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Abstract: The functional integration method is used for studying the scattering of a scalar pion on 

nucleon with the anomalous magnetic moment in the framework of nonrenomalizable quantum 

field theory. In the asymptotic region s → ∞, |t| ≪ s the representation of eikonal type for the 

amplitude of pion-nucleon scattering is obtained. The anomalous magnetic moment leads to 

additional terms in the amplitude which describe the spin flips in the scattering process. It is 

shown that the renormalization problem does not arise in the asymptotic s → ∞ since the 

unrenomalized divergences disappear in this approximation. Coulomb interference is considered as 

an application. 

Keywords: Quantum scattering; anomalous magnetic moment. 

1. Introduction
*
 

The eikonal approximation for the scattering amplitude of high-energy particles in quantum field 

theory including quantum gravity has been investigated by many authors using various approaches [1 

− 17]. Nevertheless, these investigations do not take into account the spin structure of the scattering 

particles. It is, however, well known from recent experiments that spin effects are important in many 

processes [18 − 20]. This motivates us to study the problem of generalizing the functional integration 

method allowing for the spin effects; namely, we consider the scattering of particles with anomalous 

moments. 

Here, we investigate the electromagnetic interaction, i.e., the interaction due to the exchange of 

vector particles with vanishing mass µ → 0. It is pointed out that the eikonal approximation works 

well in a wide energy range [21 − 23]. This approximation was applied to the problem of bound states, 
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not only the Balmer formula was obtained but also the relativistic corrections to the ground level 

energy [5, 24].  

The interaction between a particle with an anomalous magnetic moment and an electromagnetic 

field is nonrenormalizable [25, 26]. Since ordinary perturbation theory does not work in 

nonrenormalizable field theories [27−29], in this work we use the functional integration which enables 

us to perform the calculations in a compact form. 

The rest of this article is organized as the following. In the second section, we consider the 

scattering of a scalar pion on a nucleon with an anomalous magnetic moment. Using the exact 

expression of the single-particle Green’s function in the form of a functional integral, we obtain the 

two-particle Green’s function by the averaging of two single-particle Green’s function. By transition 

to the mass shell of external two-particle Green’s function, we obtain a closed representation for the 

πN elastic scattering amplitude expressed in the form of the functional integrals. To estimate the 

functional integrals we use the straight line path approximation, based on the idea of rectilinear paths 

of interacting particles of asymptotically high energies and small momentum transfers. The third 

section is devoted to investigating the asymptotic behavior of this amplitude in the limit of high 

energies s → ∞, |t| ≪ s, and we obtained an eikonal or Glauber representation of the scattering 

amplitude. As an application of the eikonal formula obtained in fourth section, we consider the 

Coulomb interference in the scattering of charged hadrons. Here, we find a formula for the phase 

difference; this is a generalization of the Bethe’s formula in the framework of relativistic quantum 

field theory. Finally, concluding remarks are presented. 

2. Construction of the two-particle scattering amplitude 

We consider the scattering of a scalar particle (pion π) on a Dirac particle with anomalous 

magnetic moment (nucleon N)1  at high energies and at fixed transfers in quantum field theory. To 

construct the representation of the scattering in the framework of the functional approach we first find 

the two-particle Green’s function, once the Green’s function is obtained we consider the mass 

respective to the external ends of the two particle lines. 

Using the method of variational derivatives we shall determine the two particles Green’s function 

G12 (p1, p2|q1, q2) by the following formula: 

      ( ) ( )
2

4

12 1 2 1 2 1 1 1 2 2 2 0 0exp( , | , ) ( ) , | , | . ( ) ,
( ) ( )

|A

i
G p p q q d kD k G p q A G p q A S A

2 A k A k
µν

µ ν

δ

δ δ
=

 
=  

−  
∫    (2.1) 

where S0(A) is the vacuum expectation of the S matrix in the given external field A. For simplicity, 

we shall henceforth ignore vacuum polarization effects and also the contributions of diagrams 

containing closed nucleon loops; G1(p1, q1|A) - the Fourier of the Green’s function (A.5) (see 

appendix) of particle 1 in the given external field takes the form 

_______ 
1 For simplicity, pion will be regarded as particle 1 and nucleon as particle 2. 
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2 2
1 1 1 1( ) ( )4 4

1 1 1 0
0 0

( , | ) [ ] exp[ ],
s s

i p m s i p q x s
G p q A i dse d xe ie J Aµ µδ ν− −= ∫ ∫ ∫ ∫                          (2.2) 

here we use the notation ( ) ( )J A J z A zµ µ=∫ ∫  and ( )J zµ  is the current of the particle 1 defined by 

0 0
( ) 2 ( ) ( 2 [ ( ) ] ).

s

i i i
J z d z x p d

ξ

µ µξν ξ δ ν η η= − + +∫ ∫                             (2.3) 

We notice that on the mass shell the ordinary Green’s function G2(p2, q2|A) and the squared 

Green’s functions G2(p, q|A) are identical [4], in eq. (2.1), we thus use the latter in eq. (A.11) (see 

appendix): 

2 2
2 2 2 2( ) ( )4 4

2 2 2 0
0 0

( , | ) [ ] exp{ ( )},
s s

i p m s i p q x s
G p q A i e ds d xe T ie J A xγ µ µδ ν− −= ∫ ∫ ∫ ∫                      (2.4) 

where Tγ is the symbol of ordering the γµ matrices with respect to the ordering index ξ, and Jµ(z) is 

the current of particle 2 defined by 

0 0

1
( ) 2 [ ( ) ( ) ] ( 2 [ ( ) ] ).

2

s

i i
J z d i z x p d

ξ

µ µ µν νξ ν ξ σ ξ δ ν η η= + ∂ − + +∫ ∫                                (2.5) 

Substituting eq.(2.2), (2.4) into eq.(2.1) and performing variational derivatives, for the two particle 

Green’s function we find the following expression: 

 
2 2

2
( ) ( )4 4 2

12 1 2 1 2 0 1 2
0

1,2

( , | , ) [ ] exp[ ( ) ] ,
2

( )i i i i i i ii p m s s i p q x

i i i

i

ie
G p p q q ds e d x e D J Jδ ν

∞
− −

=

= − − +∏ ∫ ∫ ∫ ∫     (2.6) 

here we introduce the abbreviated notion 1 2 1 1 2 2( ) ( ) ( ).JDJ dz dz J z D z z J zµ µν ν= −= −= −= −∫∫∫∫  

Expanding expression eq.(2.6) with respect to the coupling constant e2 and taking the functional 

integrals with respect to νi(η), we obtain the well-known series of perturbation theory for the two-

particle Green’s function. The term in exponent eq.(2.6), we can rewrite in the following form: 

 
2 2 2

2 2 2 2

1 2 1 2 1 1( ) ,
2 2 2

ie ie ie
D J J ie DJ J DJ DJ− + = − − −∫ ∫ ∫ ∫                                                       (2.7) 

the first term on the right-hand side eq.(2.7) corresponds to the one-photon exchange between the 

two-particle and the remainder lead to radiative corrections to the lines of the two-particles. 

The scattering amplitude of two particles is expressed in the two particles Green’s function by 

equation: 

 

(((( )))) (((( ))))

2 2 2

4 (4)

1 2 1 2 1 2 1 2

2 2 2 2

2 12 1 2 1 2 2,
2

(2 ) , | ,

1
( ) ( ) ( , | , )( ) ( ),

2
[ ]

i i i
i i i ip q m

i p p q q T p p q q

u q lim p m G p p q q q m u p
m

π δ

→→→→

+ − −+ − −+ − −+ − −

= − −= − −= − −= − −
                         (2.8) 

the spinors ( )u q
2

and ( )u q
2

on the mass shell satisfy the Dirac equation and the normalization 

condition 2 2 2( ) ( ) 2u q u p m==== . 

The transition to the mass shell 2 2 2; ;
i i i

p q m→→→→  calls for separating from formula eq.(2.8) the pole 

terms 2 2 1( )
i i

p m
−−−−−−−−  and 2 2 1( )

i i
q m

−−−−−−−−  which cancel the factors 2 2( )
i i

p m−−−−  and 2 2( )
i i

q m−−−− . In perturbation 

theory this compensation is obvious, since the Green’s function is sought by means of methods other 
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than perturbation theory, the separation of the terms entails certain difficulties. We shall be interested 

in the structure of scattering amplitude as a whole, therefore the development of a correct procedure 

for going to the mass shell in the general case is very important. Many approximate methods that are 

reasonable from the physical point of view when used before the transition on the mass shell , shift the 

positions of the pole of the Green’s function and render the procedure of finding the scattering 

amplitude mathematically incorrect. In present paper we shall use a method for separating the poles of 

the Green’s functions that generalizes the method introduced in Ref. [30] to finding the scattering 

amplitude in a model of scalar nucleon interacting with scalar meson field, in which the contributions 

of closed nucleon loops are ignored. 

Substituting eq.(2.6) into eq.(2.8), we get 

( )

2 2

2 2 2

4 4

1 2 1 2 1 2 1 2

( ) ( )2 2 2 2 4

2 , 0 0
1,22

1
2 2

1 2 1 2 2
0

(2 ) ( ) ( , | , )

1
( ) ( )( )

2

exp  ( ).              

i i i i i

i i i

i p q x i p m

i i i i i ip q m
i

p p q q iT p p q q

u q lim p m q m d x e ds d e
m

e DJ J d ie DJ J u p

π δ

ξ

λ λ

∞ ∞
− −

→
=

 
 


+ − −

= − −


−



∏ ∫ ∫ ∫

∫ ∫

              (2.9) 

To derive eq.(2.9), we employ the operator of subtracting unity in the formula eq.(2.9) from the 

exponent function containing the D-function in its argument in accordance with 
2

1 2 1 2
1

2

1 20
1 .

ie DJ J i DJ J
e ie d DJ J e

λ
λ

− −− −− −− −∫ ∫∫ ∫∫ ∫∫ ∫− = −− = −− = −− = − ∫∫∫∫  

This corresponds to eliminating from the Green’s function the terms describing the propagation of 

two noninteracting particles. Taking into account the identity: 

0 0 0
1,2 1,2

... ...
ks

k k k k

k k

ds d d ds
ξ

ξ ξ
∞ ∞ ∞

= =

→∏ ∏∫ ∫ ∫ ∫  

and making a change of the ordinary and the functional variables 

0
; 1,2, 2 [ ( )] , ( ) ( ) ( ) ( ).

i

i i i i i i i i
s s i x x p d p q s

ξ
ξ ν η η ν η ν η ξ θ η→ + = → − + → − − − −∫  

We transform eq.(2.9) as follow 

 
2 2 2 2

2 2 2

1 2

1 2

4 4

1 2 1 2 1 2 1 2

( ) ( ) ( )2 2 2 2 4

2 , 0 0
1,22

1
4 4 2 2

1 2 1 2
0

(2 ) ( ) ( , | , )

1
( ) ( )( )

2

[ ] [ ] exp             

i i i i i i i i

i i i

i p q x i p m i q m s

i i i i i i ip q m
i

s s

p p q q iT p p q q

u q lim p m q m d x e d e ds e
m

e DJ J d ie

ξ

ξ ξ

π δ

ξ

δ ν δ ν λ

∞ ∞
− − −

→
=

 

+ − −


= − − 





−


∏ ∫ ∫ ∫

∫ ∫ ∫ ( )1 2 2( ).DJ J u pλ 
∫

   (2.10) 

In the following we consider the forward scattering, and the radiative corrections to lines of the 

particles in eq (2.10) will be omitted. We now note that the integrals with respect to si and ξi  give 

factors 2 2 1( )
i i

p m
−−−−−−−−  and 2 2 1( )

i i
q m

−−−−−−−− ; i = 1, 2. Therefore, in eq.(2.10) we can go over the mass shell 

with respect to the external lines of the particle using the relations [31] 

, 0
0

( ) ( ),ias

a
lim ia e f s fε

∞
−

→
  = ∞
  ∫

ε  
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which holds for any finite function  f(s). By means of the substitutions x1 = (y + x)/2 and x2 = (y − 

x)/2 in eq.(2.10) and performing the integration with respect to dy we can separate out the δ - function 

of the conservation of the four-momentum 4

1 2 1 2( )p p q qδ + − − . As a result, the scattering amplitude 

takes the for 

 

1 1( )2 4 4

1 2 1 2 2

1,22

1
2

1 1 2 2 1 2 2
0

          

1
( , | , ) ( ) [ ]

2

[ 2 (0)] ( )[ 2 (0)] exp[ ] (    )

[

]

i p q x

i

i

T p p q q u q e d xe
m

p q D x p q d ie DJ J u p
µν

ν

δ ν

ν ν λ λ

−∞
−∞

=

=

× + + + + −

∏ ∫ ∫

∫ ∫

    

    

1 1 1 1 1 1 1 1
0

2 2 2 2 2

2 2 2
0

( ; , | ) 2 [ ( ) ( ) ( )] exp 2 [ ( ) ( ) ( ) ]

1
( ; , | ) 2 [ ( ) ( ) ( )] ( )

2

exp 2 [ ( ) ( ) ( ) ] .

{ }

{ }

                   { }

J k p q d p q ik p q d

J k p q d p q i

ik p q d

ξ

µ µ

µ µ µν ν

ξ

ν ξ θ ξ θ ξ ν η ξθ ξ ξθ ξ ν η η

ν ξ θ ξ θ ξ ν η σ ξ

ξθ ξ ξθ ξ ν η η

∞

−∞

∞

−∞

= + − + + − +

= + − + + ∂

× + − +

∫ ∫

∫

∫

  (2.11) 

Here, ( )2exp ie DJJλ− ∫ describes virtual-photon exchange among the scattering particles. The 

integration with respect to dλ ensures subtraction of the contribution of the freely propagating particles 

from the matrix element. By going over to mass shell of external two particle Green’s function, we 

obtain an exact closed representation for the ”pion-nucleon” elastic scattering amplitude, expressed in 

the form of the double functional integrals. We would like to emphasize that eq.(2.11) can be applied 

for different ranges of energy. 

3. Asymptotic behavior of the scattering amplitude at high energy 

The important point in our method is that the functional integrals with respect to δ4
ν are calculated 

by the straight-line path approximation [2, 3], which corresponds to neglecting the functional variables 

in the arguments of the D-functions in eq.(2.11). In the language of Feynman diagrams, this linearizes 

the particle propagators with respect to the momenta of the virtual photon. Therefore, the scattering 

amplitude eq.(2.11) in this approximation takes the form 

1 1
1

( )2 4 2

1 2 1 2 2 1 1 2 2 1 2 2
0

2

1
( , | , ) ( ) [ ] ( )[ ] exp[ ] ( ).

2
[ ]i p q x

T p p q q u q e d xe p q D x p q d ie DJ J u p
m

µν
ν λ λ−= + + −∫ ∫ ∫  (3.1) 

We perform the following calculation in the center -of-mass system of colliding particles 

1 2p p p= − =
� � �� � �� � �� � �

 and we direct the z-axis along the momentum 1p
����

 : 

1 10 2 20

2 2 2 2

10 20 0 10 20 0 1 1 2 2

( ,0,0, ); ( ,0,0, ),

( ) 4 ; , ( ) ( ) ;

zp p p p p p p

s p p p p p p t p q p q

= = = −

= + = = = = − = −
                   (3.2) 

integrating over db0 and dbz in eq.(3.1) we obtain for the scattering amplitude 
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{ }1 2

2

2

1 2 1 1 2 2 2 2

( )
( , ) 2

2

ˆ ˆ            exp ( ) ( ) ( , ( )) 1 ( ),

i bu q
T s t is db e

m

T ie d d J p D b J p u p
µ ν

γ µ µν τ τ ντ τ γ τ

⊥∆
⊥

∞ ∞

−∞ −∞

= −

 × −
  

∫

∫ ∫

��������

                    (3.3) 

where 
1 21 1 1 2 2

ˆ / | |, 2 | | , ( 1,2),i i ip p p p i b b p p
µ µ

τ ττ ξ τ τ= = = = ⊥ − +
����

. 

Let us consider the asymptotic behavior of the elastic forward amplitude of the two-particles 
eq.(3.1) in the region ,| |s t s→ ∞ << . In this region, spinors ( )u p  and ( )u p , which are solutions of 

the Dirac equation [25] 

                            
1

( ) , ( ) 1, , | | | |,
| |

| |

p q

p
u p m u q m p qp

p
p

σ
ψ ψσ

 
  = = ≈     

 

� �� �� �� �
� �� �� �� �� �� �� �� �                                 (3.4) 

where pψ  and qψ  are ordinary two-component spinors. 

Using the expansion of 2 2
ˆ[ , ( )]J p

µ γ τ  with respect to the z component of the momentum and 

substituting eq.(3.4) into eq.(3.3), we obtain 

                            0

2 2

( )

1( , ) 2 ( ) 1 ,i bi b

q p
T s t is db e e b

χψ ψ⊥∆
⊥

 = − Γ − ∫
��������

                                          (3.5) 

where 0 ( )bχ  is the phase corresponding to the Coulomb interaction. This phase is determined by 

                            ( )
2 2

0 02 2 2
( ) | ,

(2 ) 2

ik b
e e e

b dk K b
k

χ µ
π πµ

⊥ ⊥−

⊥ ⊥

⊥

= =
+∫
� �� �� �� �

� �� �� �� �

����                                           (3.6) 

where ( )0K bµ ⊥

����

- is the MacDonald function of zeroth order, and the expression 1( )bΓ  is equal to  

    

( )

( ) ( )

1 2

2

1 2 1 2

1 2 1 2 2

1
0

1 2 1 0 0

0

ˆ ˆ( )
11

( ) (1, ) exp .
2 ˆ ( ) ( )

c

z
z c cz z

z z

i d d p D b p

b T
p

p D b D b
p

µ ρ
µρ τ τ

τ
µ

µ τ τ µ τ τ

κ τ τ γ τ

σ
σγ τ γ τ

∞ ∞
⊥

⊥−∞ −∞

 
 

 − ×∂
   

Γ = −   
−   − + × ∂ − ∂     

∫ ∫
��������

    (3.7) 

Note that the expansion of the last expression in a series in powers of 0

0

z zp

p
γ γ
 

+ 
 

is actually with 

respect to 

2
2

0

2

0 0

z zp m

p p
γ γ
 

+ = − 
 

, since 0

0

(1, ) (1, ) 0z z
z z

p

p
σ γ γ σ

 
− + − = 

 
. Therefore, the second term in 

the argument of the exponent in eq.(3.7) can be ignored altogether. Thus, we have 

( ) ( )
2 1 21 1 2 2

11
( ) 1, exp 2 ( ) .

2
z

z

b T e d d D bτ τ τσ κ τ τ γ τ
σ

∞ ∞

⊥ ⊥−∞ −∞

  Γ = − ∂     − 
∫ ∫

��������
                     (3.8) 

Since ( ) ( )
1 2 1 2 2 22 0 2 0( ) , ( ) ,|c c

D b D bτ τ τ τ τ τγ τ γ τ ′ ′⊥ ⊥ ⊥ ⊥ ≠
 ′∂ ∂ 

� �� �� �� �� �� �� �� �
                                           (3.9) 

the 2( )γ τ⊥

����
 matrix in (3.8) does not depend on the ordering parameter 2τ and the 

2
Tτ  ordering 

exponential is equal to the ordinary exponential: 
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( ) ( )

( ) ( )

1 21 1 2

0

11
( ) 1, exp 2

2

11
1, exp |

2 2

z

z

z

z

b e d d D b

e
K b

τ τσ κγ τ τ
σ

κ
σ γ µ

σπ

∞ ∞

⊥ ⊥
−∞ −∞

⊥ ⊥ ⊥

  Γ = − ∂     − 

  
= − ∂    −  

∫ ∫
��������

������������

                              (3.10) 

We go over to cylindrical coordinates b nρ ρ⊥ = =
���� ���� ����

, ( , )n cos sinφ φ=
����

, φ is the azimuthal angle in 

the plane (x, y). Remembering further that 

                                [ ] [ ]
2

sin cos , 1,xz z
n nσ σ ϕ σ ϕ σ× = − + × =
� � � �� � � �� � � �� � � �

                                           (3.11) 

We obtain 

 [ ]{ }1 1( ) exp ( )
z

b i n σ χ ρΓ = ×
����� �� �� �� �

                                                     (3.12) 

where 1( )χ ρ  is determined by 

( )1 0( ) | |
2

e
Kρ

κ
χ ρ µ ρ

π
= ∂

����                                                      (3.13) 

As a result, we obtain the eikonal representation for the πN scattering amplitude2 

( ){ }
2 20 1( , ) 2 exp ( ) ( ) 1 .i b

q pz
T s t is db e i b i n bψ χ σ χ ψ⊥∆

⊥
 = − + × − ∫

�������� � �� �� �� �
                          (3.14) 

Thus, allowance for the anomalous magnetic moment of the nucleon in the eikonal phase leads to 

appearance of an additive term responsible for the spin flip in the scattering process. Integrating in 

eq.(3.14) with respect to the angular variable [32], we obtain the amplitude 

2 20 1( , ) ( , ) ( , ) ,
q y p

T s t f s i f sψ σ ψ = ∆ + ∆                                               (3.15) 

where 0 1( , ), ( , )f s f s∆ ∆  describe processes with and without spin flip, respectively, and they are 

given by 

0

0 0 1
0

1 1 1
0

( , ) 4 ( ) cos 1

( , ) 4 ( )sin .

i
f s s d J e

f s s d J

χπ ρ ρ ρ χ

π ρ ρ ρ χ

∞

∞

 ∆ = − ∆ − 

∆ = ∆

∫

∫
                                       (3.16) 

It is obvious that all the expressions eqs.(3.14)-(3.16) are finite, and therefore the renormalization 

problems does not arise in out approximation in the limit s → ∞. 

4. Coulomb interference 

Coulomb interference for particles with anomalous magnetic moment was considered for the first 

time in Ref. [39], in which the amplitude was actually only in the first Born approximation in the 

Coulomb interaction. The relativistic eikonal approximation was used for the first time to calculate 

_______ 

2 Scattering amplitude T (s, t) in c.m.s can be normalized by the expression  

2

2

( , )( , 0)
, .

64
tot

T s tImT s t d

s d s

σ
σ

π

=
= =

Ω
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Coulomb interference without allowance for spin [34]. It is interesting to use our results to consider 

Coulomb interference [33 − 39] in the scattering of the charges hadrons πN. The nuclear interaction 

can be included in our approach by replacing the eikonal phase in accordance with [34] 

( ) ( ) ( )
em em h

b b bχ χ χ→ +  

( ) ( ) ( )( )
2 2

, 2 exp 1 ,i b

q em h p
T s t is db e i b i bψ χ χ ψ⊥∆

⊥= −  +  − ∫
��������

                              (4.1)  

where 0 1( ) ( ) [ ] ( )
em z

b b i n bχ χ σ χ= + ×
� �� �� �� �

, is eikonal phase that corresponds to the nuclear interaction. 

For the following discussion, the eq. (4.1) is rewritten in the form 

( , ) ( , ) ( , ),
em eh

T s t T s t T s t= +                                    (4.2)  

where ( , )
em

T s t  is the part of the scattering amplitude due to the electromagnetic interaction and 

determined by eq. (3.14) or eqs.(3.15) − (3.16), and ( , )
eh

T s t  is the interference electromagnetic hadron 

part of the scattering amplitude 

( )
2 2

( ) ( )( , ) ( , ) 2 1 ,t h emi b i bi b

eh h q p
T s t e T s t is db e e e

ϕ χ χψ ψ⊥∆
⊥= = − −∫

��������

                      (4.3)  

here 
t

φ  is the sum of the phase of the Coulomb and nuclear interaction,  ( , )
h

T s t  is the purely 

nuclear amplitude obtained in the absence of an electromagnetic interaction. In the region of high 
energies ,| | / 0s t s→ ∞ → , it is sufficient to retain only the terms linear  in κ because κ is  small in 

the all  the following calculations. Integrating in the expression (3.15), we obtain 

2 2

2

2 2

8 (1 )
( , ) exp 1 , ln 2 ,

(1 )
em em q y p em

s i
T s t i ie

i e

πα α κ
ϕ ψ σ ψ ϕ γ

α µ

 Γ − ∆ 
= − ∆ = −  ∆ Γ +    

                      (4.4)  

where 2 / 4 ,eα π µ= is the photon mass, and 0,577215...γ =  is the Euler constant. Calculating 

( , )
ch

T s t  we use the standard formulas 

2 2( , ) ( , 0) ,R t

h q h pT s t f s t e tψ ψ= = = −∆                         (4.5)  

where 
( , 0)

( , 0) .
( , 0)

h
h tot

h

Ref s t
f s t s i

Imf s t
σ

 =
= = + 

= 
                        (4.6)  

Then, calculating the integral (4.3), we obtain 

 ( )
2

( , ) ( , ) 1 exp , ln 2 .
4

emh h y t t

e
T s t T s t ie R

κ
σ ϕ ϕ µ γ

π

   = + ∆ = − +    
                      (4.7)  

Hence, for the difference of the (infinite) pases of the amplitudes ( , )
eh

T s t and ( , )
c

T s t we find the 

expression 

   2ln( ) .
t c

i Rϕ ϕ ϕ α= − = − ∆                          (4.8)  

In contrast to [39] in which Coulomb interference with allowance for anomalous magnetic 

moment, in our approach we have exactly summed all ladder and cross- lader Feynman graphs. In the 
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case of scattering through small angles 2
2

psin p
θ

θ∆ = ���� , p is the relativistic momentum in cms), the 

phase difference is equal to 1
2i ln

Rp
φ α

θ
= . This result is practically the same as Bethe's [33]. 

5. Conclusions 

In the framework of the functional integration, a method is proposed  for studying the scattering of 

a scalar pion on nucleon with an anomalous magnetic moment in quantum field theory. We obtained 

an eikonal representation of the scattering amplitude in the asymptotic region ,s t s→ ∞ ∣ ∣� . 

Allowance for the anomalous magnetic moment leads to the additional terms in the amplitude that do 

not vanish as s → ∞ , and these describe spin flips of the particles in the scattering process. It is shown 

that in the limit s → ∞  in the eikonal approximation the renormalization problem does not arise since 

the unrenomalized divergences disappear in this approximation. As an application of the eikonal 

formula obtained, we considered the Coulomb interference in the scattering of charged hadrons, and 

we found a formula for the phase difference, which generalizes the Bethe's formula in the framework 

of relativistic quantum field theory. 
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APPENDIX: THE GREEN'S FUNCTION IN THE FORM OF A FUNCTIONAL INTEGRAL[40] 

In this appendix we find the representation of the Green's functions of the Klein-Gordon equation 

and the Dirac equation for single particles in an external electromagnetic field 

( ), ( ) / 0A x A x xµ µ µ∂ ∂ = in the form of a functional integral. Let us consider the Klein-Gordon equation 

for the Green' function3 

   2 2 4[( ( )) ] ( , | ) ( ).i eA x m G x y A x yµ µ δ∂ + − = − −                         (A.1)  

Writing the inversion operator in exponential form, as proposed by Fock [41] and Feynman [42], 

we express the solution of eq.(A.1) in an operator form 

  2 2 4

0 0
( , | ) exp ( ( ) ( , )) ( ),{ }

s

G x y A i d i i eA x im x yµ µξ ξ ξ δ
∞

= ∂ + − −∫ ∫                    (A.2)  

_______ 
3 Here we use all the notations presented in Ref. [4] 
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the exponent in expression (A.2), which contains the non-commuting operators ( , )xµ ξ∂ and 

( , )A xµ ξ  is considered as Tξ -exponent, where the ordering subscript ξ  has meaning of proper time 

divided by mass m. All operators in (A.2) are assumed to be commuting functions that depend on the 

parameterξ . The exponent in eq. (A.2) is quadratic in the differential operator µ∂ . However, the 

transition from Tξ -exponent to an ordinary operator expression ("disentangling" the differentiation 

operators in the argument of the exponential function by terminology of Feynman [42]) cannot be 

performed without the series expansion with respect to an external field. But one can lower the power 

of the operator  ( , )xµ ξ∂  in eq. (A.2) by using the following formal transformation 

{ } { }2 4 2

0 0 0
exp ( ) ( , ) exp ( ) 2 ( ) ( , ) .

s s s

i d i eA x C i d i i eA xµ µ µ µ µξ ξ ξ δ ν ν ξ ξ ξ ξ   ∂ + = − + ∂ +   ∫ ∫ ∫ ∫       (A.3)  

The functional integral in the right-hand side of eq.(A.3) is taken in the space of 4-dimensional 

function ( )µν ξ with a Gaussian measure. The constant Cµ  is defined by the condition: 

4 2exp ( ) 1.{ }C i dµ µ µδ ν ν ξ ξ− =∫ ∫                  (A.4)  

After substituting (A.3) into (A.2), the operator 
0

exp 2 ( ) ( )
s

i
µ

µν ξ ξ ∂
  ∫ can be "disentangled" and 

we can find a solution in the form of the functional integral: 

  ( )2 4 4

0
0 0

( , | ) [ ] exp 2 ( ) ( 2 ( ) ) 2 ( ) ,
s s s s

im s s
G x y A i dse ie A x d x y dµ µ ξ ξ

δ ν ν ξ ν η η δ ν η η−  = − − −
  ∫ ∫ ∫ ∫ ∫       (A.5)  

where       

2

12

1 2

1

4 2 4

4

4 2 4

exp[ ( ) ]
[ ] ,

exp[ ( ) ]

s

ss

s s

s

i d d

i d d

µ η

µ η

δ ν η η η
δ ν

δ ν η η η

− Π
=

− Π

∫

∫ ∫
 

and 2

1

4[ ]s

sδ ν  is volume element of the functional space of the four-dimensional functions ( )µν η  

defined in the interval 1 2s sη≤ ≤ . 

The expression for the Fourier transform of the Green's function (A.5) takes the form.  

( )2 24 4 ( ) 4 ( ) 4

0
0 0

( , | ) ( , | ) [ ] exp ,
s s

i p m s i p q x s
G p q A d xd yG x y A i d e d xe ie J Aµ µξ δ ν− −= =∫ ∫ ∫ ∫ ∫              (A.6)  

here we use the notation ( ) ( )J A J z A zµ µ=∫ ∫ , and ( )J zµ  is the current of the particle 1 defined by 

( )0 0
( ) 2 ( ) 2 2 ( ) .

s

i i i
J z z x p d

ξ

µ µν ξ δ ξ ν η η= − + +∫ ∫                  (A.7)  

Up to this point, we have found the closed expression for the Green's function of single spinless 

particles in an external given field in the form of functional integral. In a similar manner we find the 

representation of the Green's function for the Dirac equation, 
4[ ( )] ( , | ) ( ).i m e A x G x y A x yµ µ µ µγ γ δ∂ − + = − −                  (A.8)  

Since functional integrals are related to the solution of second - order equations, it is convenient to 

introduce the squared Green's function ( , | )G x y A  
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( , | ) [ ( )] ( , | ),G x y A i m A x G x y Aµ µ µ µγ γ= ∂ + +                  (A.9) 

in which ( , | )G x y A satisfies  

( )
2 2 4( ) ( ) ( , | ) ( ).i eA x m e A x G x y A x yµ µ µν µ νσ δ ∂ + − + ∂ = − −  

              (A.10) 

Comparing eq. (A.2) and eq.(A.9), we get to see some term µνσ  related to spin of particle 24  

( )2 4 4

0
0 0

( , | ) [ ] exp ( ) 2 ( ) ,
s s s

im s s
G x y A i e T ie J A x x y dγ µ µ ξ

δ ν δ ν η η−  = − −
  ∫ ∫ ∫ ∫            (A.11) 

where Tγ  is the symbol of ordering the µγ  matrices  with respect to the ordering indexξ  and 

( )J zµ  is the current of the particle 2 defined by 

( )0 0

1
( ) 2 ( ) ( ) 2 2 ( ) .

2

s

i i iJ z i z x p d
ξ

µ µ µν νν ξ σ ξ δ ξ ν η η
 

= + ∂ − + +  
∫ ∫               (A.12) 

It is important to notice that the solutions of eqs. (A.2) and (A.9) are similar, however, the one of 

the latter contains one more term related to the spin. Because µνσ  depends on ξ  as an ordering index, 

the solution of eq. (A.9) must contain ξγ , therefore, Tξ remains in eq. (A.12). 
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