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Abstract: The Magneto-electric properties of infinite Semi-parabolic Plus Semi-inverse Squared
Quantum wells (ISPPSISQW) in the presence of a strong Electromagnetic Wave (EMW) are
theoretically investigated by using Quantum Kinetic Equation. The system is subjected to an IEMW
E(t) = (EosinQt)ey, a magnetic field B = Be,, and a cross DC electric field E= Ee,. The electron-
optical phonon scattering is considered. The general expression of the Magnetoresistance (MR) is
presented as a function of the temperature, the external magnetic field, the photon energy, and the
intensity of the strong EMW as well as characteristic parameters of ISPPSISQW. The theoretical
result for a specific GaAs/GaAsAl ISPPSISQW is achieved by using a numerical method. The
computational result demonstrates that the maximum peaks appear satisfying the magneto-phonon-
photon resonance condition. The resonance peak's position remains unaffected by temperature
variations and changes by confinement frequency and by electric field; the MR decreases as
temperature increases nonlinearly.

Keywords: Magnetoresistance, magneto-phonon-photon resonance, infinite semi-parabolic plus
semi-inverse squared quantum wells, electromagnetic wave, quantum kinetic equation.

1. Introduction

The advent of low-dimensional materials has marked the beginning of a revolution in science and
technology. Notably, physicists have discovered numerous methods to create various nano-
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semiconductor structures, including low-dimensional semiconductor materials such as quantum wells
and superlattices. Quantum wells are currently a vibrant research area in physics and materials science,
with numerous applications in modern technology, particularly in semiconductors. Additionally,
quantum wells are used in the fabrication of electronic and optical devices.

In quantum physics, the infinite semi-parabolic Plus Semi-inverse Squared Quantum Wells
(ISPPSISQW) is a theoretical model describing a type of quantum well with an infinite semi-parabolic
Plus Semi - inverse Squared shape. This model can be used to study phenomena related to regions of
space-time with extremely high energy densities, a characteristic of ISPPSISQW. Potential applications
of ISPPSISQW include researching space-time structures, providing crucial information about the
properties of black holes, and using simulation and computation methods to predict and explain quantum
physical phenomena.

In theoretical physics research, the problem of the Hall Magnetoresistance (MR) in low-dimensional
semiconductor systems has been extensively studied [1-6]. However, for semiconductor materials in the
form of ISPPSISQW, much remains unexplored. This is why we chose the topic the Hall MR in an
infinite semi-parabolic Plus Semi inverse Squared Quantum Wells under the influence of a strong
electromagnetic wave (EMW) for the case of Electron-optical Phonon Scattering Mechanism by using
quantum kinetic equation.

The article is divided into four parts as follows: The first part is the introduction. In the next section,
we construct the analytical expression of Hall Magnetoresistance in ISPPSISQW for the case of optical
electron— optical phonon scattering. Numerical calculation results and some brief evaluations are shown
in Section three. The final part is our conclusions on the above issues.

2. Theoretical Framework
2.1. The Wave Function and the Discrete Energy Spectrum of the Electron in ISPPSISQW

We consider a quantum well structure in which the electron moves freely in the XY plane and is
confined along the z-axis by the confinement potential ISPPSISQW of the form:
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In which, m. is the effective mass of the electron, # is reduced Planck’s constant, 5, and w,are the
characteristic parameters of the potential well and the confinement frequency, respectively.
We have wave functions and an energy spectrum of the electron in ISPPSISQW of the form:
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Here ¢, (x — x,) is the harmonic wave function centered at x,, v; = % is the drift velocity, B is

the magnitude of external magnetic field, ky is the electron’s wave vector along the y-axis, n and N are
the quantum numbers.
The electron form factor:
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a, = /mwz —-(1+,/1+4 )
Which I'(x) is the Gamma function.

2.2. Total Current Density Expression, Analytical Expression of Conductivity Tensor and
Magnetoresistance in the Case of Electron—optical Phonon Scattering

When the SEMW is applied to the system, with the electric field vector E = (0,Eo sin(Qt),0) (where
Eo and Q are the amplitude and frequency, respectively), the Hamiltonian of the electron-phonon system
in ISPPSISQW can be expressed in the second quantization representation as follows:

H=H,+H,+H;+H, (5)
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Ineg. (5), an NET and an,NE(bcil- and b;j) are the creation and annihilation operators of the electron
(phonon); hw; is the phonon energy. The vector potential of laser radiation as a SEMW A(t) = %EO

cos (2t) ,nand n' are the band indices of states |n, N,E) and |n’,N,lZ + q.), respectively. g, is

electron energy, E q are the wave vectors of electrons and phonons, respectively. C(q) is the electron—
phonon scattering constant. We consider the case of electron-optical phonon scattering:
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The quantum kinetic equation for the electron distribution function [5-7]:
aank(t)
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Where, f,, vi;(t) = (a, 7@, v i) 18 the electron distribution function, denotes the statistical
average value at the moment t. To approximate the external magnetic field strength linearly, we only

take | = 0, +1 with J3(x) =1-— (x i J211(x) ——2 , multiply both sides of the equation by
31?6(5 — ¢k) and then take the sum W|th respect to k. The Eq. (7) has the form:
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Where, ( is the laser radiation’s frequency, d(x) is the Dirac delta functions, Ngq is the equilibrium
distribution function for phonons, which is given by the Bose—Einstein distribution function.
We set that:
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By solving Eq. (8),(9),(10) and (11) we get the final expression of the specific current density R (e):
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Here, t(¢) is the electron momentum recovery time, h = = is the unit vector in the direction of
magnetic field.

From Eqg. (12) we have that the total current density function has the form:

J=Lo(Q;) + Lo(Si) = OimEm + Bim VT (13)
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After performing analytical calculations, from the expression of the current density J, the expression

for the conductivity tensor is derived:
at
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Set n = wyT and assume that E= (Ey, 0,0);71 = (0,1,0), We have explicit expressions of the
teNSOrs Oy, Oy
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With B in the z direction and E in the x direction, the Magnetoresistance p,., is calculated according
to the formula:
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P yy=— %xx (19)
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3. Results and Discussion

To better understand the dependence of electrical conductivity and the Magnetoresistance on
temperature of the system, external fields as well as material parameters in ISPPSISQW, we present
numerical calculation results for a GaAs/GaAsAl quantum well using Matlab software in this section.

3.1. Dependence of the Conductivity Tensor on the Magnetic Field (Cyclotron Energy Hw.) B for
Different Values of Temperatures.

In Fig. 1 we have T1 = 250K, T2 = 280K, T3 = 310K, E; =5 x 10%(V.m™1) and w, = 0.5w,,.
Looking at the graph we see this curve has a maximum peak. The presence of this peak indicates that
the peak satisfies the magneto-phonon-photon resonance condition. The resonance peak's position is
determined by the resonance condition, which remains unaffected by temperature variations.
Consequently, the peaks overlap at different temperatures but maintain the same position.

{arb, units)

Per (fom)

Ore

Cyclotron energy (meV) B(T)

Figure 1. Dependence of the conductivity tensor o, Figure 2. Dependence of Hall Magnetoresistance on

on the cyclotron energy hw, for different values of the magnetic field B(T) for different values of
temperatures (temperature T is 250K, 280K, 310K temperatures. (temperature T is 250K, 280K, and
respectively as red, green, and black lines). 310K respectively as red, green, and black lines).

3.2. Dependence of Magnetoresistance on the Magnetic Field B for Different Values of Temperatures

In Fig. 2, we have T1 = 250K, T2 = 280K, T3 = 310K, E; = 5 x 102(V.m™1). It can be seen that
the dependence of Hall Magnetoresistance on the magnetic field B changes when temperature changes.
The resonance peak's position is determined by the resonance condition, which remains unaffected by
temperature variations.
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Figure 3. The dependence of Hall Magnetoresistance  Figure 4. The dependence of Hall Magnetoresistance
on the magnetic field B(T) for different values of on magnetic field B(T) for different values of electric

confinement frequency( confinement frequency w, is field ( electric field Eis5x10 5(V/m),5.5 x
2.6 10" (s7), 28 x 10" (s71),3 x 10" (s7) 105(V/m), 6 x 105(V /m) respectively as red,
respectively as red, green and black lines ). black, and green lines).

3.3. Dependence of Magnetoresistance on the Magnetic Field B(T) for Different Values of Confinement
Frequency

From Fig. 3 we see that the peaks' positions shift in graphs dependent on the confinement frequency
w,, as the magnetic field B changes, the confinement factor w, impacts the resonance condition.

3.4. Dependence of Hall Magnetoresistance on Magnetic Field B(T) for Different Values of Electric Field

In Fig. 4 it can be seen that the peaks' positions shift in graphs dependent on the electric field as the
magnetic field B changes, as the electric field impact the resonance condition.

4. Conclusion

Using the quantum Kinetic equation method, we study the theoretical aspects of the Hall
magnetoresistance in ISPPSISQW. By establishing the quantum kinetic equation for the distribution
function, we derive the analytical expressions for the conductivity tensor and the Hall magnetoresistance
as functions of external fields (magnetic field B, laser frequency Q, and laser amplitude E), parameters
of ISPPSISQW, and temperature for the electron-optical phonon scattering.

We apply numerical calculations to the theoretical results for the specific material GaAs/GaAsAl,
obtaining graphs that show the dependence of the conductivity tensor on cyclotron energy and the
dependence of the Hall magnetoresistance on different values of external magnetic fields and
temperature. The results show a peak in the conductivity tensor's dependence on cyclotron energy when
the peak satisfies the magneto-phonon-photon resonance condition. As the value of the external
magnetic field increases, the Hall magnetoresistance also increases non-linearly. The Hall
magnetoresistance strongly depends on the confinement frequency w,; as the confinement frequency of
the quantum well increases, the Hall magnetoresistance increases. Additionally, the Hall
magnetoresistance decreases non-linearly with increasing temperature.
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