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Abstract: Response’s probabilistic characteristics of a Duffing oscillator subjected to combined 

harmonic and random excitations are investigated by a technique combining the stochastic 

averaging method and the equivalent linearization method. The harmonic excitation frequency is 

taken to be in the neighborhood of the system’s natural frequency. The original equation is 

averaged by the stochastic averaging method in Cartesian coordinates. Then the equivalent 

linearization method is applied to the nonlinear averaged equations so that the equations obtained 

can be solved exactly by the technique of auxiliary function. The theoretical analyses of Duffing 

oscillator are validated by numerical simulation.  

Keywords: Duffing, averaging method, equivalent linearization, harmonic excitation, random 

excitation. 

1. Introduction  

Duffing oscillator, a classical system for illustrating the jump phenomenon and other nonlinear 

behaviors, has been applied to model many mechanical systems. When the system is under only 

harmonic excitation, one of the popular tools used to study it is the averaging method. This method 

was originally given by Krylov and Bogoliubov [1] and then it was developed by Bogoliubov and 

Mitropolskii [2,3] and was extended to systems under a random excitation as in works of Stratonovich 

[4], Khasminskii [5], Robert and Spanos [6]. Another popular method to find the approximate 

response of a stochastic nonlinear system is the stochastic equivalent linearization method. The 

original version of this method was proposed by Caughey [7] and then this method has been developed 

up to recent years by many authors [8-15].  
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It is more complicated when a nonlinear system is under a combination of harmonic and random 

excitations. One would see that it is only possible to obtain an approximate response of the system 

within the individual frameworks of methods of stochastic averaging and equivalent linearization just 

in only a few special cases as shown in works of Dimentberg [16], Mitropolski et al. [17]. Therefore, 

combinations of various methods need developing to investigate responses of such systems. Some 

methods have been used for the analyses such as the averaging method and the path integration (see 

e.g [18]), the combination of multiple scales and second-order closure method [19], the method of 

harmonic balance and the method of stochastic averaging [20], stochastic averaging and equivalent 

nonlinearization [21]. In [21], Manohar and Iyenga overcame a difficulty in solving a Fokker Planck 

(FP) by employing the equivalent nonlinearization method in investigating the Van der Pol oscillator 

under harmonic and white noise excitations. However, a limitation of this approach is which 

equivalent nonlinear function can be chosen to the original one. This technique cannot be applied to 

the Duffing oscillator. In [22], Anh and Hieu investigated Duffing oscillator under periodic and 

random excitations by the averaging and linearization methods. The information of the response, 

however, may not be full when coefficients depending on time in a random equation are replaced by 

their averaged values over one period.  

In the present paper, response’s probabilistic characteristics of a Duffing oscillator under harmonic 

and random excitations are analyzed by a new technique using the stochastic averaging and equivalent 

linearization methods and the technique of auxiliary for FP equation [23]. By using the averaging 

method in Cartesian coordinates, the averaged Duffing equation is simplified in polynomial forms 

which can be replaced by linear ones whose solution can be found exactly. Finally, the theoretical 

analyses of the Duffing system obtained by the proposed technique are validated by numerical 

simulation results, obtained by Monte-Carlo method.  

2. Approximate technique 

Let us consider the Duffing oscillator under combined harmonic and random excitations of the 

form 

 ( )3 2 cos ,x hx x x P t tε εγ ω ε ν ε σξ+ + + = +�� �  (1) 

where , , , , ,h Pω γ ν σ  are positive parameters, ε  is a small positive parameter, and function ( )tξ  is a 

Gaussian white noise process of unit intensity with the correlation function 

( ) ( ) ( )( ) ( )R E t tξ τ ξ ξ τ δ τ= + = , where ( )δ τ  is the Dirac delta function, and notation ( ).E  denotes 

the mathematical expectation operator. We consider Eq. (1) in primary resonant frequency region, i.e. 

parameters ω  and ν  have the relation 

 2 2ω ν ε− = ∆ , (2) 

where ∆  is a detuning parameter. Substituting (2) into Eq. (1) yields  

 ( ) ( )2 3 cosx x x hx x P t tν ε γ ν εσξ+ = −∆ − − + +�� � , (3) 

We seek the solution of Eq. (3) in the form of  
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 cos sin , sin cos ,x b t d t x b t d tν ν ν ν ν ν= + = − +�  (4) 

where b  and d  are slowly varying random processes satisfying an additional condition 

 cos sin 0b t d tν ν+ =� � . (5) 

Substituting (4) into Eq. (3) and then solving the resulting equation and Eq. (5) with respect to the 

derivatives b�  and d�  yield  

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )

3

3

1
cos sin sin cos cos sin cos sin ,

1
cos sin sin cos cos sin cos cos ,

b b t d t h b t d t b t d t P t t t

d b t d t h b t d t b t d t P t t t

ε ν ν ν ν ν ν γ ν ν ν εσξ ν
ν

ε ν ν ν ν ν ν γ ν ν ν εσξ ν
ν

= − −∆ + − − + − + + +

= −∆ + − − + − + + +

�

�

 (6) 

This pair of stochastic differential equations, the system (6), can be simplified by using the 

stochastic averaging method 

 

( ) ( )

( ) ( )

1 1

2 2

, ,
2

, .
2

b H b d t

d H b d t

εσ
ε ξ

ν

εσ
ε ξ

ν

= +

= +

�

�

 (7) 

Here ( )1 tξ  and ( )2 tξ  are independent white noises with unit intensity, and the drift coefficients 

( )1 ,H b d  and ( )2 ,H b d  are determined as follows 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

3

1

3

2

1
, cos sin sin cos cos sin cos sin ,

1
, cos sin sin cos cos sin cos cos ,

t

t

H b d b t d t h b t d t b t d t P t t

H b d b t d t h b t d t b t d t P t t

ν ν ν ν ν ν γ ν ν ν ν
ν

ν ν ν ν ν ν γ ν ν ν ν
ν

= − −∆ + − − + − + +

= −∆ + − − + − + +

 (8) 

where .
t
 is a time-averaging operator over one period defined by 

 ( )
0

1
. .

T

t
dt

T
= ∫ . (9) 

From (8), one obtains the drift coefficients of the system (7)  

  

( ) ( )

( ) ( )

2 3

1

3 2

2

3
, ,

2 2 8

3
, .

2 2 8 2

h
H b d b d b d d

h P
H b d b d b bd

γ

ν ν
γ

ν ν ν

∆
= − + + +

∆
= − − − + +

 (10) 

The FP equation written for the stationary PDF ( ),W b d  associated with the system (7) has the 

form 

 ( )( ) ( )( ) ( ) ( )
2 2 2

1 2 2 2 2
, ,

4
H b d W H b d W W W

b d b d

σ

ν

 ∂ ∂ ∂ ∂
+ = + 

∂ ∂ ∂ ∂ 
. (11) 
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Solution of (11) is still a difficult problem because functions ( )1 ,H b d  and ( )2 ,H b d are nonlinear 

functions in ,b d . To overcome this, the equivalent linearization method is employed. Following this 

method, the nonlinear functions 1 2,H H  are replaced by linear ones. Denote  

 

( ) ( )

( ) ( )

2 3

1

3 2

2

3
, ,

8

3
, .

8

g b d b d d

g b d b bd

γ

ν
γ

ν

= +

= − +

 (12) 

According to the stochastic equivalent linearization method, the nonlinear terms (12) are replaced 

by  

 
( )

( )
1 11 12 13

2 21 22 23

, ,

, ,

g b d b d

g b d b d

η η η

η η η

= + +

= + +
 (13) 

where equivalent coefficients , 1,2; 1,2,3ij i jη = =  are to be determined by an optimization criterion. 

Thus, the functions , 1,2
i

H i =  in (10) are replaced by linear functions  

 

( )

( )

1 11 12 13

2 21 22 23

, ,
2 2

, .
2 2 2

h
H b d b d

h P
H b d b d

η η η
ν

η η η
ν ν

∆   
= − + + + +   
   

∆   
= − + + − + + +   
   

 (14) 

According to the technique of auxiliary function with the auxiliary function taking the form (see 

[23] for details) 

 
2 21 12

0 2

11 224
u

h

η η
σ ν
ν η η

∆
− + −

=
− + +

, (15) 

the corresponding FP equation to Eq. (11), where drift coefficients are linear functions (14), has the 

following exact solution  

 { }2 2

1 2 3 4 5( , ) expW b d C b d bd b dτ τ τ τ τ= − − + + + , (16) 

where C  is a normalization constant and coefficients , 1,5
i

iτ =  are determined as follows 

( )
111 11 22 21 21 12

2 2

h
hτ η η η η η η

ν ν

 ∆ ∆    
= −Ψ − + − + + + − + − + −     

     
, 

( )2 11 22 22 21 12 12
2 2

h
hτ η η η η η η

ν ν

 ∆ ∆    
= −Ψ − + + − + − − + − +     

     
, 

3 21 22 12 112
2 2 2 2

h h
τ η η η η

ν ν

 ∆ ∆     
= Ψ − + − + + + − +      

      
, 

( )4 13 11 22 23 21 122
2

P
hτ η η η η η η

ν ν

 ∆  
= Ψ − + + + + − + −   

   
, 
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( )5 21 21 13 11 22 232
2

P
hτ η η η η η η

ν ν

 ∆   
= Ψ − + − + − + + +    

    
, (17) 

where  

 
( )

( )

2

11 22

2
22

21 12 11 22

2 h

h

ν η η

σ η η η η
ν

− + +
Ψ =

 ∆ 
− + − + − + +  
   

. (18) 

It is noted that the joint PDF ( ),W b d  determined by (16) has finite integral if coefficients 1τ  and 

2τ  are positive. Therefore, the approximate stationary PDF of Eq. (11) is determined by (16) whose 

coefficients are given in (17). It is seen from (16) that random variables b  and d  are jointly Gaussian. 

Thus, from (16), one obtains  

 ( ) 2 4 3 5

2

1 2 3

2
,

4
E b

τ τ τ τ

τ τ τ

+
=

−
( ) 1 5 3 4

2

1 2 3

2
,

4
E d

τ τ τ τ

τ τ τ

+
=

−
2 2

2

1 2 3

2
,

4
b

τ
σ

τ τ τ
=

−
2 1

2

1 2 3

2
,

4
d

τ
σ

τ τ τ
=

−
3

2

1 2 34
bdk

τ

τ τ τ
=

−
, (19) 

where 2

b
σ  and 2

d
σ  are variance of b  and d , respectively, and 

bd
k  is covariance of b  and d . It is seen 

from (19) that necessary statistics of processes b  and d  can be computed algebraically based on 

coefficients of joint PDF ( ),W b d . Thus, the approximate solution (16) of Eq. (1) is completely 

determined when the linearization coefficients , 1,2; 1,2,3ij i jη = =  are found. There are some criteria 

for determining the coefficients , 1,2; 1,2,3ij i jη = =  . The most extensively used criterion is the mean 

square error criterion which requires that the mean square of the following errors be minimum [7]. 

From (10), (12), (13), and (14), the errors in this problem will be  

  ( ) ( )1 2 3, , 1,2i i i i ie g b d b d iη η η= − + + = . (20) 

So, the mean square error criterion leads to  

 ( ) ( ) ( ){ }22

1 2 3, min, 1,2; 1,2,3.
ij

i i i i i
E e E g b d b d i j

η
η η η=  − + +  → = =   (21) 

From  

 ( )2 0, 1,2; 1,2,3i

ij

E e i j
η

∂
= = =

∂
, (22) 

it follows that  

 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

2

1 11 12 13

2

1 11 12 13

1 11 12 13

2

2 21 22 23

2

2 21 22 23

2 21 22 23

, 0,

, 0,

, 0,

, 0,

, 0,

, 0,

E b g b d E b E bd E b

E d g b d E bd E d E d

E g b d E b E d

E b g b d E b E bd E b

E d g b d E bd E d E d

E g b d E b E d

η η η

η η η

η η η

η η η

η η η

η η η

− − − =

− − − =

− − − =

− − − =

− − − =

− − − =

 (23) 
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where ( ) ( )1 2, , ,g b d g b d  are given by (12). Solving system (23) in , 1,2; 1,2,3ij i jη = = , with noting 

that higher moments of b  and d  can be expressed in the first and second moments because b  and d  

are jointly Gaussian (see [24] for details), gives  

  

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

2 2 2 2

11 12 13

2 2 2 2

21 22 23

3 3 3
, 3 3 , ,

4 8 4

3 3 3
3 3 , , .

8 4 4

b d

b d bd

E bd E b E d E d E b E d

E b E d k E b E d E b E b E d

γ γ γ
η η σ σ η

ν ν ν
γ γ γ

η σ σ η η
ν ν ν

= − = − + + + = +

= + + + = + = − +

 (24) 

Thus, , 1,2; 1,2,3ij i jη = = are determined from the system of nonlinear equations obtained by 

combining equations (17), (19), and (24). After being found by solving system (24), the values of 

coefficients ijη , 1,2i = ; 1,2,3j =  are substituted into (16) to obtain the approximate stationary PDF 

in b  and d  of Duffing equation (1).  

From the transformation (4), the mean response of the oscillator can be rewritten in the form 

( ) ( ) ( )
( )

( ) ( )

( )

( ) ( )
( ) ( ) ( )2 2 2 2

2 2 2 2
cos sin cos ,

E b E d
E x E b E d t t E b E d t

E b E d E b E d
ν ν ν θ

 
 = + + = + +
 + + 

(25) 

where 
( )
( )

tan
E d

E b
θ = − . Thus it is periodic with amplitude A  where  

 ( ) ( )2 2 2 .A E b E d= +  (26) 

The mean square response of Eq. (1) can be determined as follows  

 ( )( ) ( ) ( ) ( )2 2 2 2 2cos sin sin 2E x t E b t E d t E bd tν ν ν= + + . (27) 

Taking averaging with respect to time Eq. (27) gives 

 ( ) ( ) ( ) ( ) ( )
2

2 2 2 2

0

1 1

2 2t
E x E x t d t E b E d

π

ν
π

  = = +   ∫ ( ) ( )2 2 2 21
.

2
b d

E b E dσ σ = + + +   (28) 

Substituting (19) into (28) and reducing the obtained result yield the time-averaging of mean 

square response to be  

 ( ) ( ) ( )

( )

2 2

2 4 3 5 1 5 3 42 1 2

2 2
2

1 2 3
1 2 3

2 2
,

42 4
t

E x
τ τ τ τ τ τ τ τ τ τ

τ τ ττ τ τ

+ + + +
= +

−−
 (29) 

where , 1,5
i

iτ =  are given by (17). It is noted from (29) that the approximate time-averaging value of 

mean square response of Duffing oscillator is calculated algebraically.  

3. Numerical results  

The various values of response of Duffing equation (1) are compared to the numerical simulation 

results versus the particular parameter. The numerical simulation of the mean square response 2

sim
x  
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is obtained by 10,000-realization Monte Carlo simulation. The time-averaged mean square response of 

the Duffing oscillator obtained by the formula (29) is compared to a numerical result in tables below. 

The responses are evaluated versus the parameter γ  and the parameter 2σ  of the random excitation in 

Table 1 with the system parameters chosen to be 1ω = , 5P = , 2h = , 2 1σ = , 0.2ε = , 1.01ν = , and 

in Table 2 with the input parameters 1ω = , 5P = , 2h = , 1γ = , 1.01ν = , respectively. Table 1 shows 

that the proposed technique gives a good prediction. Meanwhile, Table 2 shows that the error of the 

present technique, in general, increases when random intensity 2σ  increases, and that the error 

decreases when ε  decreases. For small values of 2σ , however, the proposed technique gives a good 

prediction. The error in the tables is defined as 

 
( )2 2

2
Err 100%

sim t

sim

x E x

x

−
= × , (30) 

where ( )2

t
E x  denote the time-averaging values of mean square response by the present technique. 

Moreover, the mean response ( )( )E x t  and mean square response ( )( )2
E x t  obtained by the present 

technique are compared to ones obtained by Monte-Carlo simulation in Fig. 1. It may be seen that the 

theoretical predictions and the simulations compare very well.  

Table 1. The error between the simulation result and approximate values of the time-averaging of mean square 

response ( )( )2
E x t  versus the parameter γ  ( )2

1, 5, 2, 1, 0.2, 1.01 .P hω σ ε ν= = = = = =  

γ  2

sim
x  ( )2

t
E x  ( )Err %  

0.5 2.0307 2.1001 3.42 

1 1.4542 1.5005 3.18 

2 0.9872 1.0171 3.03 

5 0.5679 0.5865 3.27 

Table 2. The error between the simulation result and approximate values of the time-averaging of ( )( )2
E x t  

versus the parameter 2σ  ( )1, 5, 2, 1, 1.01P hω γ ν= = = = =  with various values of the parameter ε . 

 0.1ε =  0.2ε =  0.3ε =  0.5ε =  

2σ  
2

sim
x  ( )2

t
E x  ( )Err %  

2

sim
x  ( )2

t
E x  ( )Err %  

2

sim
x  ( )2

t
E x ( )Err %  

2

sim
x  ( )2

t
E x ( )Err %  

0.1 1.4949 1.5069 0.80 1.4385 1.4720 2.33 1.4302 1.4605 2.12 1.3991 1.4513 3.73 

1 1.5134 1.5329 1.29 1.4539 1.5005 3.20 1.4434 1.4898 3.21 1.4109 1.4813 4.99 

2 1.5472 1.5745 1.77 1.4802 1.5451 4.38 1.4633 1.5354 4.93 1.4277 1.5277 7.00 

3 1.5948 1.6326 2.37 1.5140 1.6066 6.12 1.4919 1.5981 7.12 1.4496 1.5914 9.78 

4 1.6509 1.7119 3.70 1.5558 1.6899 8.62 1.5242 1.6827 10.40 1.4750 1.6770 13.69 

5 1.7150 1.8162 5.90 1.6044 1.7982 12.08 1.5622 1.7923 14.73 1.5019 1.7877 19.03 



N.D. Anh et al. / VNU Journal of Mathematics-Physics, Vol. 30, No. 1 (2014) 39-49 

 

46 

In Fig. 2, 3, the square amplitude of the mean response is computed from (24) and (26) with initial 

values 11 1η = − , 12 1η = − , 13 2η = , 21 0.1η = − , 22 2η = − , 23 10η = , and the input parameters 2h = , 

1ω = , 1γ = . It can be observed from Fig 2 that the mean response amplitude increases when 

harmonic excitation increases. For a given value of harmonic excitation, the white noise is seen to 

reduce the mean response amplitude (Fig. 3).  

In Fig. 4, the time-averaging values of mean square response are computed from the Eqs. (24) and 

(29) with the same initial values 
ij

η . Fig. 4 portrays effects of the noise intensity 2σ  and the external 

force’s amplitude P  on the time-averaging values of mean square response. It is seen that the time-

averaging values of mean square response increases with increasing of the external force’s amplitude 

P   for a given the noise intensity 2σ . 

 

Fig. 1. Analytical results are compared with numerical ones, 2h = , 1ω = , 1.01ν = , 5P = , 2 1σ = .  

 

Fig. 2. Mean response amplitude versus P  with input parameters 2h = , 1ω = , 2 1σ = , 1γ = , and 1.01ν = , 

1.02ν = , and 1.03ν = , respectively.  
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Fig. 3. Mean response amplitude versus 2σ  with input parameters 2h = , 1ω = , 3P = , 1γ = , and 1.01ν = , 

1.02ν = , and 1.03ν = , respectively. 

 

Fig. 4. Time-averaging of mean square response ( )2

t
E x  versus the parameter 2σ , 2h = , 1ω = , 1.01ν = , 

1γ = , and 2P = , 3P = , respectively. 

4. Summary and conclusions 

It is difficult to find an exact solution of a nonlinear system subjected to a combination of 

harmonic and random excitations but only a few special cases.  Thus, the application and development 

of different methods for such nonlinear systems are very important. It is shown in this paper that the 

response of the Duffing oscillator is investigated by a new approximate technique using a combination 

of two typical methods, namely the stochastic averaging and equivalent linearization method. The 

technique can be summarized as follows. The state coordinates ( ),x x�  are transformed to Cartesian 

coordinates ( ),b d  at first. In this coordinates, the averaged equations are nonlinear ones whose 

solution is still a difficult problem. The stochastic equivalent linearization method and the technique of 
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auxiliary function are employed to overcome this obstacle. The linearization coefficients of the 

equivalent linear system are determined from a closed nonlinear algebraic equation system as 

presented. The exact stationary PDF of the linearized system from which probabilistic characteristics 

of the response are investigated are obtained. Numerical simulation shows that the analytical results 

are valid. The significant contribution of the present paper is that the technique gained through it can 

be helpful for other nonlinear systems. 
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