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1. Introduction
*
 

Damped wave equations appear across many branches of mathematics and physics, with a range of 

significant applications in both science and engineering. For instance, in physics these equations are 

used to describe wave phenomena such as sound, light, and electromagnetic waves. In engineering, they 
help analyze the stress and strain experienced by elastic materials under different loading conditions. In 

control theory, they are applied to model and manage dynamic systems where wave propagation and 

diffusion effects interact. Space fractional damped wave equations, which include fractional derivatives, 
provide a more detailed and accurate representation of physical phenomena than traditional integer-

order equations. These equations have a wide array of applications. In biology, for example, they help 

model the diffusion of molecules within cells, accounting for the intricate geometry and varying 

conditions of the environment [1-7]. 
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Motivated by various applications of space fractional damped wave equation, in this paper, we study 

the problem of finding the function 𝑢(𝑥, 𝑡) satisfying the homogeneous space fractional damped wave 
equation 

                             𝑢𝑡𝑡 + (−Δ)
𝛾𝑢 + 𝑢𝑡 + (−Δ)

𝛾𝑢𝑡 = 0, (𝑥, 𝑡) ∈ (0,1) × [0, 𝑇],                                           (1) 

with the following conditions 

                                                      𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇],                                                                   (2)

                                                      𝑢(𝑥, 𝑇) = 𝑔(𝑥), 𝑥 ∈ (0,1),                                                                              (3)

                                                       𝑢𝑡(𝑥, 𝑇) = ℎ(𝑥), 𝑥 ∈ (0,1),                                                                            (4)

 

where 𝛾 ∈ (0,1) and (−Δ)𝛾 is the fractional Laplacian which will be defined later. The functions 𝑔, ℎ ∈
𝐿2(0,1) are given final value data. 

The widely recognized fact is that the problem outlined in Eqs. (1) - (4) is severely ill-posed as the 
solution lacks continuity with respect to the input data. In other words, even 

a minor alteration in the input data can lead to a significant variation in the solution. Consequently, to 

attain a stable solution, it is necessary to implement an appropriate regularization process. 
In addition, there is the error in the measurement, so we need to assume the presence of the 

approximation 𝑔𝜀  and ℎ𝜀. If the error comes from controllable sources, it is assumed to be bounded by 

a fixed 𝜀 > 0 and has been studied much in previous papers. However, evaluating the error of the 

solution becomes more complex because the solution itself is a random variable. White noise is a 
commonly used random process, valued for its wide range of applications in fields like engineering, 

science, and business. It plays a key role in areas such as electronic systems, signal processing, 

econometric modeling, and acoustics, among others [8 - 11]. 
As we know, the problem (1) - (4) with Gaussian white noise has not been explored and this is the 

motivation of our paper. Hence, in this work, we study the problems (1) - (4) with the following random 

model 

                                                        𝑔𝜀(𝑥) = 𝑔(𝑥) + 𝜀𝜉(𝑥),

                                                                      ℎ𝜀(𝑥) = ℎ(𝑥) + 𝜀𝜉(𝑥),
                                                                    (5) 

where 𝜀 > 0 represents the magnitude of the noise and 𝜉 is a Gaussian white noise process. For 

regularizing the problem, we will employ the truncation method. Subject to various conditions on the 

exact solution, we will establish the convergence rate of Hölder or logarithmic type of the expectation 
of the error between the regularized solution and the exact solution in  𝐿2 - norm. 

The structure of the remaining sections of this work is organized as follows: In Section 2, we 

introduce some definitions and derive the solution of the problem. In Section 3, we prove the ill-
posedness of the problem. In Section 4, we present the regularization method and provide an estimate 

for the expectation of the error between the regularized solution and the exact solution. Section 5 

includes a numerical example to demonstrate the effectiveness of the theory. Finally, in Section 6, we 
conclude our findings. 

2. Preliminaries and Fundamental Solution 

Definition 2.1. (see [12]) Let us consider 

𝐿2(0,1) = {𝑣: (0,1) → ℝ ∣ 𝑣 is Lebesgue measurable and ∫  
1

0

  |𝑣(𝑥)|2𝑑𝑥 < ∞} 

with the inner product 
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⟨𝑣1, 𝑣2⟩ = ∫  
1

0

𝑣1(𝑥)𝑣2(𝑥)𝑑𝑥, for 𝑣1, 𝑣2 ∈ 𝐿
2(0,1), 

and 

‖𝑣‖ = (∫  
1

0

  |𝑣(𝑥)|2𝑑𝑥)

1
2

. 

Definition 2.2. (see [7]) Let 𝑣 ∈ 𝐿2(0,1) and 𝛾 ∈ (0,1). The fractional Laplacian operator 

(−Δ)𝛾: 𝐿2(0,1) → 𝐿2(0,1) is defined as follows 

(−Δ)𝛾𝑣(𝑥) = ∑  

∞

𝑛=1

(𝑛2𝜋2)𝛾⟨𝑣,𝜓𝑛⟩𝜓𝑛(𝑥), 

where 𝜓𝑛(𝑥) = √2sin (𝑛𝜋𝑥).  
Definition 2.3. (see [7]) For 𝑠 > 0, let us consider 

𝐻𝑠(0,1) = {𝑣 ∈ 𝐿2(0,1):∑  

∞

𝑛=1

 (𝑛2𝜋2)𝑠|⟨𝑣, 𝜓𝑛⟩|
2 < ∞}, 

and 

‖𝑣‖𝐻𝑠(0,1) = (∑  

∞

𝑛=1

  (𝑛2𝜋2)𝑠|⟨𝑣,𝜓𝑛⟩|
2)

1
2

. 

Notify that 𝐻𝑠(0,1) is a Hilbert space with the inner product 

⟨𝑓, 𝑔⟩𝐻𝑠(0,1) = ∑  

∞

𝑛=1

(𝑛2𝜋2)𝑠⟨𝑓, 𝜓𝑛⟩⟨𝑔,𝜓𝑛⟩. 

Definition 2.4. (see [12]) For a Hilbert space X , we consider 

𝐶([0, 𝑇];𝑋) = {𝑣: [0, 𝑇] → 𝑋 is measurable and sup
0≤𝑡≤𝑇

 ‖𝑣(. , 𝑡)‖𝑋 < ∞}, 

and 

‖𝑣‖𝐶([0,𝑇];𝑋) = sup
0≤𝑡≤𝑇

 ‖𝑣(. , 𝑡)‖𝑋 . 

Definition 2.5. (see [13]) For a measure probability space Ω, let us consider the Bochner space 

𝐿2(Ω, 𝐿2(0,1)) = {𝑣: Ω → 𝐿2(0,1) is measurable and 𝔼‖𝑣‖2 < ∞}, 

and 

‖𝑣‖
𝐿2(Ω,𝐿2(0,1))

= √𝔼‖𝑣‖2. 

Definition 2.6. (see [13]) Let us consider the normed space 

𝑉 = {𝑣: [0, 𝑇] → 𝐿2(Ω,𝐿2(0,1)) is measurable and sup
0≤𝑡≤𝑇

 √𝔼‖𝑣(. , 𝑡)‖2 < ∞}, 

and 

‖𝑣‖𝑉 = sup
0≤𝑡≤𝑇

 √𝔼‖𝑣(. , 𝑡)‖2. 

Definition 2.7. (see [14]) 𝜉 is a white noise process if 𝐶𝑜𝑣𝜉 = 𝐼 and the random variables are 

Gaussian: for all functions 𝑔1 , 𝑔2 ∈ 𝐿
2(0,1), the random variables ⟨𝜉, 𝑔𝑗⟩ have normal distributions 

𝒩(0, ‖𝑔𝑗‖
2
) and Cov(⟨𝜉, 𝑔1⟩, ⟨𝜉, 𝑔2⟩) = ⟨𝑔1, 𝑔2⟩. 
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Lemma 2.1. (see [14]) Let 𝜉 be a white noise process in Hilbert space 𝐿2(0,1) and {𝜓𝑛} be an 

orthonormal basis in 𝐿2(0,1). Define 𝜉𝑛  by 𝜉𝑛 = ⟨𝜉, 𝜓𝑛⟩, 𝑛 ∈ ℕ. Then {𝜉𝑛} are independent and 
identically distributed standard Gaussian random variables. 

Lemma 2.2. (see [6]) Let 𝑎, 𝑏, 𝑇 > 0, 𝑡 ∈ [0, 𝑇], we have some following inequalities 

i) |𝑒−𝑎 − 𝑒−𝑏| ≤ |𝑎 − 𝑏|,  

ii) |
𝑒(𝑇−𝑡)−𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾−1
| ≤ (𝑇 − 𝑡)𝑒(1+(𝑛𝜋)

2𝛾)(𝑇−𝑡),  

iii) |
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡)−𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾−1
| ≤ √2 + 4𝑇2𝑒(1+(𝑛𝜋)

2𝛾)(𝑇−𝑡). 

Theorem 2.1. If the problem (1) - (4) has a solution in 𝐶([0, 𝑇]; 𝐿2(0,1)) then the solution is given by 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

[
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
𝑔𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
ℎ𝑛]𝜓𝑛(𝑥), 

where 

𝑔𝑛 = ⟨𝑔, 𝜓𝑛⟩, ℎ𝑛 = ⟨ℎ, 𝜓𝑛⟩. 

Proof. Suppose the solution of the problem (1) - (4) has the form 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

𝑢𝑛(𝑡)𝜓𝑛(𝑥), 

where 𝑢𝑛(𝑡) = ⟨𝑢(⋅, 𝑡), 𝜓𝑛⟩. 
By multiplying both sides of (1) with 𝜓𝑛(𝑥) and integrating with respect to 𝑥 over the domain (0,1), 

we obtain 

                                                           𝑢𝑛
′′(𝑡) + (1 + (𝑛𝜋)2𝛾)𝑢𝑛

′ (𝑡) + (𝑛𝜋)2𝛾𝑢𝑛(𝑡) = 0.                                                   (6) 

Solving the characteristic equation 

                                                                       𝜆2 + (1 + (𝑛𝜋)2𝛾)𝜆 + (𝑛𝜋)2𝛾 = 0 ,                                                               (7) 

we get 

                                                                              𝜆1 = −1, 𝜆2 = −(𝑛𝜋)
2𝛾  .                                                                           (8) 

It implies from (6) that 

                                                                            𝑢𝑛(𝑡) = 𝐶1𝑒
−𝑡 + 𝐶2𝑒

−(𝑛𝜋)2𝛾𝑡   .                                                                   (9) 

Using the conditions 𝑢𝑛(𝑇) = 𝑔𝑛  and 𝑢𝑛
′ (𝑇) = ℎ𝑛, we get 

                                                                         {
𝐶1𝑒

−𝑇 + 𝐶2𝑒
−(𝑛𝜋)2𝛾𝑇 = 𝑔𝑛

−𝐶1𝑒
−𝑇 − (𝑛𝜋)2𝛾𝐶2𝑒

−(𝑛𝜋)2𝛾𝑇 = ℎ𝑛
.                                                       (10) 

Solving the system (10), we obtain 

                                                                      

{
 
 

 
 𝐶1 =

(𝑔𝑛(𝑛𝜋)
2𝛾 + ℎ𝑛)𝑒

𝑇

(𝑛𝜋)2𝛾 − 1

𝐶2 =
−(𝑔𝑛 + ℎ𝑛)𝑒

(𝑛𝜋)2𝛾𝑇

(𝑛𝜋)2𝛾 − 1

              .                                                            (11) 

Substituting (11) into (9), we get the solution of the equation (2.1) as follows 

𝑢𝑛(𝑡) =
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
𝑔𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
ℎ𝑛 . 

It implies that 
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                           𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

  [
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
𝑔𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
ℎ𝑛]𝜓𝑛(𝑥).                     (12) 

This completes the proof of Theorem 2.1.  
In the next section, we will give an example to prove the ill - posedness of the problem (1) - (4). 

3. Example for the Ill-posedness of the Problems (1) - (4) with Gaussian White Noise 

We give an example which shows that the problem (1) - (4) has a solution and its solution is not 

stable. Let us consider the problem of finding the function 𝑢(𝑥, 𝑡) that satisfies 

                                                          

{
 

 
𝑢𝑡𝑡 + (−Δ)

𝛾𝑢 + 𝑢𝑡 + (−Δ)
𝛾𝑢𝑡 = 0, (𝑥, 𝑡) ∈ (0,1) × [0, 𝑇],

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇],
𝑢(𝑥, 𝑇) = 𝑔(𝑥), 𝑥 ∈ (0,1),

𝑢𝑡(𝑥, 𝑇) = ℎ(𝑥), 𝑥 ∈ (0,1),

                          (13) 

where 

𝑔, ℎ ∈ 𝐿2(0,1),𝜓𝑛(𝑥) = √2sin (𝑛𝜋𝑥). 

Let 𝑔𝑒𝑥 , ℎ𝑒𝑥 ∈ 𝐿
2(0,1) and 𝑢𝑒𝑥 ∈ 𝐶([0, 𝑇]; 𝐿

2(0,1)). The exact solution of the problem (13) 

corresponding to the exact data 𝑔𝑒𝑥  and ℎ𝑒𝑥 is 

                𝑢𝑒𝑥(𝑥, 𝑡) = ∑  

∞

𝑛=1

  [
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
(𝑔𝑒𝑥)𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
(ℎ𝑒𝑥)𝑛]𝜓𝑛(𝑥).             (14) 

Let 𝜉 be as in Lemma 2.1, 𝑔𝑝 , ℎ𝑝 ∈ 𝐿
2(0,1)(𝑝 ∈ ℕ) be the measured data as follows 

𝑔𝑝(𝑥) = 𝑔𝑒𝑥(𝑥) +
1

𝑝
3
4

∑ 

𝑝

𝑛=1

  ⟨𝜉, 𝜓𝑛⟩𝜓𝑛(𝑥),

ℎ𝑝(𝑥) = ℎ𝑒𝑥(𝑥) +
1

4𝑝
3
4

∑ 

𝑝

𝑛=1

  ⟨𝜉, 𝜓𝑛⟩𝜓𝑛(𝑥),

 

where 𝜓𝑛(𝑥) = √2sin (𝑛𝜋𝑥). 
We get 

𝔼‖𝑔𝑝 − 𝑔𝑒𝑥‖
2
=
1

𝑝
3
2

𝔼(∑  

𝑝

𝑛=1

  𝜉𝑛
2) ,

𝔼‖ℎ𝑝 − ℎ𝑒𝑥‖
2
=
1

𝑝
3
2

𝔼(∑  

𝑝

𝑛=1

 𝜉𝑛
2) ,

 

where 𝜉𝑛 = ⟨𝜉, 𝜓𝑛⟩. 

From Lemma (2.2), we get 𝔼(𝜉𝑛
2) = 1. It leads to 

𝔼‖𝑔𝑝 − 𝑔𝑒𝑥‖
2
=
1

𝑝
3
2

∑ 

𝑝

𝑛=1

 𝔼(𝜉𝑛
2) =

1

𝑝
3
2

∑ 

𝑝

𝑛=1

 1 =
𝑝

𝑝
3
2

=
1

𝑝
1
2

, 

  𝔼‖ℎ𝑝 − ℎ𝑒𝑥‖
2
=

1

𝑝
3
2

∑  𝑝
𝑛=1  𝔼(𝜉𝑛

2) =
1

𝑝
3
2

∑  𝑝
𝑛=1  1 =

𝑝

𝑝
3
2

=
1

𝑝
1
2

.                            (15) 
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Let 𝑔𝑝 , ℎ𝑝 ∈ 𝐿
2(0,1) and 𝑢𝑝 ∈ 𝐶([0, 𝑇]; 𝐿

2(0,1)). The exact solution of the problem (13) 

corresponding to the measured data 𝑔𝑝 and ℎ𝑝 is 

                 𝑢𝑝(𝑥, 𝑡) = ∑  

∞

𝑛=1

  [
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
(𝑔𝑝)𝑛

+
𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
(ℎ𝑝)𝑛

]𝜓𝑛(𝑥).                (16) 

From (14) and (16), we get 

𝔼‖𝑢𝑝(. , 𝑡) − 𝑢𝑒𝑥(. , 𝑡)‖
2

 = 𝔼(∑  

∞

𝑛=1

 [
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
((𝑔𝑝)𝑛 −

(𝑔𝑒𝑥)𝑛)+
𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
((ℎ𝑝)𝑛 −

(ℎ𝑒𝑥)𝑛)]

2

)

 ≥ 𝔼([
𝑒(𝑇−𝑡) − 𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)

(𝑝𝜋)2𝛾 − 1
((ℎ𝑝)𝑝

− (ℎ𝑒𝑥)𝑝) +
(𝑝𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)

(𝑝𝜋)2𝛾 − 1
((𝑔𝑝)𝑝

− (𝑔𝑒𝑥)𝑝)]

2

) .

 

Using the inequality (𝑎 + 𝑏)2 ≥
1

2
𝑎2 − 𝑏2 , 𝑎, 𝑏 ∈ ℝ, we have the estimate 

𝔼‖𝑢𝑝(. , 𝑡) − 𝑢𝑒𝑥(. , 𝑡)‖
2
≥
1

2
𝔼[
𝑒(𝑇−𝑡) − 𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)

(𝑝𝜋)2𝛾 − 1
((ℎ𝑝)𝑝 −

(ℎ𝑒𝑥)𝑝)]

2

 

 

                                                                          −𝔼[
(𝑝𝜋)2𝛾𝑒(𝑇−𝑡)−𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)

(𝑝𝜋)2𝛾−1
((𝑔𝑝)𝑝

− (𝑔𝑒𝑥)𝑝)]
2

.                       (17) 

We put 

𝐼1 =
1

2
𝔼[
𝑒(𝑇−𝑡) − 𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)

(𝑝𝜋)2𝛾 − 1
((ℎ𝑝)𝑝 −

(ℎ𝑒𝑥)𝑝)]

2

, 

                                                         𝐼2 = 𝔼[
(𝑝𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)

(𝑝𝜋)2𝛾 − 1
((𝑔𝑝)𝑝

− (𝑔𝑒𝑥)𝑝)]

2

.                                (18) 

Firstly, we have 

𝐼1 =
1

2
[
𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)(𝑒−((𝑝𝜋)
2𝛾−1)(𝑇−𝑡) − 1)

((𝑝𝜋)2𝛾 − 1)𝑝
3
4

]

2

𝔼(𝜉𝑝
2)

 

 

                                                   =
1

2
[
𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)(𝑒−((𝑝𝜋)
2𝛾−1)(𝑇−𝑡) − 1)

((𝑝𝜋)2𝛾 − 1)𝑝
3
4

]

2

.                                              (19) 

Secondly, we get 

𝐼2  =
1

𝑝
3
2

[
(𝑝𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)

(𝑝𝜋)2𝛾 − 1
]

2

𝔼(𝜉𝑝
2)

 

 

                                                               ≤
(2 + 4𝑇2)𝑒2(1+(𝑝𝜋)

2𝛾)(𝑇−𝑡)

𝑝
3
2

.                                                                       (20) 

Combining (17), (18) , (19) and (20) one can yield 
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           𝔼‖𝑢𝑝(. , 𝑡) − 𝑢𝑒𝑥(. , 𝑡)‖
2
≥
1

2
[
𝑒(𝑝𝜋)

2𝛾(𝑇−𝑡)(1 − 𝑒−((𝑝𝜋)
2𝛾−1)(𝑇−𝑡))

((𝑝𝜋)2𝛾 − 1)𝑝
3
4

]

2

−
(2 + 4𝑇2)𝑒2(1+(𝑝𝜋)

2𝛾)(𝑇−𝑡)

𝑝
3
2

.     (21) 

This leads to 

                   sup
0≤𝑡≤1

 𝔼‖𝑢𝑝(. , 𝑡) − 𝑢𝑒𝑥(. , 𝑡)‖
2
≥
1

2
[
𝑒(𝑝𝜋)

2𝛾𝑇(1 − 𝑒−((𝑝𝜋)
2𝛾−1)𝑇)

((𝑝𝜋)2𝛾 − 1)𝑝
3
4

]

2

−
2+ 4𝑇2

𝑝
3
2

→ ∞,                         (22)  

when 𝑝 → ∞. 
From (15), we notice that 

lim
𝑝→∞

 𝔼‖𝑔𝑝 − 𝑔𝑒𝑥‖
2
= 0,

 
 

                                                                                    lim
𝑝→∞

 𝔼‖ℎ𝑝 − ℎ𝑒𝑥‖
2
= 0.                                                              (23) 

From (22) and (23), we deduce that the problems (1) – (4) fails the stability condition. Hence, the 

problem (1) - (4) is ill - posed. 

Next, we will give a regularization method for the problems (1) - (4). 

4. Regularization and Error Estimate 

The following lemma is necessary to prove our main results. 

Lemma 4.1. Given 𝜀 ∈ (0,1) and 𝑠 > 0. Let 𝑔, ℎ ∈ 𝐻𝑠(0,1). Suppose that 𝑁(𝜀) is a positive integer 

such that lim
𝜀→0

 𝑁(𝜀) = +∞ and lim
𝜀→0

 𝜀2𝑁(𝜀) = 0. Let 𝑔𝑁(𝜀), ℎ𝑁(𝜀) ∈ 𝐿
2(0,1) be as follows 

𝑔𝑁(𝜀)(𝑥) = ∑  

𝑁(𝜀)

𝑛=1

  ⟨𝑔𝜀 ,𝜓𝑛⟩𝜓𝑛(𝑥),

ℎ𝑁(𝜀)(𝑥) = ∑  

𝑁(𝜀)

𝑛=1

  ⟨ℎ𝜀 , 𝜓𝑛⟩𝜓𝑛(𝑥).

 

Then we have the following estimate 

       𝔼‖𝑔𝑁(𝜀) − 𝑔‖
2
≤ 𝜀2𝑁(𝜀) +

1

(𝑁(𝜀))2𝑠
‖𝑔‖𝐻𝑠(0,1)

2 ,
 

                                                         𝔼‖ℎ𝑁(𝜀) − ℎ‖
2
≤ 𝜀2𝑁(𝜀) +

1

(𝑁(𝜀))2𝑠
‖ℎ‖𝐻𝑠(0,1)

2 .                                           (24) 

Proof. We have 

𝔼‖𝑔𝑁(𝜀) − 𝑔‖
2
 = 𝔼(∑  

𝑁(𝜀)

𝑛=1

  ⟨𝑔𝜀 − 𝑔, 𝜓𝑛⟩
2)+ 𝔼( ∑  

𝑛>𝑁(𝜀)

  ⟨𝑔, 𝜓𝑛⟩
2)

 = 𝜀2𝔼(∑  

𝑁(𝜀)

𝑛=1

  𝜉𝑛
2) + ∑  

𝑛>𝑁(𝜀)

 𝑛−2𝑠𝑛2𝑠⟨𝑔, 𝜓𝑛⟩
2.

 

Then we get 
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𝔼‖𝑔𝑁(𝜀) − 𝑔‖
2
≤ 𝜀2𝑁(𝜀) +

1

(𝑁(𝜀))2𝑠
‖𝑔‖𝐻𝑠(0,1)

2  

Similarly, we obtain 

𝔼‖ℎ𝑁(𝜀) − ℎ‖
2
≤ 𝜀2𝑁(𝜀) +

1

(𝑁(𝜀))2𝑠
‖ℎ‖𝐻𝑠(0,1)

2 . 

This completes the proof of Lemma 4.1. ◻ 

We know that the terms 
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡)−𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾−1
 and 

𝑒(𝑇−𝑡)−𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾−1
 are unbounded , so they are 

the instability causes. Hence, to obtain the stability of the solution, we apply the Fourier truncation 

method to cut-off the high frequency term in the solution and establish a regularized solution as follows 

             𝑢𝑁(𝜀)
𝜀 (𝑥, 𝑡) = ∑  

𝐵𝑁(𝜀)

𝑛=1

  [
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
(𝑔𝑁(𝜀))𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
(ℎ𝑁(𝜀))𝑛

]𝜓𝑛(𝑥),    (25) 

where 𝐵𝑁(𝜀) is a positive integer satisfying lim
𝜀→0

 𝐵𝑁(𝜀) = +∞ and will be chosen later. 

Next, we will give the expectation of the error estimate between the regularized solution and the 
exact solution under different conditions. 

Theorem 4.1. Let 𝑁(𝜀), 𝑔𝑁(𝜀), ℎ𝑁(𝜀) be as in Lemma 4.1. Suppose there exist 𝑠 > 0,𝑀1 > 0 such 

that ‖𝑔‖𝐻𝑠(0,1) ≤ 𝑀1 and ‖ℎ‖𝐻𝑠(0,1) ≤ 𝑀1. Let 𝑢 be the exact solution of the problem (1) – (4) and 

𝑢𝑁(𝜀)
𝜀  be the regularized solution corresponding to the random data 𝑔𝑁(𝜀) and ℎ𝑁(𝜀). 

i) If for 𝛽 > 0, there exists 𝑄1 > 0 such that 

                                                        ∑  

∞

𝑛=1

 𝑛2𝛽𝑒2𝑡(𝑛𝜋)
2𝛾
|𝑢𝑛(𝑡)|

2 ≤ 𝑄1, ∀𝑡 ∈ [0, 𝑇],                                                       (26) 

then the following estimate holds 

                                    𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 𝑀2(𝜀

2𝑠(𝑇+𝑡)
(2𝑠+1)𝑇 + (ln (

1

𝜀
))

−𝛽
𝛾
𝜀

2𝑠𝑡
(2𝑠+1)𝑇) , 𝑡 ∈ [0, 𝑇],                    (27) 

where 𝑀2 = max {4(2 + 5𝑇
2)(1 + 𝑀1

2), 2𝑄1 (
𝑠

(2𝜋)2𝛾(2𝑠+1)𝑇
)

−𝑞

𝛾
}. 

ii) If for 𝑟 > 0, there exists 𝑄2 > 0 such that 

                                                         ∑  

∞

𝑛=1

  𝑒2𝑟(𝑛𝜋)
2𝛾
|𝑢𝑛(𝑡)|

2 ≤ 𝑄2, ∀𝑡 ∈ [0, 𝑇],                                                                 (28)  

then the following estimate holds 

                   𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 𝑀3(𝜀

2𝑠(𝑇+𝑡)
(2𝑠+1)𝑇 + 𝜀

2𝑟𝑠
(2𝑠+1)𝑇) , 𝑡 ∈ [0, 𝑇],                                       (29)  

where 𝑀3 = max{4(2 + 5𝑇
2)(1 + 𝑀1

2), 2𝑄2} 
Proof. We put 

                           𝑣𝑁(𝜀)
𝜀 (𝑥, 𝑡) = ∑  

𝐵𝑁(𝜀)

𝑛=1

  [
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
𝑔𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
ℎ𝑛]𝜓𝑛(𝑥),      (30)  

Using the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2), we have 

             𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 2𝔼‖𝑢𝑁(𝜀)

𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
+ 2‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2
.            (31)  
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Firstly, we estimate 𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2
. 

Using the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2), we get 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2

 ≤ 2𝔼(∑  

𝐵𝑁(𝜀)

𝑛=1

  |
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
((𝑔𝑁(𝜀))𝑛

− 𝑔𝑛)|

2

)

 +2𝔼(∑  

𝐵𝑁(𝜀)

𝑛=1

  |
𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
((ℎ𝑁(𝜀))𝑛

− ℎ𝑛)|

2

).

 

Using Lemma 2.2, we get 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2

 ≤ 2(2 + 4𝑇2)𝑒
2(1+(𝐵𝑁(𝜀)𝜋)

2𝛾
)(𝑇−𝑡)

𝔼(∑ 

∞

𝑛=1

  |(𝑔𝑁(𝜀))𝑛
− 𝑔𝑛|

2

)

 +2(𝑇 − 𝑡)2𝑒2
(1+(𝐵𝑁(𝜀)𝜋)

2𝛾
)(𝑇−𝑡)𝔼(∑  

∞

𝑛=1

  |(ℎ𝑁(𝜀))𝑛
− ℎ𝑛|

2

)

 ≤ 2(2 + 4𝑇2)𝑒2
(1+(𝐵𝑁(𝜀)𝜋)

2𝛾
)(𝑇−𝑡)𝔼‖𝑔𝑁(𝜀) − 𝑔‖

2

 +2𝑇2𝑒2
(1+(𝐵𝑁(𝜀)𝜋)

2𝛾
)(𝑇−𝑡)𝔼‖ℎ𝑁(𝜀) − ℎ‖

2
.

 

From Lemma 4.1, we obtain 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑣𝑁(𝜀)

𝜀 (. , 𝑡)‖
2
≤ 2(2 + 5𝑇2)𝑒2(𝑇−𝑡)(1+(𝐵𝑁(𝜀)𝜋

2𝛾) (𝜀2𝑁(𝜀) +
1

(𝑁(𝜀))2𝑠
‖𝑔‖𝐻𝑠(𝐷)

2 )

 
 

 

                                                                ≤ 2(2 + 5𝑇2)𝑒2(𝑇−𝑡)(1+(𝐵𝑁(𝜀)𝜋
2𝛾) (𝜀2𝑁(𝜀) +

𝑀1
2

(𝑁(𝜀))2𝑠
) .                     (32) 

Secondly, we estimate ‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
. 

Case 1: When the condition (26) holds. 

For 𝛽 > 0, we obtain 

‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2

 ≤ ∑  
𝑛>𝐵𝑁(𝜀)

 𝑛−2𝛽𝑒−2𝑡(𝑛𝜋)
2𝛾
𝑛2𝛽𝑒2𝑡(𝑛𝜋)

2𝛾
[
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
𝑔𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
ℎ𝑛]

2

.
 

We get 

‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
 

≤ (𝐵𝑁(𝜀))
−2𝛽

𝑒−2𝑡(𝐵𝑁(𝜀)𝜋
2𝛾
∑ 

∞

𝑛=1

 𝑛2𝛽𝑒2𝑡(𝑛𝜋)
2𝛾
[
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
𝑔𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
ℎ𝑛]

2

 

≤ (𝐵𝑁(𝜀))
−2𝛽

𝑒−2𝑡(𝐵𝑁(𝜀)𝜋
2𝛾
∑ 

∞

𝑛=1

 𝑛2𝛽𝑒2𝑡(𝑛𝜋)
2𝛾
|𝑢𝑛(𝑡)|

2 

So, we have 
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                                                       ‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
≤ (𝐵𝑁(𝜀))

−2𝛽
𝑒−2𝑡(𝐵𝑁(𝜀)𝜋

2𝛾
𝑄1.                                       (33) 

Combining (31), (32) and (33) one can have 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2

 ≤ 4(2 + 5𝑇2)𝑒2
(𝑇−𝑡)(1+(𝐵𝑁(𝜀))

2𝛾
)
(𝜀2𝑁(𝜀) +

𝑀1
2

(𝑁(𝜀))2𝑠
)+ 2𝑄1(𝐵𝑁(𝜀))

−2𝛽
𝑒−2𝑡(𝐵𝑁(𝜀)𝜋)

2𝛾

.
 

We choose 𝑁(𝜀) = 𝜀−
2

2𝑠+1 and 𝐵𝑁(𝜀) = (
𝑠

(2𝜋)2𝛾(2𝑠+1)𝑇
ln (

1

𝜀
))

1

2𝛾

. 

Then we have 

E‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2

≤4(2 + 5𝑇2)(1 +𝑀1
2)𝜀

2𝑠(𝑇+𝑡)
(2𝑠+1)𝑇 + 2𝑄1 (

𝑠

(𝜋)2𝛾(2𝑠 + 1)𝑇
ln (

1

𝜀
))

−𝛽
𝛾

𝜀
2𝑠𝑡

(2𝑠+1)𝑇 .
 

Putting 𝑀2 = max {4(2 + 5𝑇
2)(1 + 𝑀1

2), 2𝑄1 (
𝑠

(2𝜋)2𝛾(2𝑠+1)𝑇
)

−𝑞

𝛾
}, we get the estimate 

                                                          𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 𝑀2(𝜀

2𝑠(𝑇+𝑡)

(2𝑠+1)𝑇 + (ln (
1

𝜀
))

−𝛽

𝛾
𝜀

2𝑠𝑡

(2𝑠+1)𝑇).                    (34) 

Case 2: When the condition (28) holds. 

For 𝑟 > 0, we obtain 

‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2

 ≤ ∑  
𝑛>𝐵𝑁(𝜀)

  𝑒−2𝑟(𝑛𝜋)
2𝛾
𝑒2𝑟(𝑛𝜋)

2𝛾
[
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
𝑔𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
ℎ𝑛]

2

.
 

Then we get 

‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
 

≤ 𝑒−2𝑟(𝐵𝑁(𝜀)𝜋)
2𝛾
∑ 

∞

𝑛=1

 𝑒2𝑟(𝑛𝜋)
2𝛾
[
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
𝑔𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
ℎ𝑛]

2

 

≤ 𝑒−2𝑟(𝐵𝑁(𝜀)𝜋)
2𝛾
∑ 

∞

𝑛=1

 𝑒2𝑟(𝑛𝜋)
2𝛾
|𝑢𝑛(𝑡)|

2 

So, we have 

                                                             ‖𝑢(. , 𝑡) − 𝑣𝑁(𝜀)
𝜀 (. , 𝑡)‖

2
≤ 𝑒−2𝑟(𝐵𝑁(𝜀)𝜋)

2𝛾
𝑄2 .                                                 (35) 

Combining (31), (32) and (35) one can have 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2

 
 

       ≤ 4(2 + 5𝑇2)𝑒2(𝑇−𝑡)(1+(𝑛𝜋)
2𝛾) (𝜀2𝑁(𝜀) +

𝑀1
2

(𝑁(𝜀))2𝑠
) + 2𝑄2𝑒

−2𝑟(𝐵𝑁(𝜀)𝜋)
2𝛾

.                                                         (36) 

We choose 𝑁(𝜀) = 𝜀−
2

2𝑠+1 and 𝐵𝑁(𝜀) = (
𝑠

(2𝜋)2𝛾(2𝑠+1)𝑇
ln (

1

𝜀
))

1

2𝛾

. 
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Then we have:  

                             𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 4(2 + 5𝑇2)(1 + 𝑀1

2)𝜀
2𝑠(𝑇+𝑡)

(2𝑠+1)𝑇 + 2𝑄2𝜀
2𝑟𝑠

(2𝑠+1)𝑇. 

Putting 𝑀3 = max{4(2 + 5𝑇
2)(1 +𝑀1

2), 2𝑄2}, we get the estimate 

                                               𝔼‖𝑢𝑁(𝜀)
𝜀 (. , 𝑡) − 𝑢(. , 𝑡)‖

2
≤ 𝑀3 (𝜀

2𝑠(𝑇+𝑡)

(2𝑠+1)𝑇 + 𝜀
2𝑟𝑠

(2𝑠+1)𝑇).                                           (37) 

This completes the proof of Theorem 4.1. 

Remark 4.1. 

i) The error estimate derived from (27) at the initial time 𝑡 = 0 is given by 

𝔼‖𝑢𝑁(𝜀)
𝜀 (. ,0) − 𝑢(. ,0)‖

2
≤ 𝑀2(𝜀

2𝑠
2𝑠+1 + (ln (

1

𝜀
))

−𝑞
𝛾

). 

This error estimate exhibits a logarithmic-type convergence due to the insufficiently strong condition 

(26) on the exact solution.  

ii) We notice that the error estimate provided in (29) demonstrates Hölder-type convergence for all 

𝑡 ∈ [0, 𝑇]. This convergence rate is better than the logarithmic-type rate described in (27). However, it's 

important to note that the error estimate (29) requires a strong condition on the exact solution 𝑢(𝑥, 𝑡), 
which can be considered a disadvantage. 

5. Numerical Example 

In this section, we construct an illustrate example for our regularization method. We consider the 

following problem 

                                                           {

𝑢𝑡𝑡 + (−Δ)
𝛾𝑢 + 𝑢𝑡 + (−Δ)

𝛾𝑢𝑡 = 0, (𝑥, 𝑡) ∈ (0,1) × [0,1],

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 ∈ [0,1],
𝑢(𝑥, 1) = 𝑔(𝑥), 𝑥 ∈ (0,1),
𝑢𝑡(𝑥, 1) = ℎ(𝑥), 𝑥 ∈ (0,1),

                        (38) 

where 𝛾 =
1

30
 and 

𝑔(𝑥) = 𝑒−1sin (𝜋𝑥),

ℎ(𝑥) = −𝑒−1sin (𝜋𝑥).
 

The exact solution of the problem (38) is 

𝑢exact (𝑥, 𝑡) = 𝑒
−𝑡 sin(𝜋𝑥). 

We get the regularization parameters 

𝑁 = [𝑁(𝜀)] = [𝜀
−2
3 ]  and 𝐵𝑁 = [𝐵𝑁(𝜀)] = [(

2

3
ln (

1

𝜀
))]

1
2𝛾

.  

Consider the random data 

𝑔𝑁(𝑥) = 𝑒
−1sin (𝜋𝑥) + 𝜀∑  

𝑁

𝑛=1

  ⟨𝜉, 𝜓𝑛⟩𝜓𝑛(𝑥),

ℎ𝑁(𝑥) = −𝑒
−1sin (𝜋𝑥) + 𝜀∑  

𝑁

𝑛=1

  ⟨𝜉, 𝜓𝑛⟩𝜓𝑛(𝑥),

 

where 𝜓𝑛(𝑥) = √2sin (𝑛𝜋𝑥) and ⟨𝜉, 𝜓𝑛⟩ are random variables with mean 0 and variance 1 . 

       From (25), we get the regularized solution at the point (𝑥, 𝑡) 
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𝑢𝑁
𝜀 (𝑥, 𝑡) = ∑  

𝐵𝑁

𝑛=1

[
(𝑛𝜋)2𝛾𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)

2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
(𝑔𝑁)𝑛 +

𝑒(𝑇−𝑡) − 𝑒(𝑛𝜋)
2𝛾(𝑇−𝑡)

(𝑛𝜋)2𝛾 − 1
(ℎ𝑁)𝑛]𝜓𝑛(𝑥), 

where 

(𝑔𝑁)𝑛 = ⟨𝑔𝑁 ,𝜓𝑛⟩,
(ℎ𝑁)𝑛 = ⟨ℎ𝑁 , 𝜓𝑛⟩.

 

Next, we divide the time interval [0,1] into 10 subintervals by 11 points 

𝑡𝑗 =
𝑗 − 1

10
, 𝑗 = 1,2,… 11. 

Put 𝜀 = 0.1, 𝜀 = 0.01, 𝜀 = 0.001, respectively. The results of our computational method are shown 
in Figs.1 1-2 and listed in Table 1.  

 

Figure 1. The graph of the exact solution 𝑢exact (𝑥, 0.7) and the regularized solution 𝑢𝑁
𝜀 (𝑥, 0.7)  

corresponding to 𝜀 = 0.1,0.01,0.001. 

 

Figure 2. The graph of the exact solution 𝑢exact (𝑥, 0.9) and the regularized solution 𝑢𝑁
𝜀 (𝑥, 0.9)  

corresponding to 𝜀 = 0.1,0.01,0.001. 
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Table 1. The expectation of the error between the regularized solution 𝑢𝑁
𝜀 (. , 𝑡) and the exact solution 𝑢exact (. , 𝑡) 

at different values of time corresponding to 𝜀 = 0.1,0.01,0.001. 

 𝔼‖𝑢𝑁
𝜀 (. , 𝑡) − 𝑢exact (. , 𝑡)‖

2 

𝑡, 𝜀 𝜀 = 0.1 𝜀 = 0.01 𝜀 = 0.001 

𝑡 = 0 1.2353 1.1895 1.1869 

𝑡 = 0.1 8.7819𝑒 − 01 8.4252𝑒 − 01 8.4048𝑒 − 01 

𝑡 = 0.2 6.1855𝑒 − 01 5.9077𝑒 − 01 5.8922𝑒 − 01 

𝑡 = 0.3 4.3104𝑒 − 01 4.0945𝑒 − 01 4.0827𝑒 − 01 

𝑡 = 0.4 2.9667𝑒 − 01 2.7993𝑒 − 01 2.7905𝑒 − 01 

𝑡 = 0.5 2.0125𝑒 − 01 1.8831𝑒 − 01 1.8765𝑒 − 01 

𝑡 = 0.6 1.3419𝑒 − 01 1.2421𝑒 − 01 1.2372𝑒 − 01 

𝑡 = 0.7 8.7644𝑒 − 02 7.9977𝑒 − 02 7.9618𝑒 − 02 

𝑡 = 0.8 5.5816𝑒 − 02 4.9947𝑒 − 02 4.9687𝑒 − 02 

𝑡 = 0.9 3.4450𝑒 − 02 2.9977𝑒 − 02 2.9791𝑒 − 02 

𝑡 = 1 2.0438𝑒 − 02 1.7045𝑒 − 02 1.6916𝑒 − 02 

6. Conclusion 

In this work, by Fourier truncation method, we regularized the homogeneous space fractional 
damped wave equation with Gaussian white noise. With some conditions on the exact solution, we 

obtained the error estimate between the regularized solution and the exact solution in different norms. 

We also gave a numerical experiment to illustrate our method. In further work, we will consider the 
problems with locally Lipschitz condition on the source term. 
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