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Abstract: In this paper we study the trajectory behavior of Lotka - Volterra predator - prey
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1. Introduction

The Kolmogorov equation
€)= £[1.x(0).5(0)]
y(6)=yg[nx(). ()]
with the functions f[ #,x(t),y()]: g[£.x(t).y(t) ] periodic in t is a strong tool to describe the

evolution of prey-predator communities depending on the changing of seasons. There is a lot of work
dealing with the asymptotic behavior of such systems as the existence of periodic solutions, the
persistence... [1-4] In particular, the classical model for a system consisting of two species in prey-

predator relation
i(t)=x(t)[a(t)-b(t)x(t)—c(t) y(t)]
y(1)=y()[=d (1) +e(t)x(r)= £ (1) ()]

with the periodic coefficients a; b; ¢; d; e; f is well investigated in [5-10], where x(r) (resp. y(r)) is

the quantity of the prey (resp. of predator) at time ¢ .

a.1

" Tel.: 84- 989060885
Email: honglanle229 @ gmail.com
49



50 L.H. Lan/ VNU Journal of Science: Mathematics — Physics, Vol. 30, No. 3 (2014) 49-69

In almost of these works, one supposes that the communities develop under an environment
without random perturbation. However, it is clear that it is not the case in reality because in general,
annual seasonal living conditions of the communities are not the same. Therefore, it is important to
take into account not only in the changing of seasons but also in the fluctuation of stochastic factors,
which may have important consequences on the dynamics of the communities.

For the stochastic Lotka - Volterra equation, a systematic review has been given in [11-13]. In our
separate paper [14], we analyze the Lotka - Volterra predator-prey system with constant coefficients
under the telegraph noises, i.e., environmental variability causes the parameter switching between two
systems. Then we have described some parts of w-set of solutions and show out the existence of a
stationary distribution.

In this paper, we want to consider predator-prey models under the influence of stochastic
fluctuation of environment and changing periodically of season as well. We describe completely the
omega limit set of the positive solutions of Equation (1.1) with the periodic coefficients under the
telegraph noises. Also, the existence of a Markov periodic solution that attracts the other solutions of
Equation (2.4), starting in R, X R, under certain conditions is proved.

The rest of the paper is divided into three sections. Section 2 details the model. Some properties of
the solution and the set of omega limit are shown in section 3. The last section is some simulations and
discussions.

2. Preliminary

Let (Q,F,P) be a complete probability space and {&(¢):7>0} be a continuous-time Markov
chain defined on (€2, F, P), whose state space is a two-element set M ={—,+} and whose generator is

given by

Q:(q” quJ:(_a’ o j
41 4» B -B
with >0 and >0 . It follows that, @ =(p.q). the stationary distribution of {&(r):t 20}

satisfying the system of equations

{wQ:O
p+qg=1
is given by
p=lim P{&(1)=1}= p
o atp @.1)
g=lim P{{(r)=2}= afﬁ

Such a two-state Markov chain is commonly referred to as telegraph noise because of the nature of
its sample paths. The trajectory of {& } is piecewise-constant, cadlag functions. Suppose that
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0=7,<7,<7,<..<7T,<.. (2.2)

are its jump times. Put

0, =17,-T,, 0, =T,~T,, . ,O, =T, —T (2.3)

n—1

It is known that the sequence {0, }:=1 is an independent random variables in the condition of

given sequence {frk }Z_l (see [15, 16]). Note that if & is given then & is constant since the

process{& } takes only two values. Hence, (0,);, is a sequence of conditionally independent random

—-at

variables, valued in [0, +oo]. Moreover, if & =+ then ©

»ue has the exponential density ol , e

and o

2n+1

has the density ,Bl[oﬁw)e’ﬂ’ . Conversely, if & =— then o, has the exponential density

)e’m and o

aly 5.1 has the density ,Bl[ )e’ﬂ’ (see [15]). Here

0,400

3 1,20
lore) = 0, <0

Denote 3 =0(7, ,k<n) ;37 =0(7, —7,, k>n). We see that 3 is independent of 3° for any

n?

0,400

ne N in the condition that & given.

Let & have the distribution P{& =+}=p;P{& =—}=¢q then {£} is a stationary process.
Therefore, there exists a group @', R of P — preserving measure transformations 8': Q — Q
such thaté (w) =& (8'w) , we Q.

We consider the periodic predator-prey equation under a random environment. Suppose that the
quantity x of the prey and the quantity y of the predator are described by a Lotka - Volterra equation

{x:x[a(ft, t)=b(&, t)x—c(&, t)y]
y=y[=d(&. 1) +e(§. 1)x=f(&.1)y]

where g:E— R for g=a,b,c,d,e, fsuch that g(i,.) are continuous and periodic functions with

2.4)

period T > 0 for any i€ E. Moreover, m< g(i , t)SM ; in which m and M are two positive
constants.
In case where the noise {& } intervenes virtually into Equation (2.4), it makes a switching between

the deterministic periodic system

{)@ (t)=x, () a(+ 1) =b(+ 1) x, () =c(+ 1)y, ()] 03
V()= v (O)[=d (1) +e(+ 1)x (1)~ f (+. 1) . (1)]
and another
{x(z)w(z)[a(—, Db 1) (1) (1) (1) e
v.(1)=y.()[~d(= ) +e(=1)x (1)~ f (= 1)y-(1)]
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Thus, the relationship of these two systems will determine the trajectory behavior of Equation
(2.4).

System (2.4) without the noise {&}, i.e.,g(& ,t)=g(¢) for any g=a,b, .., f is studied in [9].
They show that

Theorem 2.1. Consider the system
{x(r)=x(z>[a(z)—b(r)x(r)—cmy(t)}
()= y(O)[—d(e)+e(r)x(r)= £ (1) ¥(r)]

where a,b,..., f are T-periodic functions.
a) If
inf (EJ > sup (ij (2.8)
b e

inf (éj > sup (Ej 2.9)
e d

then system (2.7) has a positive T-periodic solution (x (1), y (t)) satisfying

2.7)

(x(6)=x"(¢) . y(r) -y (1)) —==>(0,0) . (2.10)
b) If
o))
inf| — |>sup| — (2.11)
e b
then the (unique) periodic solution " (¢) of the equation 1i(t) =u(t)[ a(t)—b(t)u(t)] is stable and
(x(r)=u"(1).y(r)) —==(0.0) (2.12)

for any positive solution (x(¢), y(t)) to (2.7).

VI o
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Figure 1. Coexistence of predator and prey. Figure 2. Extinction of predators.
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Lemma 2.2. Consider the system
{X(t) =f(xy.1)
y(1)=g(xy.1)

where f,g: R*%[0,40) — R*x[0,+0o0) are T-periodic functions in t.

Suppose that this system has a globally asymptotically stable T- periodic solution

(x"(1).y" (1)) = (x(1.0.25). 9(1.0.2,)).

where zz ::(x; ,yS) is the initial point. Then, for every €>0and a compact set K, we can find a
T =T (& K)>Osuchthatforall 127 ,s20,(x,,y,)€ K. we have

‘x(t+s,s,x0 ,yo)—x*(t+s)‘+‘y(t+s,s,x0 ,yo)—y*(t+s)‘ <eg (2.13)

Proof. Since f,g are T —periodic, we can suppose that 0<s<T. Moreover, it is easy to show
that if (x,,y,)eK and 0<s<T, there is a compact set K’ such that
(x(T, 5.%05 Yy ) > (T8, %0, y,) )e K’. Due to the periodicity of parameters, it is therefore sufficient to
verify (2.13) for s=0. Since(x"(r),y"(r)) is stable, we can find a &,>0 such that if
‘x—xé‘ﬂy—yé‘ <0, then

‘x(t,O,x,y)—x*(t)‘+‘y(t,0,x,y)—y*(t)‘ <eg ,Vt=20 (2.14)

On the one hand, (x* (2). y*(t)) is globally asymptotic then for every (x, , y,)€ K, there exist a
=k T, k(x()’yo) € N such that

(x0-30) — (x0530)
‘X(T(xo.yo) 0.x.y)=2 (1, ) +‘y(T(xo.yo) 0.x.y) =y (T, )

By the continuous dependence of solutions on the initial data, there is a neighborhood of (x,, y, ).

denoted by V, -, such that

<0

£

‘x(T

[E

0uns) s (T ool 0u50) (1)

As aresult of (2.14) and (2.15),
‘x(t,O,x,y)—x*(t)‘+‘y(t,0,x,y)— y' (t)‘ <o, ‘v’(x,y)e Vv t>T

X, ° (%0-30)

Sé'g,‘v’(x,y)e Vi (2.15)

(2.16)

The family {V \ (x,,)€ K} is an open covering of K. Since K is compact then there is a

Xo > Y

finite family {Vx1 eV ),,} such that K CU V, .- By choosing T" = max T(xé ,yé), for any
020 X0 > Yo part X0 »

0 I<i<n

point (x,,y,)e K and forallz>T", we have:
‘x(t’o’xo’yo)_f (l‘)‘+‘y(l‘,0,xo ayo)_y* (t)‘ <€

The proof is complete.
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3. Dynamic behavior of the solution

Let (x,,,)e R2. Denote by (x(t,O,xo,yo) , y(t,O,xO,yo)) the solution of (2.4) satisfying the
initial condition(x(0,0,xo, ¥)» ¥(0,0,x,, yo))z(xo, ¥,). For the sake of simplification, we

Write(x(t) , y(t)) for (x(t,O,xO,yO) , ¥(2,0,x, ,yo)) if there is no confusion.

Proposition 3.1. The system (2.4) is dissipative and the rectangle (0, M / m]x(O,M *Im’ —1] is
forward invariant.

Proof. By the uniqueness of the solution, it is easy to show that both the nonnegative and positive
cones of R’ are positively invariant for (2.4). From the first equation of system (2.4) we see that

)'c=x[a(§[ J4)=b(& t)x—c(& ,t)y} < x[a(é 1)=b(& ,t)x} < x(M —mx).
By the comparison theorem, it follows that if x(0)>0 then x(1)<M /m, V't >1, for some 7, >0.
Similarity,
y= y[—d(f, Jg)+e(E ) x—f (& ,t)y} < y[—d(ft Jg)+e(E )M Im—f (& ,t)y}
<y(—m+M2/m—my),
which follows that y(1)<M?*/m* -1, Vt>1, for somet, >1, .

From these estimates, we also see that the rectangle (0, M / m]x(O,M 2 Im? —1] is forward
invariant. The proof is complete.

Proposition 3.2. There exists A &, >0such that limsup x(2,0,x,,,)>6, for any (x,,y,)with

probability 1.
Proof. By the system (2.4), there exist 0, >0, & >0 such that
—d(&t)+e(E ) x—f(E.t)y<—€, ;VO<x< 3, ,0<y<M*/m’ -1
and
a(&.t)=b(& . t)x—c(&.t)y>¢, forall 0Sx,y<4,. (3.1)

Assume that limsup x(t,O, Xos Yo ) < 6, with a positive probability. Then, there is a z, >0 such that

x(1)< 8, y(t)SM?/m*—1 Vt>t, , which implies that y(t)<—¢, y(t). Therefore, for some , >,
,y(1)<6, ,Vi=t, . From (3.1) we see x(t)>¢,x(r),Vi=1, , which follows that lim x(7)=oo .

t—+o0

This contradiction implies the assertion of this proposition.
Proposition 3.3. There exists a positive number x,,, satisfying: if (x,,y,)€ R> we can find

>0 such that x(7,0,x,,y,) > x,,, forall 1>7.
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Proof. With &, mentioned in 3.2, there exists >0 such thatx(z)>d,. Let 0<g <6, such

that—d, == —m+ Mg <0.If x(t)>¢ forall 1> then the proposition is proved. Otherwise, x(1)<g,
fora r>1.Let h :inf{s >;:x(s)<€1}.We see that if x(r)< g for 7> h then

y=y[=d(& 1) +e(&.0)x=f(§.1)y|<y(-m+Me)==8y forall te(h. h)

which implies that

y(O)<y(h) e <y e ie ()

Hence,
)'C:x[a(é‘t 4)=b(&E ) x—c(& ,t)y] Zx(m—M x—-My,. e_‘s‘('_h‘)) ,Vie(h,h) .

Put

By comparison theorem we get

£, e
X(I)ZW , Vte (hq,hz)

n(t)

Let o= min —° >0. It is clear that & does not depend on (x(0),y(0)) and A . Let

>h 14+ €M N (1)
X, =min{a, &} we see that x(¢)>x,,, ,Vt>1. The proof is complete.

As is known, the property of solutions of Lotka -Volterra systems near to boundary is dependent
of two marginal equations. In the case where the prey is absent, the quantity v(¢) of predator at the

time ¢ satisfies the equationv=-d (&, t)v—f(&,t)v’. Thus, v(r) decreases exponentially to O.
Similarly, without the predator, the quantity u(¢) of the prey at the time ¢ satisfies the logistic equation

i=ula(&.t)=b(&.t)u] . O<u(0)e R* (3.2)
If u(t) is a solution of (3.2) then{«f,,u(t)} is Markov processes.
A random process {¢,}, valued in a measurable space (S; S), is said to be periodic with period 7' if
for any t,,¢,,....,t, € R, the simultaneous distribution of (¢rl+kr N ,...,¢,ﬂ+kr) does not depend on

ke N .
We show that Equation (3.2) has a unique solution u () such that ({f’, u(t)) is a periodic

process. Indeed, put

u (t)=
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where A(7) = J.a (&,,5)ds. Firstly, we see that
0

,] a [fs (@), s] ds
el

u (t+T,0)= ‘_
+T a[&(w), 7] dr
J‘b[g”s(a)),s} el f ds

,].Ta |:§,sz (HT(U), sz] ds

= e’ -
Z]‘Tb[év—T (6Tw)a S — T:| e;[a [érir(g w) TiT] " ds
j. a [;(9%), s} ds
e’

= - =u*(t, 6", a))
b £ (67 @), s |ds

Hence, by virtue of P - preserving measure property of 8, for any continuous function /4, for any
t,<t,<..<t ; ke N wehave

E{h[;ﬁ” > w (tl +kT)’ é:t2+kT ’ u (tz +kT)"“’é:fn+kT ’ u (tn +kT)]}
=E{n[ & (67)u' (1, 67), &, (67),u (1, 8 )oe & (67), 0 (1,, 07 |}
=E{n[&, (). u' (1), 6.0t (6 ) &, (o (1,0) ]}

This means that (é’ u (t)) is a periodic process with period T . The uniqueness follows from the

following lemma:

Lemma 3.4. For any u,>0, lim [u(r)—u*(t)]zo a.s., where u(z) is the solution of the

t—>+o0

equation (3.2) satisfyingu (0) =u, .

Proof. Put z=l— 1* we have z=-az. Thus, by virtue of the bounded below property by
u u

positive constant of z we follow the result.

Lemma 3.5. [Law of large numbers for periodic processes] For any continuous, bounded function
h(t,i,u), periodic in t with period 7 we have
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lim 1 ’h[s, s,u*(s)]ds=E{%fh[s, s,u*(s)]ds} 3.3)

1—+oo ¢ 0

Proof. Put

(n+1)T

X, = I h[s, X,u*(s)]ds

nT

Since { u (t)} is periodic then {X,} is a stationary process. By the law of large numbers we have
1

lim — ZXk =E[X,/J] as.,

n—o0 n k=0

where J isthe o— algebra of the invariant sets. However, (&) is ergodic and u” (¢) has no

non-trivial invariant set then we follow that J ={®,Q} . This implies that

[t/T]

.1 s .11 1
lim - h[s, U (S)]ds:zlgi?m ;sz?E[XO]

1—+eo ¢ 0

1|t
= ?EL[h[S’ U (s)]ds}
Where, [x] denotes the integer number such that[x] <x< [x] +1. Lemma is proved.
We study conditions that ensure the persistence of y(¢) of the Equation (2.4) with x(0) >0 and
y(0)>0.

Proposition 3.6. Put

A= %EL[[—d(f,,t)+e(§,,t)u*(t):|dt} (34)
a)If >0 then limsup y(¢)>J >0 with probability 1.

b) In case A <0, lim y(1)=0 with probability I.

t—+oo

Proof. By comparison theorem, if x(0)=u(0) we haveu()>x(t), Vt . Therefor, by virtue of
Inu (1)-Inx(¢)

Lemma 3.4 we have liminf >0.

t—+oo t

a) From Equations (3.2) and (2.4) we have

Inu"(t)-Inu (0) 11 1
O o shas = ot ()i 65

t 1y Yy (3.6)
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On subtracting (3.6) from (3.5) we obtain

0< lizn:igf {% j‘c(fs ,s)y(s)ds—% j‘b(fs ,s)[u* (s)—x(s)]ds}

Sligigf {% jM y(s)ds—% jm [u (s)—x(s)]ds}

Hence,

liminf {% j:%y(s)ds—%j; [u*(s)—x(sﬂds}zo (3.7)
Otherwise, %z—d(f,,t)+e(ft £)x(1)= £ (£, 1) (1) follows
lny(t)—tln y(0) _ %ﬂ_d(;,s)+e(§ws)u*(s)]ds_

T ()= x(0) s [ (60) ()
and

A€ ()= o [ () ()=

:% .(i;[_d(fs’s)"‘e(fy,s)u*(s)]ds _ Iny(z)—In y(0)

t

. . Iny(¢)—Iny(0)
Moreover, y(t) is bounded above then liminf < — > 0 and we apply the law
t

t—+oo

of large numbers (Lemma 3.5), lim - I[ (& ,s)+e(&,s)u (s)] ds =A, consequently,

imint {1 e(6 [ ()-st61Jas 2 [ 610100 | -

0

=liminf {% j‘[_d(;’s)_,_e(gcs’s)u*(s)]ds_lny(t)—ln y(O)}

{—>+oo 0 t

t—+oo t

> limigf{% j[—d(fs .s)+e(S, ,s)u*(s)]ds}+liminf {_ Iny(¢)-In y(O)} >1

Hence,

liminf{ j[ ]ds+ Iy ds}>
t—+oo 0
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—

[—+oo t ry M M

limint {j o [ (5) (o) s 1 jMy(sms}zi
By (3.7) plus (3.8), we obtain

liminf Y (£+1Jy(s)ds > liminf {% j: %y(s) ds—lj [u*(s)—x(s)]ds} +

t—+o0 T o\ m t—>+o0 0
+liminf 1j [u*(s)—x(s)]ds+ljy(s) ds Zi
[—+oo Iy Iy M
then lirliligf % .(‘: y(s Tm) A2>0 and lifl_ljgp y(t)>6>0.

b) From the second equality of systems (2.4) and A >0 we have

limsup Iny(r)=In y(0) :limsup{%j‘[—d(‘ffY ,s)+e(S, ,s)u*(s)]ds -

=400 t t—>+oo s
%j(:e [ st——.[f ,8)y(s )ds}
< A-limsup % j‘e(fs ,s)[u*( x(s )]ds—hmsup If )y(s)ds <0

which implies that lim y(7)=0. The proof is complete.

Remark 3.7. The conditions (3.4) is easily to be checked by simulation method based on the law

of large numbers. Moreover, by («fr u (t)) is solution of equation (3.2), we have

Note that
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g {.T[ [a(&.t)-b(& 1) u'(1)] dt}zo

t—+oo

i e(%,1)
and that —d (%,7)+ inf a(,1)=0,vt>0

provided that

a(t) d(£.1)
,L“i{ b(i,z)}>,?£{ e(i,t)} 39

Then, A >0 under the condition 3.9, which is similar to (2.8).

From now on, we suppose that 4>0.

Lemma 3.8. With probability 1, there are infinitely many s, =s,(®)>0 such that s, >s, |,
lim s, =c and x(s,)>J, y(s,)>5, Vne N.

n—+oo

Proof. By Proposition 3.3 we can find >0 such that x(t) 2 x for all #>7. On the other

‘min ?
hand, there exists &< x,, and a random sequences {s,}T*, s, > such that y(s,)>&, Vne N. The
proof is complete.

For the sake of simplicity, we suppose & =+ a.s and set x, :=x(7,,x,y), y, =y(7,,x,y)

Sy=0(r, ,k<n); 37 =0(r,-7,,k>n). It is clear that (x,,y,) is 3; measurable 3 is

independent 37 if & is given.

Hypotheses 3.9. On the quadrant intR’, the system (2.5) has a stable positive T — periodic

*

+

(x, (1) =x(1) v, (1) = ¥ (1)) —==(0.0).
Lemma 3.10. Suppose that Hypothesis 3.9 holds and 4 >0, we can find an A >0 such that with
probability 1, there are infinitely many ne N such thatA<x,,y, <M. Moreover, we can find A >0

solution (x ,yi) such that

such that the events {x2k+l >A, Vapar > A } as well as {ka >A, Vo > A } occur infinitely many often.

Proof. Let {3,} be the filtration generated by{&(¢)} . It is obvious that {&(¢),x(¢),y()} is a
strong Feller-Markov process with respect to the filtration {3,}. For a stopping time ¢ , the o —
algebraat ¢ is 3_ :{Ae S.:AN{¢g<t}e g, , Vie R+} .Fix a 7, >0, by Lemma 3.8, we can define
almost surely finite stopping times

1, =inf{t>0: x(t)2 8, y(t) 2 5}

m, =inf{t>n, +T,: x(t)2 5, y(t) 2 5}

nm,=inf{t>7n,_ +T:x(t)258,y(t)2 5}
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For a stopping time ¢, we write 7(¢)for the first jump of &(z) after ¢

61

, le.,

)=inf{r>¢: &(1) £ £(g)} . Let o(g)=7(¢)—¢ and A, ={o(n,)<T;} . ke N. Obviously, 4, is

in the o — algebra generated by {f(nﬂ +5): sZO} and A, € S”M also. Therefore, in view of the

strong Markov property of (f(t),x(t),y(t)) and [see 15, Theorem 5, p. 59] we have

P[4 £(n)=+|=P[0(0)>T[£(0)= %]

Hence,

P(A:)=P[o(n,)>T|E(m) =+] P[E(m ) =+]+P[ (1) > T,|& () == |P[ & () =-]
=P 5(0)>7£(0)=+|P[&(n) =+]+P[ 0(0)>T;|¢(0) =~ [P[£(m, ) =—] < p

where p=max {P(c(0)>7;| & =)} <1. Moreover,

B{Ly L [[€() x(0)-y () ]} =

=E{E[1, 1.[3,., (60 x ) v ()]}

=Bt B[1,,[3,., [[E0). ¥y (m) ]}

=B{t, B[t [0 x(0)y00) |[[€00). 20), ¥ () ]}
= E{I—Ak [f(ﬁkﬂ ), X(ﬂk+1 ), Y(ﬂk+1 ):| [ At (f(nkﬂ) (ﬂk+l )’ y(ﬂk+l ))]}

which implies that

P{Aci NALE(m,.,) =2} =P{Ac|E(m,) =1} P{AE (7, ) = £}, (3.10)

Therefore, from (3.10) and the equation
P(Zkﬂ ﬂZk)=P{Zk+1 N A E(M) = }P{f (71)= }+P{Zk+l N A

it follows

E(n)=—JP{E(n..) =

P(Aci NA) < pP{A| () =+}P{E () =+}+ PP{A () =~} P{E(m) = -} < 7

Continuing this way, we conclude that
n n—k+1
P(UAJ 1- P(ﬂA j<1 (p)
i=k
Consequently,

P(ﬁ[jfg}:l

k=1i=k

-}
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Let A =min{xi (t+5,2,%,50)s v (E+5,2,%,5,) :2€[0.T;], s€[0,T], x,, ¥, € [5,M]} >0, if A,
oceurs, x> A, Vetn) >A , which directly implies the first assertion. As a result, we are able to
define finite stopping times

n =inf{n>0: A<x,y, <M}

n,=inf{t>n: A<x .y, <M’}

n, =inf{r>n_: A<x,.,y, <M}
Put Z=mjn{xi (t+5,0,%,,)s v (t+5.1,%,,5,) :t€[0.T;], s€[0,T], x,. 5, € [A,M*J}>O.

Note that if the event B, :{0'

s * .
o < Tl} occurs thenA<wx, .y, ,x, ., ¥, <M . Using arguments

similar to the previous part of this proof, we can show that B, occurs infinitely often. Consequently,
we obtain the second assertion of this lemma due to the fact that 7, is odd then 77, +1 is even and
conversely.

Next, we will describe the @— limit sets of the system (2.4). Denoted by Q(x, y,a)) the w— limit
set of the solution (x(t,O,x, y), y(t,O,x, y))(a)) starting in (x, y) . To simplify the notations, for
t>s52>0, we denote

7[,*,X(x,y):=(x+ (t,5,%,5), y, (t,s,x,y)) ; respz;x(x,y)::(x_(t,s,x,y), y (t,s,x,y))) is the
solution to the system (2.5) (resp. (2.6)) starting at (x,y)e R? at time s.

Suppose that the solution starting at 7, (0) = (x+ (0), y, (0)) at time 0 is a periodic solution to the

system (2.5), we now describe the pathwise dynamic behavior of the solutions of system (2.4). Put

1.0y ¥ty 1y W NE N} (3.11)

r={(xy)=al) 7,7, (7.(0):0=r < <<t

where ¥, (0)is mentioned above. Let us (x,,y,)e R2.

Theorem 3.11. Suppose that on the quadrant intR>, the system (2.5) has unique stable
T — periodic solution (x; (¢),y; (¢)) and with 2 mentioned in Proposition 3.6, let >0 . Then,

a) With probability 1, the closure I’ of " is a subset of the @—limit set Q( %y, Y, @).

b) If there exists a z= (;c, 3/) such that the point z= 7[{+ 0 [}q (0)] satisfies the following condition

det #0 (3.12)
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A\ A

w(E.1.2)=a(&.1)-b(£. 1) x-c(&.1) ¥
(&.r.2)==d(&.1)+e(& 1) x=f(E.7)

Then, with probability 1, the closure T of T isthe @ - limit set Q(xo,yo,a)). Moreover, I

where

absorbs all positive solutions in the sense that for any initial value (x,,y,)€ intR> , the value
7(w) =inf{t > Oz(x(s,O,x0 VY0, @), ¥(5,0,%,, 5, ,a)))e I,Vs> t}

is finite outside a P-null set.

Proof. DenoteH:=H A We construct a sequence of stopping times

1, =inf { 2k : (x,, . y,, )€ H}
1, =inf {2k > 7, : (x,, . y,, )€ H}
1, =inf {2k >7,_, : (x,,, ¥, )€ H}.
It is easy to see that the events {7, =n}e 3 for any k; n. Thus the event {7, =n} is independent
of 3y
if & is given. By the Proposition 3.1 and Lemma 3.10, 77, <o a.s for all n. For simplicity, we put
mod(7)=t—kT where k, is such a integer that kT < r <(k, +1)T. As a convention, the notation
mod(t)e (-8, §) means mod(7)e[0,6)U(T—5,T). By U,(x,y), we denote neighborhood of
point (x,y) with radius £>0 and ¢(t,s,x,y):(x(t,s,x,y), y(t,s,x,y)).
Firstly, we prove that for any £ >0, J, >0, there are infinitely many odd stopping times such that

(x2n+1 > Vantl )E Ué‘l I:}/-: (0):| and mOd(T2n+1 ) € (_é‘l 4 51 )' We have

S )
Tt Ty \7 T2 yﬂk“

ﬂ-H—mod(r,]“l), mod(r,”\ﬂ) (x”k + y’h- +l ) = 7z.j—T+mod(‘r,7k+]), 0 (x’ Y )
where (;, ; ) = 72'+T mod(sy 1) (xm+1 N ) Therefore, applying the Lemma 2.2 obtains, for any
neighborhood U, [ﬁ (0)] , there exists T7*>0 and &, so that

ﬂtﬂwyrw (xm » Vi )e U, [}{ (0)] VST, mod(t+r,7k )e (-6,,38,).

k

This is equivalent tote (—mod(fm )+ KT-4, ,—mod(z;7 )+ KT+, )K >K ,in which Ke N
is the smallest natural number satisfying —mod(f,w1 ) +KT-6,>T.
Note that, —mod(f,w1 ) +KT<T +T:=T .

Now, let &, =min{4,, J, }; for any u>0,8, >0,ke N, put
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A, {a) 0,1 € ( mod( ﬂ+1)+fT—§3, mod( ﬂ+1)+fT+§3 )}
Note that if X has the exponential distribution then P{t < X <7+a} > P{s< X <s+a}

whenever 7 <s . Using the strong Markov property of {&(¢), x(¢), y()} and noting that we have

already known the value of f% , we have the estimation
P{A_k} =P{O'm+1 ¢ ( mod( (N +1)+ET—53 , mod(

77+1

)+fT+§3)}

P

Il
c'—.g c'—.g c>'—.Jr

0, . & (-mod(r)+KT -4, ,—mod(t)+ET+53)} | xP{z, edt}

. _ xP{z, edt}

Ty =F oo

P{O'”+1e —mod ( )+ET—53,—mod(t)+ET+53)}
P{O',l +1e —mod( )+ET—53 ,—mod(t)+ET+53)} |§T :+><P{2',7A edt}

x P{z, edt}

IN
<:~'—.‘8L

Plo, .e(T-6,.T+4)} |, _,

—Pfo,e(T-8,.T+8)} | Plr, cd}=Plo,e(T-5,.T+5)}=p<1

0
We now estimate P{A_kﬂﬂ} . Since A, € 3, , applying the strong Markov property of
(‘f(’) ,x(1), y(t)) we have

P{A_kﬂa}:E[E{lelm |S,,M}} E[l E{l |S,,“}J

=E[1A7E{1% 3, }J E[l Efl— ]< 9 E(1,

Continuing this way, we have,

P{N;5 U A} =Plo: o, € (-mod(z, )+ KT =0, ~mod(z,.,) + KT +8, )i.o.of n}=1 .

The even A, occurs infinitely means that, with probability 1, for any 6, >0 , for any U . [}/+ (O)J ,
there are infinitly many n=n(®)eN such that (x,,, .)€V, [}{ (0)] and
mod(2,,,,)€ (=6,, &) = (=4, &) . Thus 7.(0) € Q(x,,y,, @).

Secondly, we prove {7:;0[7{ (O)]: tZO}e Q(x,, ¥y, @) as. To do this, we show that for

Y= [;@( )], vuU,, (;/) ,Vd,>0, there are infinitely many even stopping times such that

(x,, an)e U, (;/) and mod(7,,)e (mod(s,—&,), mod(t,+4,)). By continuity of solutions with
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respect to initial conditions, there are & ,>0,d,>0,J, >0 small enough so that if
V(x,y)e U, [}g (O)J Ve (-0, 1,+d;) andVmod(s)e (—J,, &) then

.o [?’i (0)] o [}’j (0)]‘ A %

7o (x.3) =7, [7(0)] <

- &
7z.t+x,s (x, y)_ﬂ't’o (x’y)‘ <?2.

Therefore,

T (2.3) =7, [ 7(0) ]| €| (2, 9) =77 (6, )

0 (603) =7, [ 7 (0) |+, [7(0) |7, [ 72 (0)] <&
V(x.y)eU,[7(0)]. Vie(t, =5, . 4,+6,), Vmod(s)e (=5, . &,).

Put

6= inf{ 2k +1: ('x2k+1 > Yorst )E U€3 |:7i (O)] ’ mOd(TZkH )e (_56 » O )}

S :inf{ 2k+1> ¢ (x2k+1 ’y2k+1)€ U, [7{ (O)J > mOd(TZkH)E (_56 ) 56)}
S :inf{ 2k+1> ¢, : ('x2k+1 ’)’2k+1)€ U, [7{ (O)J , mOd(TZkH)E (_56 ) 56)}‘

From the previous part of this proof, it follows that ¢, <+c0 and lim g, =+c a.s.. Since
k—>+oo

{s, =n}e i .{c,} is independent of 37 . Put r=min{d,, J,}. By the same argument as above we
obtain P{a): o, € (t1 —1, 1 +t_)i.0. of n}:l. This relation says that (xgk ,ygk) e U, [;f+ (0)] and

Gatl

o

o€ (tl —1, f +t_) which implies (xgkﬂ,ywl) eU, (;/) for many infinite ke N and

mod(rgkﬂ)e (mod(t1 —t ), mod(t1 +t_)) < (mod(t, - &,), mod(t, + 6, )).

This means ye Q(x,, ¥, , @) as..

Lastly, by similar way and induction, we conclude that I" is a subset of Q(x0 » Yo o a)) Because
Q(x,, v, , ®) isaclose set, we have T'c Q(x,, ¥, , @) as..

b) We now prove the second assertion of this theorem. Let 2:(; , 3/) satisfying the condition

(3.12). By the existence and continuous dependence on the initial values of the solutions, there exist

t,s ;,s

two numbers a>0 and b>0 such that the function @(s,t)=7" 7= (2) is defined and

continuously differentiable in (—a, a)x(-b, b).
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We note that

Therefore, by Theorem of Inverse Function, there exist 0<a, <a , 0<b, <b such that (o(s,t) isa
diffeomorphism between V =(0, ¢,)x(0, b,) and U = (V). As a consequence, U is an open set.
Moreover, for every (x,y)eU , there exists a(s*, t*)e V=(0,4a,)%(0,b) such that

(x,y)zﬂ'tf’sx T . (%)E . Hence, UcT' c Q(x, , y, » ®). Thus, there is a stopping time ¥ <+oo a.s.
such that(x(}/), y(;/))e U. Since T' is a forward invariant set and U cI, it follows that
(x(¢),y(t))e T, Vt>y with probability 1. The fact (x(¢),y(¢))e T’ for all r>y implies that
Q(x, 5 ¥y » a))cl: By combining with the part a) we get Q(x, .y, , a))=1: a.s..The proof is

complete.

4. Simulation and discussion

Noting that A can be estimated by using the law of large number and formula (3.4) for an initial
concrete set. We will illustrate the above model by following numerical examples in three cases.

Example I. 4 >0 and the coexistence case presents in both states (see figure 3). It corresponds to

a=0.6;=04;a(+)=10+ sint ; b(+):2+% cost ;c(+)=1;
d(+)=1—%cos(t—%j;e(+)=1.8; f(+)=3.1+% sin(t+%j ;
a(—)=11.7—sin(t+7r) ;b(—)=1.5+ic0st;
c(—)=1.4—lsin(t+£j;d(—)=2.1+lsin(t+7z);

2 2 6

e(—):1.2+% cost ; f(—):2.7—%cos(t+%j
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the initial condition (x(0),y(0))=(2.5;2.8) and number of switching n = 300. In this example,

the periodic 7 =27 , the solution of (2.4) switches between two positive periodic orbit of the systems
(2.5) and (2.6).

3.0q
2.8+
2.6
24|

Predator 2.2 ‘.

Figure 3. Orbit of the system (2.4) in example 1.

Example II. 4>0 and one state is coexistence, the other is extinction of predator. The system
(2.5) with coefficients

a(+)=12+ sinxt ; b(+)=2.8+l CoOS Tt ;

c(+)=2.4+isin(7ﬁ+7f ): d(+) =1'2_% cos(m‘—%j ;

e(+)=24 1 sinzt; f(+)= 2.4+l sin[m+£) ;
2 3 6
has a stable positive periodic solution and the system (2.6) with coefficients
a(-)=6.1-sin(zt+7);b(-)= 1.6+l cos Tt ;

c(-)= 24-1 sin[m+£j ;d(-)= 6+ sin(m+£j ;
2 2 6 2

e(_)=0~5+%cosm ; f(_)=1.9—%cos(m+%)

has predator tending to 0. The number of switching #»n=300, transition intensities

@=0.3, #=0.7 and initial condition (x(0), y(0))=(1.2,3.4). Since A>0, the system (2.4) is
persistent (see figure 4).
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Predator

Figure 3. Orbit of the system (2.4) in example II.

This work provides some results about the asymptotic behavior of a system of two coupled

deterministic predator-prey models switching at random. The formula for the value A4 can not be
explicitly computed. However, it is easy to approximate it by simulation. When 4 >0 the dynamics of
the predator-prey system leads to the existence of a periodic Markov process, which plays an
important role in the study of the development of communities.
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