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Abstract: In this paper we establish sufficient conditions for the solution mappings of parametric 

generalized vector quasiequilibrium problems to have the stability properties such as lower 

semicontinuity, upper semicontinuity, Hausdorff lower semicontinuity, continuity, Hausdorff 

continuity and closedness. The results presented in the paper improve and extend the main results 

of Kimura-Yao [J. Global Optim.  138, (2008) 429-- 443], Kimura-Yao [Taiwanese J. Math., 12, 

(2008) 649--669] and Anh-Khanh [J. Math. Anal. Appl., 294, (2004) 699--711]. Some examples 

are given to illustrate our results. 
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1. Introduction and preliminaries
∗∗∗∗ 

Let , , , ,X Y MΛ Γ  be Hausdorff topological spaces, let Z  be a Hausdorff topological vector 

space, A X⊆  and B Y⊆  be nonempty sets. Let 1 : 2A
K A× Λ → , 2 : 2A

K A× Λ → , 

: 2B
T A A× × Γ → , : 2B

C A× Λ →  and : 2Z
F A B A M× × × →  be multifunction with ( )C x  is 

closed with nonempty interiors different from Z. 

For the sake of simplicity, we adopt the following notations. Letters w, m and s are used for a 

weak, middle and strong, respectively, kinds of considered problems. For subsets U  and V  under 

consideration we adopt the notations. 

( , ) w u v U V× means ,u U v V∀ ∈ ∃ ∈ , 

( , ) m u v U V× means ,v V u U∃ ∈ ∀ ∈ , 

( , ) s u v U V× means  ,u U v V∀ ∈ ∀ ∈ , 

_______ 
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1( , )  means ,U V U Vρ ∩ ≠ ∅   

       
2 ( , )  means , ( , )U V U V u vρ ⊆ , 

( , )u v wU V× means ,u U v V∃ ∈ ∀ ∈  and similarly for  ,m s , 

    
1( , )  means a    nd similarly forU V U Vρ ∩ = ∅  2ρ  

Let {w, m, s}α ∈  and { , , }w m sα ∈ . We consider the following parametric quasiequilibrium 

problem (in short, (QEP αρ )). 

(QEP αρ ): Find 1( , )x K x λ∈  such that   2( , ) ( , ) ( , , )y t K x T x yα λ γ×  satisfying 

( ( , , , ); ( , )).F x t y C xρ µ λ  

 

For each , , Mλ γ µ∈ Λ ∈ Γ ∈ ,  we let 1( ) : { | ( , )}E x A x K xλ λ= ∈ ∈  and let 

: 2
A

MαρΣ Λ × Γ × →    be a set-valued mapping such that ( , , )αρ λ γ µΣ  is the solution set of  

(QEP αρ ),   i.e., 

2( , , ) { ( ) | ( , ) ( , ) ( , , ) : ( ( , , , ); ( , ))}.x E y t K x T x y F x t y C xαρ λ γ µ λ α λ γ ρ µ λΣ = ∈ ×  

  Throughout the paper we assume that ( , , )αρ λ γ µΣ ≠ ∅  for each ( , , )λ γ µ  in the 

neighborhoods   0 0 0( , , ) Mλ γ µ ∈ Λ × Γ × . 

 Special cases of the problem (QEP αρ ) are as follows: 

(a)  If 1 2 2( , , ) { }, , , , ,T x y x M A B X Y K K Kγ ρ ρ= Λ = Γ = = = = = =  and   replace ( , )C x λ  

by  int ( , )C x λ− , replace  F  by  f    be a vector function, then (QEP
2α ρ

) become to (PVQEP)  in 

Kimura-Yao [1]. 

 (PQVEP):   Find ( , )x K x λ∈  such  that 

( , , ) int ( , ),  for all ( , ).f x y C x y K xλ λ λ∈ − ∈/  

(b) If 1 2 2( , , ) { }, , , , ( , ) ( , ) ( ),T x y x M A B X Y K x K x Kγ λ λ λ ρ ρ= Γ = = = = = =  and   replace 

( , )C x λ  by  int C− , replace  F  by  f    be a vector function, then (QEP
2α ρ

)   become to (PVEP)  in 

Kimura-Yao [2]. 

 (PVEP):   Find ( )x K λ∈  such that 

( , , ) int ,  for all ( ).f x y C y Kγ λ∈ − ∈/  

(c) If 1 2( , , ) { }, , , ,T x y x M A B X Y K K Kγ = Λ = Γ = = = = = , replace  F  by  f    be a vector 

function, then (QEP
2αρ )  becomes  (QEP) in Anh-Khanh [3]. 

(QEP):  Find ( , )x K x λ∈  such that 

( , , ) ( , ), ( , ).f x y C x y K xλ λ λ∈ ∀ ∈  
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(d) If 1 2 1 2( , , ) { }, , , , , , ,T x y x A B X Y K clK K Kγ ρ ρ ρ ρ= Λ = Γ = = = = = =  and   replace 

( , )C x λ  by  intZ C−�  with C Z⊆  be closed and intC ≠ ∅ , then (QEP
1αρ )  and (QEP

2αρ ) 

become to (QEP) and (SQEP), respectively in Anh-Khanh [4]. 

         (QEP):   Find ( , )x clK x λ∈  such that 

( , , ) ( int ) ,  for all ( , ).F x y Z C y K xλ λ∩ − ≠ ∅ ∈�  

and 

         (SQEP):   Find ( , )x K x λ∈  such that 

( , , ) int ,  for all ( , ).F x y Z C y K xλ λ⊆ − ∈�  

In this paper we establish  sufficient conditions for the  solution sets αρΣ  to have the  stability  

properties such as  the upper  semicontinuity,  the lower  semicontinuity and  the Hausdorff lower  

semicontinuity,  continuity and  Hausdorff   continuity with respect to parameter , ,λ γ µ . 

The structure of our paper is as follows. In the remaining part of this section we recall definitions 

for later uses. Section 2, we establish sufficient conditions for   the lower  semicontinuity and  the 

Hausdorff lower  semicontinuity of solution sets of problems (QEP αρ ), and Section 3 is devoted to the 

upper  semicontinuity, continuity and  Hausdorff   continuity of solution sets of problems (QEP αρ ). 

Now we recall  some notions.  

Definition 1.1[5, 6] 

Let X  and Y  be    topological vector spaces and : 2Y
G X →   be a multifunction. 

(i) G  is said to be lower semicontinuous (lsc) at 0x X∈  if 0( )G x U∩ ≠ ∅  for some open set 

U Y⊆  implies the existence of a neighborhood N  of 0x  such that ( ) ,G x U x N∩ ≠ ∅ ∀ ∈ . G  is 

said to be lower semicontinuous  in X  if it is lower semicontinuous at each 0x X∈ . 

(ii)  G  is said to be upper semicontinuous (usc) at 0x X∈  if for each open set 0( )U G x⊇ , there 

is a neighborhood N  of 0x  such that ( ),U G x x N⊇ ∀ ∈ . G  is said to be upper semicontinuous  in 

X  if it is upper semicontinuous at each 0x X∈ . 

(iii) G  is said to be Hausdorff upper semicontinuous (H-usc) at 0x X∈  if for each neighborhood 

B  of the origin in Z ,  there exists a neighborhood N  of 0x such that, 0( ) ( ) ,G x G x B x N⊆ + ∀ ∈ . 

G  is said to be Hausdorff  upper semicontinuous  in X  if it is Hausdorff  upper semicontinuous at 

each 0x X∈ . 

(iv) G  is said to be Hausdorff lower semicontinuous (H-lsc) at 0x X∈  if for each neighborhood 

B  of the origin in Y ,  there exists a neighborhood N  of 0x  such that 0( ) ( ) ,G x G x B x N⊆ + ∀ ∈ . 

G  is said to be Hausdorff  lower semicontinuous  in X  if it is Hausdorff  lower semicontinuous at 

each 0x X∈ . 
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(v) G  is said to be  continuous at 0x X∈  if it is both lsc and usc at 0x  and to be  H-continuous at 

0x X∈  if it is both H-lsc and H-usc at 0x .  G  is said to be continuous in X  if it is both lsc and usc 

at each 0x X∈  and to be H-continuous in X  if it is both H-lsc and H-usc at each 0x X∈ . 

(vi) G  is said to be closed at 0x X∈  if and only if 0 0,
n n

x x y y∀ → ∀ →   such that ( )
n n

y G x∈ , 

we have 0 0( )y G x∈ . G  is said to be closed  in X  if it is closed at each 0x X∈ . 

Lemma 1.2. ([7, 8]) Let X  and Y  be topological vector spaces and : 2Y
G A →  be a 

multifunction. 

(i) If G  is usc at 0x  then G  is H -usc at 0x . Conversely if G  is H -usc at 0x  and if 0( )G x  

compact, then G  is usc at 0x ; 

(ii) If G  is H-lsc at 0x  then G  is lsc at 0x . The converse is true if 0( )G x  is compact; 

(iii)  If G  is usc at 0x  and if 0( )G x   is closed, then G   is closed at 0x ; 

(iv) If Z  is compact and   G   is closed at 0x   then G  is usc at 0x ; 

 (v) If G  has compact values, then G  is usc at 0x  if and only if, for each net { }x Xα ⊆  which 

converges to 0x  and for each net { } ( )y G xα α⊆ , there are 0( )y G x∈   and a subnet { }yβ  of { }yα  

such that .y yβ →  

2. Lower semicontinuity of solution set 

In this section, we discuss the lower semicontinuity and  the Hausdorff lower  semicontinuity  of 

solution sets for parametric generalized  quasiequilibrium problems (QEP αρ ). 

Theorem 2.1 Assume for problem (QEP αρ ) that 

(i)  E  is lsc at 0λ , 2K  is usc and compact-valued  in 1 0( , ) { }K A λΛ × ; 

(ii) in 1 2 1 0( , ) ( ( , ), ) { }K A K K A γΛ × Λ Λ × ,  T  is usc and compact-valued  if sα = , and lsc if 

wα =   (or mα = ); 

(iii  )the set      1 1 2 1{( , , , , ) ( , ) ( ( , ), ( ( , ), ), )x t y K A T K A K K Aµ λ ∈ Λ × Λ Λ Λ Γ ×  

 2 1 0 0( ( , ), ) { } { }: ( ( , , , ); ( , ))}K K A F x t y C xµ λ ρ µ λΛ Λ × ×  is closed. 

Then αρΣ  is lower semicontinuous  at 0 0 0( , , )λ γ µ . 

Proof. Since { , , }w m sα =  and 1 2{ , }ρ ρ ρ= , we have in fact six cases. However, the proof 

techniques are similar. We consider only the cases 2,sα ρ ρ= = . Suppose to the contrary that 
2sρΣ  is 

not   lsc at 0 0 0( , , )λ γ µ , i.e., 
20 0 0 0( , , )sx ρ λ γ µ∃ ∈Σ , 0 0 0( , , ) ( , , )

n n n
λ γ µ λ γ µ∃ → ,  

2 0( , , ),n s n n n nx x xρ λ γ µ∀ ∈Σ →/ . Since E  is lsc at 0λ , there is a net ( )
n n

x E λ′ ∈ , 0n
x x′ → . By the 
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above contradiction assumption, there must be a subnet 
m

x′  of 
n

x′  such that, m∀ , 

2
( , , )m s m m mx ρ λ γ µ′ ∈Σ/ , i.e., 2( , ), ( , , )

m m m m m m m
y K x t T x yλ γ′ ′∃ ∈ ∃ ∈  such that 

                                            ( , , , ) ( , ). (2.1)
m m m m m m

F x t y C xµ λ′ ′⊆/  

As 2K  is usc at 0 0( , )x λ  and 2 0 0( , )K x λ  is compact,  one has 0 2 0 0( , )y K x λ∈  such that 

0m
y y→  (taking a subnet if necessary). By the lower semicontinuity of T  at 0 0 0( , , )x y γ , one has 

( , , )
m m m m

t T x y γ∈  such that 0m
t t→ . Since 0 0 0 0 0 0( , , , , , ) ( , , , , , )

m m m m m m
x t y x t yλ γ µ λ γ µ′ → and by 

condition (iii) and (2.1) yields that 

0 0 0 0 0 0( , , , ) ( , ).F x t y C xµ λ⊆/  

which is impossible since 
20 0 0 0( , , )sx ρ λ γ µ∈ Σ . Therefore,  

2sρΣ  is lsc   at 0 0 0( , , )λ γ µ . �  

     The following example shows that the lower semicontinuity of E  is essential. 

Example .2.1. Let 0, [0,1], 0, ( , ) [0, )A B X Y M C xλ λ= = = = Λ = Γ = = = = ∞� ,  

2( , , , ) 2 , ( , , ) { }, ( , ) [0,1]F x t y T x y x K x
λλ λ λ= = =   and 

1

[ 1, 1] if 0,
( , )

[ 1, 0] er .
K x

oth wise

λ
λ

λ

− =
= 

− −
 

 We have (0) [ 1,1], (0,1]E λ= − ∀ ∈ , ( ) [ 1,0], (0,1]E λ λ λ= − − ∀ ∈ .  Hence 2K  is usc   and the 

conditions (ii) and (iii) of Theorem 2.1   are easily seen to be fulfilled.  But αρΣ  is not upper 

semicontinuous at 0 0λ = .  The reason is that E  is not lower semicontinuous. In fact 

(0,0,0) [ 1,1]αρΣ = −   and ( , , ) [ 1,0], (0,1]αρ λ γ µ λ λΣ = − − ∀ ∈ .  

The following example  shows that in this  the special case, assumption (iii) of Theorem 2.1 may 

be satistied even in cases, but both assumptions (ii 1 ) and (iii 1 ) of Theorem 2.1  in Anh-Khanh [4] are 

not fulfilled. 

     Example 2.2.  Let 
0, , , , , , , , ,A B X Y T M CλΛ Γ  as in Example 2.1, and let 

1 2( , ) ( , ) [0,1]K x K xλ λ= =  and 

[ 4, 0] if 0,
( , , )

[ 1 , 0] er .
F x y

oth wise

λ
λ

λ

− =
= 

− −
 

 We shows that the assumptions (i), (ii) and (iii)  of Theorem 2.1 are satisfied and 

( , , )) [0,1], [0,1]αρ λ γ µ λΣ = ∀ ∈ . But both assumptions (ii 1 ) and (iii 1 ) of Theorem 2.1   in Anh-

Khanh [4] are not fulfilled. 

      The following example  shows that in this  the special case, assumption  of Theorem 2.1 may 

be satistied, but   Theorem 2.1 and Theorem 2.3  in Anh-Khanh [4] are not fulfilled. 

   Example 2.3. Let 0, , , , , , , , ,A B X Y T M CλΛ Γ  as in Example 2.2 and let 

1 2( , ) ( , ) [0, ]
2

K x K x
λ

λ λ= =  and 



N.V. Hung, P.T. Kieu / VNU Journal of Mathematics-Physics, Vol. 29, No. 1 (2013) 44-52 49 

[0, 1] if 0,
( , , , )

[2,4] er .
F x t y

oth wise

λ
λ

=
= 


 

We show that  the assumptions (i), (ii) and (iii)  of Theorem 2.1 are satisfied and 

( , , )) [0, ], [0,1]
2

αρ

λ
λ γ µ λΣ = ∀ ∈ . Theorem 2.1 and Theorem 2.3  in Anh-Khanh [4]  are not 

fulfilled. The reason is that F  is neither usc nor lsc at ( , ,0)x y .  

  Remark 2.7. In cases  as in Section 1 (a), (b) and (c). Then, Theorem 5.1, 5.2 and 5.3 in [1] 

Theorem 5.1, 5.2, 5.3 and 5.4 in [2], Theorem 3.1 in [3] are  particular cases of Theorem 2.1. 

Theorem 2.2. Impose the assumption of Theorem 2.1 and the following additional conditions: 

(iv)  2K  is lsc in 1 0( , ) { }K A λΛ ×  and 0( )E λ  is compact;  

(v) the set 1 1 2 1{( , , ) ( , ) ( ( , ), ( ( , ), ), )x t y K A T K A K K A∈ Λ × Λ Λ Λ Γ ×  

2 1 0 0( ( , ), ) : ( ( , , , ); ( , ))}K K A F x t y C xρ µ λΛ Λ  is closed.   

Then αρΣ  is  Hausdorff lower semicontinuous at  0 0 0( , , )λ γ µ . 

Proof.  We consider only for the cases 2,sα ρ ρ= = . We first prove that 
2 0 0 0( , , )sρ λ γ µΣ  is 

closed. Indeed, we let 
2 0 0 0( , , )n sx ρ λ γ µ∈ Σ  such that 0n

x x→ .  If 
20 0 0 0( , , )sx ρ λ γ µ∈ Σ/ , 

 0 2 0 0 0 0 0 0( , ), ( , , )y K x t T x yλ γ∃ ∈ ∃ ∈  such that 

                                              0 0 0 0 0 0( , , , ) ( , ). (2.2)F x t y C xµ λ⊆/  

By the lower semicontinuity of 2 0(., )K λ  at 0x ,  one has 2 0( , )
n n

y K x λ∈  such that 0n
y y→ .   

Since 
2 0 0 0( , , )n sx ρ λ γ µ∈ Σ , we have 

                                                0 0( , , , ) ( , ). (2.3)
n n n n

F x t y C xµ λ⊆  

By the condition (v), we see a contradiction between (2,2) and (2.3). Therefore,  
2 0 0 0( , , )sρ λ γ µΣ  

is closed.  

 On the other hand, since  
2 0 0 0 0( , , ) ( )s Eρ λ γ µ λΣ ⊆  and 0( )E λ  is compact. Hence 

2 0 0 0( , , )sρ λ γ µΣ  is compact. Since 
2sρΣ  is lower semicontinuous at 0 0 0( , , )λ γ µ  and 

2 0 0 0( , , )sρ λ γ µΣ  

is compact.  Hence 
2sρΣ  is Hausdorff lower semicontinuous at 0 0 0( , , )λ γ µ .  And so we complete the 

proof.                                                                                                                                                     �  

3. Upper semicontinuity of solution set 

In this section, we discuss  the upper  semicontinuity, continuity and H-continuity   of solution sets 

for parametric generalized  quasiequilibrium problems (QEP αρ ). 

Theorem 3.1.  Assume for problem (QEP αρ ) that 
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(i) E  is usc at 0λ  and  0( )E λ  is  compact, and 2K  is lsc in 1 0( , ) { }K A λΛ × ; 

(ii) in 1 2 1 0( , ) ( ( , ), ) { }K A K K A γΛ × Λ Λ × ,  T  is usc and compact-valued  if wα =  (or mα = ), 

and lsc if sα = ; 

 (iii) the set 1 1 2 1{( , , , , ) ( , ) ( ( , ), ( ( , ), ), )x t y K A T K A K K Aµ λ ∈ Λ × Λ Λ Λ Γ ×  

2 1 0 0( ( , ), ) { } { }: ( ( , , , ); ( , ))}K K A F x t y C xµ λ ρ µ λΛ Λ × ×  is closed. 

Then αρΣ  is both  usc and closed at 0 0 0( , , )λ γ µ . 

Proof. Similar arguments can be  applied to six cases.  We present only the proof for the cases 

where 2,wα ρ ρ= = . We first prove that 
2wρΣ  is upper semicontinuous at 0 0 0( , , )λ γ µ .   Indeed, we 

suppose to the contrary that 
2wρΣ  is not upper semicontinuous at 0 0 0( , , )λ γ µ , i.e.,there is an open set 

U  of 
2 0 0 0( , , )wρ λ γ µΣ  such that for all  {( , , )}

n n n
λ γ µ   convergent to  0 0 0{( , , )}λ γ µ , there exists 

2
( , , )n w n n nx ρ λ γ µ∈ Σ , 

n
x U∈/ , n∀ . By the upper semicontinuity  of E  and compactness of 0( )E λ , 

one can assume that 0n
x x→  for some 0 0( )x E λ∈ .  If 

20 0 0 0( , , )wx ρ λ γ µ∈ Σ/ , then  

0 2 0 0 0 0 0 0( , ), ( , , )y K x t T x yλ γ∃ ∈ ∀ ∈  such that  

                                                 0 0 0 0 0 0( , , , ) ( , ). (3.1)F x t y C xµ λ⊆/  

By the lower semicontinuity of  2K  at  0 0( , )x λ ,   2 ( , )
n n n

y K x λ∈  such that 0n
y y→ . Since 

2
( , , )n w n n nx ρ λ γ µ∈ Σ , ( , , )

n n n n
t T x y γ∃ ∈   such that 

                                              ( , , , ) ( , ). (3.2)
n n n n n n

F x t y C xµ λ⊆  

Since T  is usc and 0 0 0( , , )T x y γ  is compact, one has a subnet  ( , , )
m m m m

t T x y γ∈  such that 

0m
t t→  

for some 
0 0 0 0( , , )t T x y γ∈ . 

 By  the condition (iii) we see a contradiction between (3.1) and (3.2). Thus, 

20 0 0 0( , , )wx Uρ λ γ µ∈ Σ ⊆ , this contradicts to the  fact  
n

x U∈/ , n∀ .  Hence, 
2wρΣ  is upper 

semicontinuous at 0 0 0( , , )λ γ µ . 

Now we prove that 
2wρΣ  is  closed at 0 0 0( , , )λ γ µ . Indeed,  we suppose that  

2wρΣ  is not closed at  

0 0 0( , , )λ γ µ , i.e., there is a net 
0 0 0 0( , , , ) ( , , , )

n n n n
x xλ γ µ λ γ µ→  with 

2
( , , )n w n n nx ρ λ γ µ∈ Σ  but 

20 0 0 0( , , )wx ρ λ γ µ∈ Σ/ . The further argument is the same as above. And so we have 
2wρΣ  is  closed at   

0 0 0( , , )λ γ µ .                                                                                                                                          �  

The following example shows that the upper semicontinuity and compactness of E  are essential. 

Example 3.1. Let 
0, [0,1], 0, ( , ) [0, )A B X Y M C xλ λ= = = = Λ = Γ = = = = ∞� ,   

+sinx

1 2( , , , ) 2 , ( , ) ( 1, ], ( , ) { 1}F x t y K x K x
λλ λ λ λ λ= = − − = −  and  

x2 +cos( , , ) [0, ]T x y e λλ = . 
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Then, we have (0) ( 1,0]E = −  and ( ) ( 1, ], (0,1]E λ λ λ λ= − − ∀ ∈ .  We show that 2K  is lsc and 

assumption (ii) and (iii) of Theorem 3.1  are fulfilled. But αρΣ  is neither usc nor closed at 0 0λ =  and 

(0,0,0)αρΣ  is not compact.  The reason is that  E  is not usc at 0 and (0)E  is not compact. In fact 

(0,0,0) ( 1,0]αρΣ = −  and ( , , ) ( 1, ], (0,1]αρ λ γ µ λ λ λΣ = − − ∀ ∈ . 

Remark 3.1 

(i) In Theorem 4.1 in Kimura-Yao [1] the same conclusion as Theorem 3.1  was proved in anther 

way. Its assumptions (i)-(iv) derive (i) Theorem 3.1 assumption  (v)  coincides with (iii) of Theorem 3.1. 

(ii) The assumption in Theorem 3.1,  we have 2K  is lsc  in 1 0( , ) { }K A λΛ ×  (which is not 

imposed in this Theorem 4.1 of    [1]).    Example 3.2 shows that the lower semicontinuity of 2K  

needs to be added to Theorem 4.1 of   [1]. 

Example 3.2. Let 0, , , , , , ( , )X Y M C xλ λΛ Γ  as in Example 3.1 and let  
1 1

[ , ]
2 2

A B= = − ,  

1

1
( , , , ) , ( , ) [0, ], ( , , ) { }

2
F x t y x y K x T x y xλ λ λ λ= + + = =  and 

2

1 1
, 0, if 0,

2 2
( , )

1
[1, ] er .

2

K x

oth wise

λ

λ

 
− =  = 




 

We have ( ) [0,1], [0,1]E λ λ= ∀ ∈ .  Hence E  is usc at 0 and (0)E  is compact  and  condition 

(ii) and (iii) of Theorem 3.1  are easily seen to be fulfilled.  But αρΣ  is not upper semicontinuous at 

0 0λ = . The reason is that 2K  is not lower semicontinuous.   

 The following example  shows a case where the assumed compactness in Theorem 4.1 of [1] 

is violated but the assumptions of Theorem 3.1 are fulfilled.  

Example 3.3.  Let 
0, , , , , , ,X Y M T CλΛ Γ , as in Example 3.2 and let  [0,2)A B= = , 

( , , )F x y x yλ = −  and 1 2( , ) ( , ) ( 1]K x K x x Aλ λ λ= = − − ∩ . We show that the assumptions of 

Theorem 3.1  are easily seen to be fulfilled and so  αρΣ  is usc and closed at (0,0,0) , although A  is 

not compact.  

The following example shows that the condition (iii) of Theorem 3.1  is essential. 

Example 3.4.  Let 0, , , , ,M T CλΛ Γ  as in Example 3.2 and let  [0,1]X Y A B= = = = , 

   1 2( , ) ( , ) [0,1]K x K xλ λ= =  and 

if 0,
( , , )

er .

x y
F x y

y x oth wise

λ
λ

− =
= 

−
 

We show that assumptions (i) and (ii) of Theorem 3.1  are easily seen to be fulfilled. But αρΣ  is 

not usc at 0 0λ = . The reason is that assumption (iii)  is violated. 
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Indeed, taking 
1

0, 1, 0n n nx y
n

λ= = = →  as n → ∞ ,  then {( , , } (0,1,0)
n n n

x y λ →  and 

( , , ) (0,1,1 / ) 1 0
n n n

F x y F nλ = = >    but (0,1,0) 1 0F = − < . 

The following example shows that all assumptions of Theorem 3.1 are fulfilled. But Theorem 3.2-

3.4  in Anh and Khanh [4] cannot be applied. 

Example 3.5. Let 0, , , , , , , ,A B X Y M CλΛ Γ  as in Example 3.1 and let  

1 2( , ) ( , ) [0,3 ]K x K xλ λ λ= = , 
6 4cos x+sin x+2( , , ) [0,2 ]T x y γ =   and 

{ }
4 2sin cos 1

0 if 0,
( , , , )

er .x x
F x t y

e oth wise

λ
λ

+ +

=
= 


 

We show that  assumptions (i), (ii) and (iii) of Theorem 3.1  are easily seen to be fulfilled. But 

αρΣ  is usc at (0,0,0) . But Theorem 3.2-3.4 in Anh and Khanh [4] cannot be applied. The reason is 

that F   is neither  usc nor lsc. 

Remark 3.2 In cases  as in Section 1 (b). Then, Theorem 4.1 and 4.2 in [2] are  particular cases of 

Theorem 3.1. 

Theorem 3.2 Suppose that all  conditions in Theorem 2.1  and Theorem 3.1   are satisfied.  Then, 

we have αρΣ  is both continuous and closed at 0 0 0( , , )λ γ µ . 

Theorem 3.3 Suppose that all  conditions in Theorem 2.2  and Theorem 3.1   are satisfied.  Then, 

we have αρΣ  is both H-continuous and closed at 0 0 0( , , )λ γ µ . 
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