1=5== (1s)
p2 p2 p2 p2



6 N. Q. Huy / VNU Journal of Science: Mathematics — Physics

Let gy, h, € L?(0,1) and u, € C([0,T];L?(0,1)). The exact solution of the problem (13)
corresponding to the measured data g, and h, is

(x, ) i (nm)?Y eT=0) — oM (T~0) + e(T=0) — g(m)*(T=t)
Uu,\x, =
4 (nm)?r — 1 Iv)y (nm)? — 1

(hp)n]wnm. (16)

n=1

From (14) and (16), we get

[E||up(-, ) — Uex (-, t)”2
(Tt _ oo (T-1)

d 2y ,(T—t) _ ,(nm)2Y(T-0) 5
= (Z (nm) Ve(nn)zy i I ((gp)n - (gex)n) + 1 ((hl’)n _ (hex)n)] )

n=1

(pm)?YeT=0) — (M (T-0)

eT-t) — e(p”)zy(T—f) 2
y Eq =t (), = 0,) + P (a0, = 6, )

Using the inequality (a + b)? > %az — b?%,a,b € R, we have the estimate

e(T=1) _ p(@m)?Y(T=1) 2

2 1
Ellu, (. t) — ue (0| = E1E[ o1 ((hy), - (hex),,)]

2

()2 eT-_o @M (T-t)
—E [ e (pﬂ')zf—l ((gp)p - (gex)p)] . (17)
We put
1 [eT-0 — g@m?" (=) 2
hT2 [ 1 (), - (h‘”‘)”)] ’
_ 2
(pm)2YeT=0) — (@M (T-0)
IZ = ]E (pn)z‘y _ 1 ((gp)p - (gex)p) " (18)

Firstly, we have

[ 2
1 |e@m@-0(p-(@m?-1)T-0) _ 1

((pm)? — Dp#

2
1|e@m? =0 (g=((pm*-1)T-0) _ 1)
= E 3 (19)
((pm)?" — Dp#
Secondly, we get
2
1 [(pm)2reT- — @V (T-0)
L, = 3 ( ;-[)27 -1 E(fg)
p2 P
(2 + 4T2)2(1+(pm)*)(T-)
< 3 . (20)
p2

Combining (17), (18), (19) and (20) one can yield



N. Q. Huy / VNU Journal of Science: Mathematics — Physics 7

- . @D

1 e(pn)ZV(T t)(l_e ((pm)?Y-1)(T- t)) (2 +4T2)ez(1+(pn)2y)(r—t)
Elluy (. 0) —uex (O 2
((pm)* — 1)104 p2

This leads to

— 00, (22)

1 e(ﬂn)zyT(l — e~ (m?r- 1)T) 2+ 4T?
sup [E”up( ) — Uex (-, t)”

=5 3
() — Dps P2
when p — oo.
From (15), we notice that

gi—{l;]E”gp - gex“Z =0,

lim E|lh, - heo||” = 0. (23)

From (22) and (23), we deduce that the problems (1) — (4) fails the stability condition. Hence, the
problem (1) - (4) is ill - posed.
Next, we will give a regularization method for the problems (1) - (4).

4. Regularization and Error Estimate

The following lemma is necessary to prove our main results.
Lemma 4.1. Givene € (0,1) and s > 0. Let g, h € H°(0,1). Suppose that N (¢) is a positive integer
such that lirréN(E) = 400 and lirrészN(s) = 0. Let gy (), hn(e) € L*(0,1) be as follows
E— E—

N(¢e)
gN(e)(x) = Z (gwlpn)lpn(x)'
e

P () = ) Chey ) ().
n=1
Then we have the following estimate

Ellgn — ol < ) + gl
Ine — 9l S e°N(e) (N(g))ZSllglle(o‘l),

El|hyee — h|| < e2N(e) + —— (24)

(N(g))ZS I ”HS(O 1)
Proof. We have

N(e)
Ellgne — oll’ = E (Z (9:= 9. ¢n>2> +E < > <g,¢n>2>
n=1 n>N(g)
N(¢)
= 32]E<Z fﬁ) + z n=2n2{g,y,)>%.
n>N(g)

n=1

Then we get
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”gN € _g” <_ N +—S 'g HS
( ) ( ) (N( ))ZS ” ” (0‘1)

2 5 1 5
El|hye — || < €2N(e) s s
This completes the proof of Lemma 4.1. O
()2 eT—t) _e(nm)?Y (T-t) e(T=0) _o(nm)?Y (T-t)
We know that the terms > and are unbounded , so they are
(nm)?¥-1 (nm)?¥-1
the instability causes. Hence, to obtain the stability of the solution, we apply the Fourier truncation
method to cut-off the high frequency term in the solution and establish a regularized solution as follows

B
N(e) (nn)zye(T—t) — oMY (T-1) e(T=) _ o(m)?Y(T=0)
€ —
Uy (X, t) = Z [ (nm)? — 1 (QN(s))n + ) —1 (hN(E))n P, (x), (25)

n=1
where By, is a positive integer satisfying lir'%BN(s) = 400 and will be chosen later.
E—

Next, we will give the expectation of the error estimate between the regularized solution and the

exact solution under different conditions.
Theorem 4.1. Let N(€), gn(e), hn(e) be as in Lemma 4.1. Suppose there exist s > 0, M; > 0 such

that [|gllpsco,1) < My and ||h[gs,1) < M;. Let u be the exact solution of the problem (1) — (4) and
u,‘f,(e) be the regularized solution corresponding to the random data gy .y and Ay g).
1) If for B > 0, there exists Q; > 0 such that

Z n2B 2 |y (1)|2 < Qy, vt € [0,T], (26)

n=1

then the following estimate holds

2 2s(T+t) 1 _},_B 2st
Elluf o ¢, 0) —uC, 0| < My | £@s+DT + <1n (E)) g@s+IT |t € [0,T], (27)
-q
— 2 2 S 14
where M, = max {4(2 +5T2)(1 + MP), 20, ( G (ZH)T) }
ii) If for r > 0, there exists @, > 0 such that
D ey, () < 0, v € [0,T] (28)
n=1
then the following estimate holds
2 2s(T+t) 2rs
IE”u;f,(E) (O —ul, 0| <M, <2(25+1)T + 8(25+1)T).t € [0,T], (29)
where M; = max{4(2 + 5T%)(1 + M2),2Q,}
Proof. We put
LD Ty el-0 — oI TD G0 _ w10
& —
UN(E)('X' t) - ; [ (nn_)zy -1 In + (nn_)zy -1 hn lpn(x)' (30)

Using the inequality (a + b)? < 2(a® + b?), we have
El[ufy ey (0 6) = uC O < 2E[[u (0 = w5 GOl + 2w, 0 - w5 ol G
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Firstly, we estimate IE||ufv(£)(. 0 = Ve (o t)||2.
Using the inequality (a + b)? < 2(a® + b?), we get

El[ufy ey (. £) = Vi (L O

B
& |(nm)?r et — g (=) 2
S 2]E Z (nn)z-y _ 1 ((gN(S))n - g‘l‘l.)
n=1
Bn(e) 2 2
e(T=1) _ o(um? (T-1)
+2E Z 1 ((haey), = 1)
n=1

Using Lemma 2.2, we get

IE”uil(s) (" t) - vlfl(s)(" t)"Z

e 2
<202+ 4T2)ez(H(BN(E)n)Zy)(T_t)]E (Z |(9N(e))n B g"| )
n=1

2 2
n=1

< 2(2 + 4T2)62(1+(BN(£)7T)ZY)(T—£)IE”gN(g) _ g”Z
2
+2r2e 0 Eno Oy ) .
From Lemma 4.1, we obtain

2 2(T-6)(1+(By(eym? 1 2
Ellufie) (. 8) = vie (Ol < 22 + 572200+ Enem™y) <£2N(€) + W“g”HS(D))

2
< 2(2 4 5T2)e2T-D(1+(Enem™y) (eZN(e) + (Nf’#) : (32)
. 2
Secondly, we estimate ||u( ,t) — v,f,(g) G, t)|| .
Case 1: When the condition (26) holds.
For 8 > 0, we obtain
2
[ ) = ey G O
2y ,(T-t) _ 2Y(r-t (T-¢) _ 2Y(r-t 2
< Z 028 g-2t(nm)2Y 2B p2t(nm)2Y [(nn) Ye eMm??( )g N e e (MY (T-t) ]
- nm)? —1 n nm)?r —1 n
o (nm) (nm)
We get
2
€., ) = ey G O]
@ 2y , (Tt 2¥(r-t Tt 2¥(r-t 2
<(B )_Z‘Be—zt(BN(s)T[ZY 2B p2t(m)? (nm)? et — gm0 +e( ) — e )h
= \PNE) (nm)?¥ —1 Gn (nm)?2¥ — 1 n
n=1
[eo)
-2
< (Bug) et Y 2B o2y, ()2
n=1

So, we have
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luC. &) = vy (O < (Bagey) ™ e mm g, (33)
Combining (31), (32) and (33) one can have
[E”us(g)(- ) —u(, t)llz
2 MZ _ 2
< 4(2 + 572270 (1+(Bn) ) (ezN(e) + W;)“) 4204 (Buo) e 2tBrem)”,

2 s 2
We choose N(¢) = € zs+1 and By() = | =5 5==In (—) .

(2m)2Y(2s+1)T &

Then we have

Ellu§ o ¢ ) —ul, o)

=B
25(T+t) s 1 Y 2st
<4(2 +5T?)(1 + M2)e@ T 4 20, | —————] <_> @S+
<4(2+5T%)(A +M?)e +20Q, (n)27(25+1)Tn . €
-q
: — 2 2 L I 4 :
Putting M, = max {4(2 +5T4)(1 + M;7),20, ((Zn)ZV(25+1)T) }, we get the estimate
2 25(T+t) 1 _TB 2st
Elluge) (., 6) = uC, O < My | eesor + <1n (;)) £ |, (34)
Case 2: When the condition (28) holds.
For r > 0, we obtain
2
[ ) = vy G O
2y ,(T-t 2v(r-t T—t ¥ (-t 2
< Z e—2rmm)?Y y2r(nm)?¥ (nm) e — g™ )g + eT™0) — (™ )h
- (nm)?¥ — 1 n (nm)?r — 1 n
n>BN(E)
Then we get
2
”u( , t) - U;(E)(., t)”
o 2y ,(T—t 2V(T—¢ T—t 2¥ (Tt 2
< e—zr(BN(a)n)zyZ g2rmm?Y (nm)?reT™0) — g™ )g n eT™0) — g™ )h
- L] (nm)?¥ —1 n (nm)?¥ — 1 n
< e—ZT(BN(E)n:)ZVZ 62r(nn)zylun(t)|2
n=1
So, we have
., = v GO < e Evem™g, (35)
Combining (31), (32) and (35) one can have
2
El|uge) ¢ 0) —u, o)
< 4(2 + 5T2)e2 00+ m™) (2N (g) + i )+20 e~z (B (36)
- (N(e)?s 2 '

1

-z s 1\ \¥
We choose N(€) = & 2s+1 and By(g) = mln (;) .
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Then we have
25(T+t) 2rs

El[ufy ey ¢ 1) — uC, )| < 4Q2 + 5T2) (1 + M2)e@sroT + 2Q, @+,

Putting M3 = max{4(2 + 5T%)(1 + M%), 2Q,}, we get the estimate
25(T+t) 2rs
Bl 1. O < (<58 1 557,

(37)

This completes the proof of Theorem 4.1.

Remark 4.1.

i) The error estimate derived from (27) at the initial time t = 0 is given by

2 2s N7
Ellus o) (0) — u(, 0| < M, | 6751 + <ln (ﬁ)

This error estimate exhibits a logarithmic-type convergence due to the insufficiently strong condition
(26) on the exact solution.

i1) We notice that the error estimate provided in (29) demonstrates Holder-type convergence for all
t € [0, T]. This convergence rate is better than the logarithmic-type rate described in (27). However, it's
important to note that the error estimate (29) requires a strong condition on the exact solution u(x, t),
which can be considered a disadvantage.

5. Numerical Example

In this section, we construct an illustrate example for our regularization method. We consider the
following problem
Uy + (A)Yu +u, + (—A)u, =0, (x,t) € (0,1) x [0,1],
u(0,t) =u(1,t) =0,t € [0,1],
u(x,1) = g(x),x € (0,1),
u;(x,1) = h(x),x € (0,1),

(38)

where y = % and
g(x) = e~ 1sin (mx),
h(x) = —e~1sin (mx).
The exact solution of the problem (38) is
Ueyaet (X, t) = €7 sin(7rx).

We get the regularization parameters
1

N = [N(&)] = [8%2] and By = [Byg)] = [@m (%))]W

Consider the random data

N
gn(x) = e7sin (1) + £ ) (i (0,
n=1

N
B () = —esin () + £ ) (€, (0,
n=1

where ¥, (x) = V2sin (nmx) and (£,1,) are random variables with mean 0 and variance 1 .
From (25), we get the regularized solution at the point (x, t)
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BN _ 2y (r— _ 2y (-
(nn)Zye(T t) _ e(nn) (T-t) e(T t) _ e(nn) (T-t)
TTEOEDY () | ¥ (),

) —1 G+ =1

n=1
where
(Gn)n = (gn ¥n),
(hN)n = (hN'lpn)-
Next, we divide the time interval [0,1] into 10 subintervals by 11 points

D T
i =10 Jj=12,..11.

Pute = 0.1, = 0.01, e = 0.001, respectively. The results of our computational method are shown
in Figs.1 1-2 and listed in Table 1.

0.7

—_u (x,0.7)
ecact

- = _u‘h[xﬂﬂfnrr:DI
u‘h[xﬁ 7) for

—g— Uy x0T} for

Figure 1. The graph of the exact solution u.,,. (x, 0.7) and the regularized solution ug (x, 0.7)
corresponding to € = 0.1,0.01,0.001.

0.45 : : : : : . —ga(%.0.9)
- - _u’h[xU.Q}fDrr: 0.1
04 u‘h[x 0.9) for ¢ = 0.01
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Figure 2. The graph of the exact solution u.,. (x, 0.9) and the regularized solution u§ (x, 0.9)
corresponding to € = 0.1,0.01,0.001.
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Table 1. The expectation of the error between the regularized solution uj (., t) and the exact solution vy, (., t)
at different values of time corresponding to € = 0.1,0.01,0.001.

Ellug (. 8) = Uexaee (-, OII?

t e e=01 e=0.01 e =0.001
t=0 1.2353 1.1895 1.1869
t=0.1 8.7819¢ — 01 8.4252e — 01 8.4048e — 01
t=0.2 6.1855e — 01 5.9077e — 01 5.8922e — 01
t=20.3 4.3104e — 01 4.0945e — 01 4.0827e — 01
t=04 2.9667e — 01 2.7993e — 01 2.7905e — 01
t=20.5 2.0125e - 01 1.8831e — 01 1.8765e — 01
t=0.6 1.3419¢ — 01 1.2421e — 01 1.2372e — 01
t=0.7 8.7644e — 02 7.9977e — 02 7.9618e — 02
t=038 5.5816e — 02 4.9947e — 02 4.9687e — 02
t=09 3.4450e — 02 2.9977e — 02 2.9791e — 02
t=1 2.0438e — 02 1.7045e — 02 1.6916e — 02

6. Conclusion

In this work, by Fourier truncation method, we regularized the homogeneous space fractional
damped wave equation with Gaussian white noise. With some conditions on the exact solution, we
obtained the error estimate between the regularized solution and the exact solution in different norms.

We also gave a numerical experiment to illustrate our method. In further work, we will consider the

problems with locally Lipschitz condition on the source term.
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