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Abstract: The Magneto-electric properties of infinite Semi-parabolic Plus Semi-inverse Squared 

Quantum wells (ISPPSISQW) in the presence of a strong Electromagnetic Wave (EMW) are 

theoretically investigated by using Quantum Kinetic Equation. The system is subjected to an  IEMW 

E(t) = (E0sinΩt)𝐞y, a magnetic field 𝐁 = B𝐞z, and a cross DC electric field E= E𝐞x. The electron-

optical phonon scattering is considered. The general expression of the Magnetoresistance (MR) is 

presented as a function of the temperature, the external magnetic field, the photon energy, and the 

intensity of the strong EMW as well as characteristic parameters of ISPPSISQW. The theoretical  

result for a specific GaAs/GaAsAl ISPPSISQW is achieved by using a numerical method. The  

computational result demonstrates that  the maximum peaks appear satisfying the magneto-phonon-

photon resonance condition. The resonance peak's position  remains unaffected by temperature 

variations and changes by confinement frequency and by electric field; the MR decreases as 

temperature increases nonlinearly. 

Keywords: Magnetoresistance, magneto-phonon-photon resonance, infinite semi-parabolic plus 

semi-inverse squared quantum wells, electromagnetic wave, quantum kinetic equation. 

1. Introduction * 

The advent of low-dimensional materials has marked the beginning of a revolution in science and 

technology. Notably, physicists have discovered numerous methods to create various nano-
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semiconductor structures, including low-dimensional semiconductor materials such as quantum wells 

and superlattices. Quantum wells are currently a vibrant research area in physics and materials science, 

with numerous applications in modern technology, particularly in semiconductors. Additionally, 

quantum wells are used in the fabrication of electronic and optical devices. 

In quantum physics, the infinite semi-parabolic Plus Semi-inverse Squared Quantum Wells 

(ISPPSISQW) is a theoretical model describing a type of quantum well with an infinite semi-parabolic 

Plus Semi - inverse Squared shape. This model can be used to study phenomena related to regions of 

space-time with extremely high energy densities, a characteristic of ISPPSISQW. Potential applications 

of ISPPSISQW include researching space-time structures, providing crucial information about the 

properties of black holes, and using simulation and computation methods to predict and explain quantum 

physical phenomena. 

In theoretical physics research, the problem of the Hall Magnetoresistance (MR)  in low-dimensional 

semiconductor systems has been extensively studied [1-6]. However, for semiconductor materials in the 

form of ISPPSISQW, much remains unexplored. This is why we chose the topic the Hall MR in an 

infinite semi-parabolic Plus Semi inverse Squared Quantum Wells under the influence of a strong 

electromagnetic wave (EMW) for the case of Electron-optical Phonon Scattering Mechanism by using 

quantum kinetic equation. 

The article is divided into four parts as follows: The first part is the introduction. In the next section, 

we construct the analytical expression of Hall Magnetoresistance in ISPPSISQW for the case of optical 

electron– optical phonon scattering. Numerical calculation results and some brief evaluations are shown 

in Section three. The final part is our conclusions on the above issues. 

2. Theoretical Framework 

2.1. The Wave Function and the Discrete Energy Spectrum of the Electron in ISPPSISQW 

We consider a quantum well structure in which the electron moves freely in the XY plane and is 

confined along the z-axis by the confinement potential ISPPSISQW of the form:  

𝑈(𝑧) = {
∞                                      𝑧 < 0
1

2
𝑚𝑒𝜔𝑧

2𝑧2 +
ℏ2𝛽𝑧

2𝑚𝑒𝑧2        𝑧 > 0                                            (1) 

In which, 𝑚𝑒 is the effective mass of the electron, ℏ is reduced Planck’s constant, 𝛽𝑧 and 𝜔𝑧 are the 

characteristic parameters of the potential well and the confinement frequency, respectively. 

We have wave functions and an energy spectrum of the electron in ISPPSISQW of the form: 

𝜓(𝑟) = 𝜓0𝜙𝑁(𝑥 − 𝑥0)𝑒𝑖𝐾𝑦𝑦𝜙𝑛(𝑧)                                                (2) 

𝜀𝑛𝑁𝑘
𝐻𝑃 =ℏ𝜔𝑧 (2𝑛 + 1 +

√1+4𝛽

2
) + ℏ𝜔𝑐 (𝑁 +

1

2
) + ℏ𝑣𝑑𝑘𝑦 −

1

2
𝑚𝑣𝑑

2                        (3) 

Here 𝜙𝑛(𝑥 − 𝑥0) is the harmonic wave function centered at 𝑥0, 𝜐𝑑  =
𝐸𝑥

𝐵
 is the drift velocity, B is 

the magnitude of external magnetic field, ky is the electron’s wave vector along the y-axis, n and N are 

the quantum numbers. 

The electron form factor: 

𝐼𝑛,𝑛′ ≡ 𝐼 =
2

−5
2

−√1−4𝛽
𝜋[3+4(1+√1+4𝛽)]Γ(

3

2
+√1+4𝛽)

𝑎𝑧Γ[
1

2
+

1

2
(1+√1+4𝛽)]Γ[

3

2
+

1

2
(1+√1+4𝛽)]

                                   (4) 
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𝑎𝑧 = √
ℏ

𝑚𝜔𝑧
  ,  𝑠 =

1

4
(1 + √1 + 4𝛽) 

     Which Γ(𝑥) is the Gamma function. 

2.2. Total Current Density Expression, Analytical Expression of Conductivity Tensor and 

Magnetoresistance in the Case of Electron–optical Phonon Scattering 

When the SEMW is applied to the system, with the electric field vector 𝐸 = (0,𝐸₀ sin(Ωt),0) (where 

𝐸₀ and Ω are the amplitude and frequency, respectively), the Hamiltonian of the electron-phonon system 

in ISPPSISQW can be expressed in the second quantization representation as follows: 

𝐻 = 𝐻1 + 𝐻2 + 𝐻3 + 𝐻4                                                         (5) 

𝐻1 = ∑ 𝜀
𝑛,𝑁,𝑘⃗⃗
𝐻

𝑛,𝑁,𝑘⃗⃗
(𝑘⃗⃗ −

𝑒

ℏ𝑐
𝐴(𝑡)) 𝑎

𝑛,𝑁,𝑘⃗⃗
+ 𝑎

𝑛,𝑁,𝑘⃗⃗
 

𝐻2 = ∑ ℏ
𝑞⃗⃗

𝜔0𝑏𝑞⃗⃗
+𝑏𝑞⃗⃗  

𝐻3 = ∑ ∑ 𝐶𝑞⃗⃗𝐼𝑛,𝑛′(𝑞𝑧)𝐽𝑁,𝑁′(𝑢)𝑎
𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗
+

𝑛′,𝑁′,𝑞⃗⃗
𝑎

𝑛,𝑁,𝑘⃗⃗
(𝑏𝑞⃗⃗ + 𝑏−𝑞⃗⃗

+ )
𝑛,𝑁,𝑘⃗⃗

 

𝐻4 = ∑ 𝜑(𝑘⃗⃗)
𝑛,𝑁,𝑘⃗⃗

𝑎
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗
+ 𝑎

𝑛,𝑁,𝑘⃗⃗
 

In eq. (5), 𝑎
𝑛,𝑁,𝑘⊥⃗⃗ ⃗⃗ ⃗⃗
+  and 𝑎𝑛,𝑁,𝑘⊥⃗⃗ ⃗⃗ ⃗⃗ (𝑏𝑞⃗⃗

+ 𝑎𝑛𝑑 𝑏𝑞⃗⃗) are the creation and annihilation operators of the electron 

(phonon); ℏ𝜔𝑞⃗⃗ is the phonon energy. The vector potential of laser radiation as a SEMW 𝐴(𝑡) =
𝑐

𝛺
𝐸0

𝑐𝑜𝑠 (𝛺𝑡) , 𝑛 𝑎𝑛𝑑  𝑛′  are the band indices of states |𝑛, 𝑁, 𝑘⊥
⃗⃗ ⃗⃗ ⃗⟩ and |𝑛′, 𝑁, 𝑘⊥

⃗⃗ ⃗⃗ ⃗ + 𝑞⊥⃗⃗ ⃗⃗⃗⟩, respectively. 𝜀𝑛 is 

electron energy, 𝑘⊥
⃗⃗ ⃗⃗ ⃗, 𝑞⃗ are the wave vectors of electrons and phonons, respectively.  𝐶(𝑞) is the electron–

phonon scattering constant. We consider the case of electron-optical phonon scattering: 

|𝐶𝑞⃗⃗|
2

=
𝐴

𝑉𝑞⊥
2                                                                      (6) 

𝐴 =
2𝜋𝑒2𝜔0ℏ

𝜀0
(

1

𝜒∞
−

1

𝜒0
) 

The quantum kinetic equation for the electron distribution function [5-7]: 

𝑖ℏ
𝜕𝑓

𝑛,𝑁,𝑘⃗⃗⃗
(𝑡)

𝜕𝑡
= 〈[𝑎

𝑛,𝑁,𝑘⃗⃗
+ 𝑎

𝑛,𝑁,𝑘⃗⃗
, 𝐻]〉𝑡                                              (7) 

Where, 𝑓𝑛,𝑁,𝑘⊥⃗⃗ ⃗⃗ ⃗⃗ (𝑡) = 〈𝑎
𝑛,𝑁,𝑘⊥

⃗⃗ ⃗⃗ ⃗⃗
+ 𝑎𝑛,𝑁,𝑘⊥⃗⃗ ⃗⃗ ⃗⃗ 〉  is the electron distribution function, denotes the statistical 

average value at the moment t. To approximate the external magnetic field strength linearly, we only 

take l = 0, ±1 with 𝐽0
2(𝑥) = 1 −

(𝑥2)

2
; 𝐽−1,1

2 (𝑥) =
𝑥2

4
 , multiply both sides of the equation by 

𝑒

𝑚
𝑘⃗⃗𝛿(𝜀 − 𝜀𝑘⃗⃗) and then take the sum with respect to 𝑘⃗⃗. The Eq. (7)  has the form: 

𝜕𝑓𝑛,𝑁,𝑘⃗⃗
(𝑡)

𝜕𝑡
=

1

ℏ
(𝑒𝐸⃗⃗ + 𝜔𝐻[𝑘⃗⃗, ℎ⃗⃗])

𝜕𝑓𝑛,𝑁,𝑘⃗⃗
(𝑡)

𝜕𝑘⃗⃗
−

𝑖

ℏ
∑ |𝐶𝑞⃗⃗|

2

𝑛′,𝑁′,𝑞⃗⃗
|𝐼𝑛,𝑛′|

2
× 

× ∑ 𝐽𝑡(∧)𝐽𝑠(∧)𝑒𝑥𝑝(−𝑖(𝑠 − 𝑙)Ω)
∞

𝑙,𝑠=0
∫ 𝑒𝑥𝑝

𝑖

ℏ
[(𝜀

𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗
𝐻 − 𝜀

𝑛,𝑁,𝑘⃗⃗
𝐻 − ℏ𝜔0 − 𝑙ℏΩ + 𝑖𝛿) (𝑡 − 𝑡1)] ×

𝑡

−∞
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× [𝑓𝑛,𝑁,𝑘⃗⃗
(𝑡1)𝑁𝑞⃗⃗(𝑡1) − 𝑓𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗

(𝑡1)(𝑁𝑞⃗⃗ + 1)] + [𝑓𝑛,𝑁,𝑘⃗⃗
(𝑡1)(𝑁𝑞⃗⃗ + 1) − 𝑓𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗

(𝑡1)(𝑁𝑞⃗⃗)(𝑡1)] × 

× 𝑒𝑥𝑝 [
𝑖

ℏ
[(𝜀

𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗
𝐻 − 𝜀

𝑛,𝑁,𝑘⃗⃗
𝐻 + ℏ𝜔0 − 𝑙ℏΩ + 𝑖𝛿) (𝑡 − 𝑡1)]] − 

−𝑒𝑥𝑝 [
𝑖

ℏ
[(−𝜀

𝑛′,𝑁′,𝑘⃗⃗−𝑞⃗⃗
𝐻 + 𝜀

𝑛,𝑁,𝑘⃗⃗
𝐻 − ℏ𝜔0 − 𝑙ℏΩ + 𝑖𝛿) (𝑡 − 𝑡1)]] × 

× [𝑓𝑛′,𝑁′,𝑘⃗⃗−𝑞⃗⃗
(𝑡1)𝑁𝑞⃗⃗ − 𝑓𝑛,𝑁,𝑘⃗⃗

(𝑡1)(𝑁𝑞⃗⃗ + 1)] − [𝑓𝑛′,𝑁′,𝑘⃗⃗−𝑞⃗⃗
(𝑡1)(𝑁𝑞⃗⃗ + 1) − 𝑓𝑛,𝑁,𝑘⃗⃗

(𝑡1)(𝑁𝑞⃗⃗)] × 

        × 𝑒𝑥𝑝 [
𝑖

ℏ
[(𝜀

𝑛,𝑁,𝑘⃗⃗
𝐻 − 𝜀

𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗
𝐻 + ℏ𝜔0 − 𝑙ℏΩ + 𝑖𝛿) (𝑡 − 𝑡1)]]                                                             (8) 

Where, Ω is the laser radiation’s frequency, δ(x) is the Dirac delta functions, Nq is the equilibrium 

distribution function for phonons, which is given by the Bose–Einstein distribution function. 

We set that: 

𝑅⃗⃗(𝜀) =
𝑒ℏ

𝑚
∑ 𝑘⃗⃗𝑛𝑘⃗⃗𝛿(𝜀 − 𝜀𝑘⃗⃗)𝑘⃗⃗                                                       (9) 

𝑄⃗⃗(𝜀) =
𝑒

𝑚
∑ (𝐹,⃗⃗⃗⃗ 𝜕𝑛𝑛𝑁𝑘

𝜕𝑘⃗⃗
)𝑘⃗⃗ 𝛿(𝜀 − 𝜀𝑘⃗⃗)                                                      (10) 

𝑆(𝜀) = −
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗

𝑛,𝑁𝑘,⃗⃗⃗⃗ 𝑞⃗⃗
 𝛿(𝜀 − 𝜀𝑘⃗⃗) {(𝑓̅

𝑛,𝑁,𝑘⃗⃗ − 𝑓̅
𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗) (1 −

∧2

2Ω2) × 

× [𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

− ℏ𝜔0 + 𝑙ℏΩ) + 𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

+ ℏ𝜔0 − 𝑙ℏΩ)] − 

− (𝑓̅
𝑛,𝑁,𝑘⃗⃗ − 𝑓̅

𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗)
∧2

4Ω2 [𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

− ℏ𝜔0 − 𝑙ℏΩ) + 

+𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

+ ℏ𝜔0 − 𝑙ℏΩ) − 

− (𝑓̅
𝑛,𝑁,𝑘⃗⃗ − 𝑓̅

𝑛′,𝑁′,𝑘⃗⃗+𝑞⃗⃗)
∧2

4Ω2 [𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

− ℏ𝜔0 + 𝑙ℏΩ) + 

+𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

+ ℏ𝜔0 + 𝑙ℏΩ)]}                                                                                                         (11)             

By solving Eq. (8),(9),(10) and (11) we get the final expression of the specific current density 𝑅⃗⃗(𝜀): 

𝑅⃗⃗(𝜀)=
𝜏(𝜀)

1+𝜔𝐻
2 𝜏(𝜀)2 × {𝑄⃗⃗(𝜀) + 𝑆(𝜀)+𝜔𝐻𝜏(𝜀) [ℎ⃗⃗𝑄⃗⃗(𝜀) + 𝑆(𝜀) + 𝜔𝐻

2 𝜏(𝜀)2ℎ⃗⃗ (ℎ⃗⃗, 𝑄⃗⃗(𝜀) + 𝑆(𝜀))]}        (12) 

Here, 𝜏(𝜀) is the electron momentum recovery time, h⃗⃗ =  
B⃗⃗⃗

B
 is the unit vector in the direction of 

magnetic field. 

From Eq. (12) we have that the total current density function has the form: 

𝑗 = 𝐿0(𝑄𝑖) + 𝐿0(𝑆𝑖) = 𝜎𝑖𝑚𝐸𝑚 + 𝛽𝑖𝑚∇𝑇𝑚                                 (13) 

With: 

              𝐿0(𝑆𝑖) =
𝑏𝑒

𝑚

𝜏(𝜀𝐹)

1 + 𝜔𝐻
2 𝜏2(𝜀𝐹)

[𝛿𝑖𝑗 + 𝜔𝐻𝜏𝜀𝑖𝑗𝑘ℎ𝑘 + 𝜔𝐻
2 𝜏2ℎ𝑖ℎ𝑗]𝛿𝑖𝑗 × 

                 ×
𝜏

1+𝜔𝐻
2 𝜏2 [𝛿𝑙𝑚 + 𝜔𝐻𝜏𝜀𝑙𝑚𝑝ℎ𝑝 + 𝜔𝐻

2 𝜏2ℎ𝑙ℎ𝑚]𝐸𝑚                                 (14) 

𝐿0(𝑄) =
𝑎𝜏

1+𝜔𝐻
2 𝜏2

[𝛿𝑖𝑗 + 𝜔𝐻𝜏𝜀𝑖𝑗𝑘ℎ𝑘 + 𝜔𝐻
2 𝜏2ℎ𝑖ℎ𝑗]𝐸𝑗                              (15) 
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After performing analytical calculations, from the expression of the current density J, the expression 

for the conductivity tensor is derived: 

𝜎𝑖𝑚 =
𝑎𝜏

1+𝜔𝐻
2 𝜏2 [𝛿𝑖𝑗 + 𝜔𝐻𝜏𝜀𝑖𝑗𝑘ℎ𝑘 + 𝜔𝐻

2 𝜏2ℎ𝑖ℎ𝑗]𝛿𝑗𝑚+ 

                          +
𝑏𝑒

𝑚
(

𝜏

1 + 𝜔𝐻
2 𝜏2

)

2

[𝛿𝑖𝑗 + 𝜔𝐻𝜏𝜀𝑖𝑗𝑘ℎ𝑘 + 𝜔𝐻
2 𝜏2ℎ𝑖ℎ𝑗]𝛿𝑖𝑗 × 

× [𝛿𝑙𝑚 + 𝜔𝐻𝜏𝜀𝑙𝑚𝑝ℎ𝑝 + 𝜔𝐻
2 𝜏2ℎ𝑙ℎ𝑚]                                                         (16) 

Set 𝜂 = 𝜔𝐻𝜏 and assume that 𝐸⃗⃗ = (𝐸𝑥 , 0,0); ℎ⃗⃗ = (0,1,0), We have explicit expressions of the 

tensors 𝜎𝑥𝑥, 𝜎𝑦𝑥: 

𝜎𝑥𝑥 =
𝑎𝜏

1+𝜂2+
𝑏𝑒

𝑚
(

𝜏

1+𝜂2)
2

(1 − 𝜂2)                                              (17) 

𝜎𝑦𝑥 =
𝑎𝜏

1+𝜂2
(−𝜂)+

𝑏𝑒

𝑚
(

𝜏

1+𝜂2)
2

(−𝜂 − 𝜂2)                                              (18) 

𝑎 =
−𝑒2𝐿𝑦

4𝑚𝜋
∑ 𝑒𝑥𝑝 [𝛼 [𝜀𝐹 − (ℏ𝜔𝑧 (2𝑛 + 1 +

√1 + 4𝛽

2
) + ℏ𝜔𝑐 (𝑁 +

1

2
) + ℏ𝑣𝑑𝑘𝑦 −

1

2
𝑚𝑒𝑣𝑑

2)]]
𝑛

 

𝑏 =
−𝐿𝑦𝑒𝛼ℏ𝑣𝑑𝐴

𝑚(2𝜋)3
𝑁0 × 𝐼(𝑁, 𝑁′) × |𝐽𝑁,𝑁′|

2
× 𝑏𝑏 × ∑ (𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉 + 𝑉 + 𝑉𝐼 + 𝑉𝐼𝐼 + 𝑉𝐼𝐼𝐼)

𝑛,𝑁
 

𝑏𝑏 = (
𝑒𝐸

𝑚Ω2
)

2

 

𝐼 =
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗𝑞𝑦⃗⃗⃗⃗⃗

𝑛,𝑁𝑘⃗⃗,𝑞⃗⃗
𝑓0

′𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

− ℏ𝜔0) 

𝐼𝐼 =
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗𝑞𝑦⃗⃗⃗⃗⃗

𝑛,𝑁𝑘⃗⃗,𝑞⃗⃗
𝑓0

′ (−
∧2

2Ω2) 𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

− ℏ𝜔0) 

𝐼𝐼𝐼 =
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗𝑞𝑦⃗⃗⃗⃗⃗

𝑛,𝑁𝑘⃗⃗,𝑞⃗⃗
𝑓0

′𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

+ ℏ𝜔0) 

𝐼𝑉 =
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗𝑞𝑦⃗⃗⃗⃗⃗

𝑛,𝑁𝑘⃗⃗,𝑞⃗⃗
𝑓0

′ (−
∧2

2Ω2) 𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

+ ℏ𝜔0) 

𝑉 =
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗𝑞𝑦⃗⃗⃗⃗⃗

𝑛,𝑁𝑘⃗⃗,𝑞⃗⃗
𝑓0

′ (−
∧2

4Ω2) 𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

− ℏ𝜔0 − ℏΩ) 

𝑉𝐼 =
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗𝑞𝑦⃗⃗⃗⃗⃗

𝑛,𝑁𝑘⃗⃗,𝑞⃗⃗
𝑓0

′ (−
∧2

4Ω2) 𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

+ ℏ𝜔0 − ℏΩ) 

𝑉𝐼𝐼 =
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗𝑞𝑦⃗⃗⃗⃗⃗

𝑛,𝑁𝑘⃗⃗,𝑞⃗⃗
𝑓0

′ (−
∧2

4Ω2) 𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

− ℏ𝜔0 + ℏΩ) 

𝑉𝐼𝐼𝐼 =
𝑒

𝑚
∑ ∑ 𝑊(𝑞⃗)𝑘⃗⃗𝑞𝑦⃗⃗⃗⃗⃗

𝑛,𝑁𝑘⃗⃗,𝑞⃗⃗
𝑓0

′ (−
∧2

4Ω2) 𝛿 (𝜀
𝑛,𝑁,𝑘⃗⃗+𝑞⃗⃗

− 𝜀
𝑛,𝑁,𝑘⃗⃗

+ ℏ𝜔0 + ℏΩ) 

With 𝐵⃗⃗ in the z direction and 𝐸⃗⃗ in the x direction, the  Magnetoresistance 𝜌𝑥𝑥 is calculated according 

to the formula: 
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𝜌𝑥𝑥=
𝜎𝑥𝑥

𝜎𝑥𝑥
2 +𝜎𝑦𝑥

2
                                                                   (19) 

3. Results and Discussion  

To better understand the dependence of electrical conductivity and the Magnetoresistance on 

temperature of the system, external fields as well as material parameters in ISPPSISQW, we present 

numerical calculation results for a GaAs/GaAsAl quantum well using Matlab software in this section.  

3.1. Dependence of the Conductivity Tensor on the Magnetic Field (Cyclotron Energy Ħ𝜔𝑐) B for 

Different Values of Temperatures. 

In Fig. 1 we have T1 = 250K, T2 = 280K, T3 = 310K, 𝐸1 = 5 × 102(𝑉. 𝑚−1) and 𝜔𝑧 = 0.5𝜔0. 

Looking at the graph we see this curve has a maximum peak. The presence of this peak indicates that 

the peak satisfies the magneto-phonon-photon resonance condition. The resonance peak's position is 

determined by the resonance condition, which remains unaffected by temperature variations. 

Consequently, the peaks overlap at different temperatures but maintain the same position.  

  

Figure 1. Dependence of the conductivity tensor 𝜎𝑥𝑥 

on the cyclotron energy ħ𝜔𝑐 for different values of 

temperatures (temperature T is 250K, 280K, 310K 

respectively as red, green, and black lines). 

Figure 2. Dependence of Hall Magnetoresistance on 

the magnetic field B(T) for different values of 

temperatures. (temperature T is 250K, 280K, and 

310K respectively as red, green, and black lines). 

3.2. Dependence of  Magnetoresistance on the Magnetic Field B for Different Values of Temperatures 

In Fig. 2, we have T1 = 250K, T2 = 280K, T3 = 310K, 𝐸1 = 5 × 102(𝑉. 𝑚−1). It can be seen that 

the dependence of Hall Magnetoresistance on the magnetic field B changes when temperature changes. 

The resonance peak's position is determined by the resonance condition, which remains unaffected by 

temperature variations. 
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Figure 3. The dependence of Hall Magnetoresistance 

on the magnetic field B(T)  for different values of 

confinement frequency( confinement frequency 𝜔𝑧 is 

2.6 × 1013 (𝑠−1), 2.8 × 1013 (𝑠−1), 3 × 1013 (𝑠−1)  

respectively as red, green and black lines ). 

Figure 4. The dependence of Hall Magnetoresistance 

on magnetic field B(T) for different values of electric 

field ( electric field 𝐸⃗⃗ is 5 × 10 5(𝑉/𝑚), 5.5 ×
10 5(𝑉/𝑚), 6 × 10 5(𝑉/𝑚) respectively as red, 

black, and green lines). 

3.3. Dependence of Magnetoresistance on the Magnetic Field B(T) for Different Values of Confinement 

Frequency 

From Fig. 3 we see that the peaks' positions shift in graphs dependent on the confinement frequency 

𝜔𝑧 as the magnetic field B changes, the confinement factor 𝜔𝑧 impacts the resonance condition. 

3.4. Dependence of Hall Magnetoresistance on Magnetic Field B(T)  for Different Values of Electric Field 

In Fig. 4 it can be seen that the peaks' positions shift in graphs dependent on the electric field as the 

magnetic field B changes, as the electric field impact the resonance condition. 

4. Conclusion  

Using the quantum kinetic equation method, we study the theoretical aspects of the Hall 

magnetoresistance in ISPPSISQW. By establishing the quantum kinetic equation for the distribution 

function, we derive the analytical expressions for the conductivity tensor and the Hall magnetoresistance 

as functions of external fields (magnetic field B, laser frequency Ω, and laser amplitude E), parameters 

of ISPPSISQW, and temperature for the electron-optical phonon scattering.  

We apply numerical calculations to the theoretical results for the specific material GaAs/GaAsAl, 

obtaining graphs that show the dependence of the conductivity tensor on cyclotron energy and the 

dependence of the Hall magnetoresistance on different values of external magnetic fields and 

temperature. The results show a peak in the conductivity tensor's dependence on cyclotron energy when 

the peak satisfies the magneto-phonon-photon resonance condition. As the value of the external 

magnetic field increases, the Hall magnetoresistance also increases non-linearly. The Hall 

magnetoresistance strongly depends on the confinement frequency 𝜔𝑧; as the confinement frequency of 

the quantum well increases, the Hall magnetoresistance increases. Additionally, the Hall 

magnetoresistance decreases non-linearly with increasing temperature. 
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