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Abstract: This paper deals with ruin probabilities in generalized discrete time risk process with 

Markov chain interest model. After, recursive and integral equations for the ruin probabilities are 

given. When interest rates can be negative and loss distribution have regularly varying tails, the 

paper built an asymptotic formula for the finite time ruin probability by an inductive approach on 

the recursive equations. 
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1. Introduction
∗∗∗∗ 

Recently, estimates for the probability of ruin within finite time or infinite time for a discrete time 

risk model as the initial capital tends to infinity, with emphasis on heavy-tailed insurance risk and 

financial risk, have drawn a lot attention. In [1], authors consider the discrete time risk process 

                                              
1(1 ) ,           1, 2,...

k k k k
U U I Y k−= + − =                         (1.1) 

where 0 0U u= > is the initial capital,{ },   1,2,...kY k = (the net loss in period k) is a sequence of 

independent and identically distributed (i.i.d.) random variables and the interest rate {Ik, k =0,1,…}in 

period k is a sequence of random variables and independent of { },   1,2,...kY k = . Thus Uk given by 

(1.1) is the surplus of an insurer at the end of period k. The main results dealt with in [1] are to first 

derive a recursive equation of the finite time ruin probabilities and then an integral equation for 

infinite time ruin one. After, authors generalize Lundbergs upper bound for the infinite time ruin 

probability. Later, X. Wei and Y. Hu consider a more general model 

                       
1( )(1 ) ,           1, 2,...

k k n k k
U U X I Y k−= + + − =                                         (1.2) 

_______ 
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Where, Xn is the total amount of premiums;{ },   1, 2,...kX k = ;{ },   1,2,...kY k = are two 

sequences independent and identically distributed random variables and the interest rate 

{ },   0,1,...kI k = is a sequence of random variables and independent of ( ){ }, ,   1,2,...k kX Y k = . They 

claim that the time of ruin, denoted by { }inf 1; 0u nn Uτ = ≥ < , has an estimate 

{ }  as uP u u
λτ −< ∞ ≈ → ∞ , where λ is a specific positive parameter. See [2], [3]. 

In this paper, we continue to consider the model described by (1.2) by studying a recursive 

equation for the finite ruin probabilities and an integral equation for infinite time ruin one. We also 

investigate the asymptotic formula for ruin probability. 

The organization of this paper is as follows: Section 2 derives recursive and integral equation for 

ruin probability. In Section 3 we concern with asymptotic formulas for ruin probabilities. 

2. Recursive and integral equation for ruin probpability 

Consider the risk model 

1( )(1 ) ,    1, 2,...
k k n k k

U U X I Y k−= + + − =                                    (2.1) 

With the sequences of random variable ( ) ( ) ( );  and n n nX Y I satisfy the assumptions in the 

section 1. Denote by H(x) the common distribution function of the i.i.d sequence { },   1, 2,...kX k = , 

that is 

{ }1( ) ,H x P X x= ≤  

And by F(x) the common loss distribution function of { },   1,2,...kY k = , i.e., 

{ }1( ) ,  with (0) 0.F y P Y y F= ≤ =  

It is easy to see that the solution of (2.1) has the expression 

      ( )
11 1

(1 ) (1 ) (1 )  1, 2, ...
k kk

k k j j j t

jj t j

U u I X I Y I k
== = +

 
= + + + − + = 

 
∑∏ ∏          (2.2) 

Assume that the interest rates { },   n 0,1,...nI = is a homogeneous Markov chain with state space 

{ }0 1, ,..., Ni i i=I and the transition probabilities , ,
ij

p i j ∈I . That is for all 

1
0,1,...and all states , , ,..., ,

o ns t t t
n i i i i

−
=  

{ }
{ }
1 1 01 1 1 0

1

| , ,..., ,

                                   | 0; , 0,1, 2,..., ,

nn t n s n t t t

n t n s st

P I i I i I i I i I i

P I i I i p s t N

−+ −

+

= = = = =

= = = = ≥ =
 

where 
0

1, 0,1, 2,..., .
N

st

t

p s N
=

= =∑  

We define the finite and infinite time ruin probabilities in risk model (2.1) with the initial surplus 

u and 0 s
I i= given, respectively, by 
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( ) ( )

( ) ( )( )

( ) ( )

( ) ( )( ) ( )

0

1

0

11 11

0

1

0

11 11

, 0 |

1 1 (1 ) 0 | ,

and

, 0 |

             = 1 1 1 0 |

n

n s k s

k

n k kk

j j j j t s

jj t jk

s k s

k

k kk

j j j j t s

jj t jk

u i P U I i

P u I X I Y I I i

u i P U I i

P u I X I Y I I i

ψ

ψ

=

== = +=

∞

=

∞

== = +=

 
= < = 

 

   
= + + + − + < =  

   

 
= < = 

 

 
+ + + − + < = 

 

∑∏ ∏

∑∏ ∏

∪

∪

∪

,
  
 
  
∪

  

where 
k

U is given by (2.2). It is clear that 

 

( ) ( )

( ) ( )

1 2 3                                        , ( , ) , ...,

and

                                         lim , ( , ).                          2.3

s s s

n s s
n

u i u i u i

u i u i

ψ ψ ψ

ψ ψ
→∞

≤ ≤ ≤

=

 

Throughout this paper, if B is a distribution function then the function ( ) ( )1B x B x= − is 

called tail of the distribution ( )B x . We first give a recursive equation for ( , )
n s

u iψ  and an integral 

equation for ( , )
s

u iψ . 

Lemma 2.1. For 1,2,...   0,n and any u= ≥  

 

( ) ( )( )( ) ( )

( )( )( ) ( )
( )( )

( )( )( ) ( )

( )( )( ) ( )

1

0 0

1

0 0
0

1
0

0

0
0

, 1

               1 , ( ) ,    (2 .4 )

w

                              ( , ) 1

( , ) 1

    

t

N

n s st t

t

N
u x i

s t n t t

t

N

s s t t

t

N

s s t t

t

u i p F u x i d H x

p u x i y i d F y d H x

ith

u i p F u x i d H x

a n d

u i p F u x i d H x

ψ

ψ

ψ

ψ

∞

+
=

∞ + +

=

∞

=

∞

=

= + +

+ + + −

= + +

= + +

∑ ∫

∑ ∫ ∫

∑ ∫

∑ ∫

( )( )( ) ( ) ( )
( )( )1

0 0
0

           1 , ( ) .  2 .5
t

N
u x i

s t t t

t

p u x i y i d F y d H xψ
∞ + +

=

+ + + −∑ ∫ ∫

 

Proof. Given ( )1 1 1,  and ,  from 2.1 ,  we havetX x Y y I i= = =  

( ) ( ) ( )( )1 1 1 11 1 ,tU u X I Y u x i y h y= + + − = + + − = −  

where ( )( )1 .
t

h u x i= + + Thus, for y h>  it yields 

{ }1 1 1 1 00 | , , , 1t sP U Y y X x I i I i< = = = = =  
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Which implies that for ,y h> ( )
1

1 1 0

1

0 | , , , 1.
n

k t t s

k

P U Y y X x I i I i
+

=

 
< = = = = = 

 
∪  

In case 0 y h≤ ≤  one has { } ( )1 1 1 1 00 | , , , 0.         2.6t sP U Y y X x I i I i< = = = = =  

Let { } { } { }, 1,2,... ; , 1, 2,...  and , 0,1, 2,...
n

X n Y n I n= = =� � �  be independent copies of 

{ }, 1, 2,... ,nX n = { }, 1,2,... ,nY n =  and { }, 0,1, 2,... ,nI n =  respectively. From (2.6) and (2.2) it 

follows that for 0 y h≤ ≤  

( )

( )

( ) ( )( )

( ) ( ) ( )( )

1

1 1 0

1

1

1 1 0

2

1

1

11 12

22 1

0 | , , ,

0 | , , ,

1 1 (1 ) 0 |

1 1 (1 ) 0

n

k t t s

k

n

k t t s

k

n k kk

j j j j t t

jj t jk

k kk

j j j j t

jj t j

P U Y y X x I i I i

P U Y y X x I i I i

P u I X I Y I I i

P h y I X I Y I

+

=

+

=

+

== = +=

== = +

 
< = = = = 

 

 
= < = = = = 

 

   
= + + + − + < =  

   

 
= − + + + − + <



∑∏ ∏

∑∏ ∏

∪

∪

∪

( ) ( ) ( )( )

( )( )

1

1

2

1

0

11 11

|

1 1 (1 ) 0 |

( , ) 1 , .

n

t

k

n k kk

j j j j t t

jj t jk

n t n t t

I i

P h y I X I Y I I i

h y i u i x y iψ ψ

+

=

+

== = +=

  
= 

  

   
= − + + + − + < =  

   

= − = + + −

∑∏ ∏� � � � � �

∪

∪

 

Therefore, by conditioning on Y1, X1 and I1 , we get 

( )

( ) ( )

( )( )
( )

( ) ( )( )
( )( )

( )

( ) ( )( ) ( )

1

1 0

1

1

1 1 0
0 0

0 1

0 1
0

1

0 0
0

0
0

( , ) 0 |

0 | , , , ( )

( )

1 , ( )

1

t

t

n

n s k s

k

nN

st k t t s

t k

N

st
u x i

t

N
u x i

st n t t

t

N

st t

t

st n

u i P U I i

p P U Y y X x I i I i dF y dH x

p dF y dH x

p u x i y i dF y dH x

p F u x i dH x

p u

ψ

ψ

ψ

+

+

=

+∞ ∞

= =

∞ ∞

+ +
=

∞ + +

=

∞

=

 
= < = 

 

 
= < = = = = 

 

=

+ + + −

= + +

+

∑ ∫ ∫

∑ ∫ ∫

∑ ∫ ∫

∑ ∫

∪

∪

( ) ( )( )
( )( )

( )
1

0 0
0

1 , ( ) .
t

N
u x i

t t

t

x i y i dF y dH x
∞ + +

=

+ + −∑ ∫ ∫
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Which yields the recursive equation (2.4) for the finite ruin probabilities ( , )
n s

u iψ in lemma 2.1. 

By using the Lesbegue dominated convergence theorem and letting n → ∞ in (2.4) we obtain (2.5). 

The proof is complete.  

We remark that the techniques used in this proof are similar in [4] 

3. Asymptotic formula for ruin probability 

A distribution F on ( ),−∞ +∞  is said to have a regularly varying tail, or simply says F β−∈R , if 

there exists some constant 0β ≥ such that for any 0y > , 

( )
lim .

( )x

F xy
y

F x

β−

→∞
=  

We say that F ∈D is dominant – tailed if for any 0 1y< <  one has 

( )
lim sup .

( )x

F xy

F x→∞
< ∞  

Similarly, we say  F ∈ L to have long – tailed if for any 0y >  

( )
lim 1.

( )x

F x y

F x→∞

+
=  

In case  

lim ( ) ,  0,x

x
e F xλ λ

→∞
= ∞ ∀ >  

F is called heavy – tailed. 

It is easy to see that 

• .β− ⊂ ⊂R D L  

• All three classes of distributions  a d,  n  β−R D L   are heavy - tailed. 

• The set β−R b is stable under convolution operator, that is if 1F β−∈R  and 2F β−∈R  then 

1 2*F F β−∈R  Moreover, 

                             ( ) ( ) ( )1 21 2* ~   as .                         (3.1)F F x F x F x x+ → ∞  

See in [5] and [6]. 

• In addition, the class β−R is closed under tail – equivalences, i.e., for two distributions F1 and 
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F2, if 1F β−∈R  and ( ) ( )1 2~F x cF x for some 0c > , then 2F β−∈R  

• Further, it is easy to see that if F ∈D  then for any constant 0c > , the function 

( ) / ( )F cu F u is uniformly bounded in ( ), .u ∈ −∞ ∞  

We consider asymptotic formula for the finite time ruin probability ( ),n su iψ when the loss 

distribution F is heavy – tailed. We now allow that the interest rates may be negative, so that we can 

think of interest rates , 0,1,...
n

I n = as the rates of return on a risky investment satisfying: 

        1 0, 0,1,...,  or equivalently, 1 0, 0,1,..., .        (3.2)
n s

I n i s N+ > = + > =  

We rewrite (2.1) under the form 

( )1 1 (1 ) , 1,2,...k k k k k kU U I X X Y k−= + + + − =  

Define ( )( )( ) 1s k k sQ z P Y X i z= − + < for s=0, 1, 2 ,…,N. Since Yk and Xk are independent,  

( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

[ (1 ) ]

[ (1 ) ]
0

0

(1 )

          = |

         = 1 ,               3.3

k k s

k k s

s k k s Y X i z

Y X i z k

k s

Q z P Y X i z E I

E I X x dH x

P Y x i z dH x

− + <

∞

− + <

∞

= − + < =

=

< + +

∫

∫

 

Which implies that 

( ) ( ) ( )( ) ( )
0

1 1 .
s ss

Q z Q z F x i z dH x
∞

= − = + +∫  

By lemma 2.1 we obtain 

( )( )( ) ( ) ( )( )1
0

0 0

( , ) 1 1 .       (3.4)
N N

s t st t t

t t

u i F u x i dH x p Q u i
∞

= =

Φ = + + = +∑ ∑∫  

Denote  

( ) ( ) ( ) ( ),, 1 ,  and , , 0
s

s
n in i n s n sB u u i B u u i u= − Φ = Φ ≥  

For n=1, 2, … and s=1, 2, ….,N. All distributions ( ) ( ), 1 , , 1,2,...
sn i n sB u u i n= − Φ = are 

supported on [0, ).+∞  

By lemma 2.1 and equation (3.3) we have 
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( ) ( ) ( )( ) ( )

( )( )( ) ( ) ( )
( )( )

( )( ) ( )( ) ( )

1
0

0

1

0 0
0

(1 )

0
0 0

, 1

                 1 , ,

                 1 1 , .

t

t

N

n s st t

t

N u x i

st n t t

t

N N
u i

st t st n t t tt

t t

u i p F u x i dH x

p u x i y i dF y dH x

p Q u i p u i z i dQ z

∞

+
=

∞ + +

=

+

= =

Φ = + +

+ Φ + + −

= + + Φ + −

∑ ∫

∑ ∫ ∫

∑ ∑ ∫

 

Further, for any distribution F1 on [0, )∞ and a distribution F2 on ( ), ,−∞ ∞  the tail of convolution 

F1*F2 satisfies 

( ) ( ) ( ) ( )11 2 2 2*   for .
x

F F x F x F x y dF y x
−∞

= + − − ∞ < < ∞∫  

Therefore, 

( ) ( )

( )( )
( )

( )( ) ( )( )
( )( ) ( )

1, 1

1

0
0

,

0

,

              1 1 ,

              * 1 .                                               3.5

s

t

s

n i n s

N u i

st t t n t t t

t

N

st n i t t

t

B u u i

p Q u i u i z i dQ z

p B Q u i

+ +

+

=

=

= Φ

= + + Φ + −

= +

∑ ∫

∑

 

Theorem 3.1. Let F β−∈R  for some 0β > then, for any n=1,2,… and 
s

i ∈ I  

                      ( ) ( ) ( ) ( ), ~  as ,                   3.6n s n su i D i F u uΦ → ∞  

where ( )n sD i  is given recursively by 

       ( ) ( )( )( ) ( )1 1 1 0
[ 1 1 | ],                   3.7

n s n s
D i E D I I I i

β−

−= + + =  

with ( )0 0.sD i =  

Proof. Since F is increasing function, ( ) ( ).F z x F z+ ≤ Therefore, for any F β−∈R . 

( )
( )

( )
( )

( )0 1 and lim 1.             3.8
z

F z x F z x

F z F z→∞

+ +
≤ ≤ =  

Using Lebesgue dominated convergent theorem we obtain 

( )
( )

( )( )
( )

( ) ( )
0

1
lim lim 1.                  3.9

tt

z z

F x i zQ z
dH x

F z F z

∞

→∞ →∞

+ +
= =∫  

This means that ( ) ( )~tQ z F z  as z → ∞ for t =1, 2, …, N. Further, with F β−∈R we have 
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( )( )
( )

( )
1

lim 1 .
t

t
u

F u i
i

F u

β−

→∞

+
= +  

By (3.4) and (3.9) we get 

( )
( )

( )( )
( )( )

( )( )
( )

( ) ( ) ( )

1

0

1 0 1

0

1 1,
lim lim .

1

                    = 1 [ 1 | ] .

N
t t ts

st
u u

t t

N

st t s s

t

Q u i F u iu i
p

F u F u i F u

p i E I I i D i
β β

→∞ →∞
=

− −

=

+ +Φ
=

+

+ = + = =

∑

∑

 

Hence, with any 
s

i ∈ I we have 

( ) ( ) ( )1,1 1
, ~ ( )   .

sis s
u i B u D i F u as uΦ = → ∞  

Assume in induction that for any 
s

i ∈ I  

( ) ( ) ( ) ( ) ( ),, ~  as .              3.10
sn in s n s

u i B u D i F u uΦ = → ∞  

We need to prove that 

( ) ( ) ( ) ( )1,1 1, ~  as .
sn in s n su i B u D i F u u++ +Φ = → ∞  

From (3.10) it follows that , sn i
B and F are tail – equivalent. Thus, , .

sn i
B β−∈R  Hence, by (3.1) and 

(3.9) we have for any 
s

i ∈ I ,  

( ) ( ) ( )( ) ( ) ( ),, * ~ ~ 1  .     3.11
s

s
n in i t t n s

B Q u B Q u D i F u u+ + → ∞  

Hence, 

( )( )
( )

( )( )
( )

( )( )
( )

( )( )( )

, ,* 1 * 1 1
lim lim .lim

(1 )

                                    = 1 1 .      

t tn i t t n i t t t

u u u
t

n t t

B Q u i B Q u i F u i

F u F u i F u

D i i
β

→∞ →∞ →∞

−

+ + +
=

+

+ +

 

Thus, by (3.5) we get 

( )
( )

( )( )
( )

( )( )( ) ( )

,1

0

1

0

* 1,
lim lim

                       = 1 1 =D .      

t

N
n i t tn s

st
u u

t

N

st n t t n s

t

B Q u iu i
p

F u F u

p D i i i
β

+

→∞ →∞
=

−

+
=

+Φ
=

+ +

∑

∑

 

 

Hence, (3.6) holds for all n=1, 2, … This completes the proof of theorem. 



N.T. Hien / VNU Journal of Mathematics-Physics Vol. 29, No. 1 (2013) 9-17 

 

17 

4. Conclusion 

The article gave an asymptotic formula for the finite time ruin probability in case of possibly 

negative interest rates. It is seen that the rate of convergence of ruin probability does not depend on the 

distribution of premiums Xn when the initial capital tends to infinity. This result confirmed a capital 

injection at each period whether there is premium or without premium does not play a role in the ruin 

probability of the model. This is similar to the results already known in game theory, when the player 

has an infinite amount of capital, the ruin probability gradually to 0 wich does not depend on the 

person’s capacity to play. We think this is an important discovery in the field of financial mathematics. 
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