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Abstract: An analytical approach is presented to investigate the linear buckling of eccentrically 

stiffened functionally graded thin circular cylindrical shells subjected to axial compression, 

external pressure and tosional load. Based on the classical thin shell theory and the smeared 

stiffeners technique, the governing equations of buckling of eccentrically stiffened functionally 

graded circular cylindrical shells are derived. The functionally graded cylindrical shells with 

simply supported edges are reinforced by ring and stringer stiffeners system on internal and (or) 

external surface. The resulting equations in the case of compressive and pressive loads are solve 

directly, while in the case of torsional load is solved by the Galerkin procedure to obtain the 

explicit expression of static critical buckling load. The obtained results show the effects of 

stiffeners and input factors on the buckling behavior of these structures. 

Keywords: Functionally graded material; Cylindrical shells; Stiffeners; Buckling loads; Axial 

compression; External pressure; Tosional load. 

1. Introduction
∗∗∗∗ 

The static and dynamic behavior of FGM cylindrical shell attracts special attention of a lot of 

authours in the world. 

In static analysis of FGM cylindrical shells, many studies have been focused on the buckling and 

postbuckling of shells under mechanic and thermal loading. Shen [1] presented the nonlinear 

postbuckling of perfect and imperfect FGM cylindrical thin shells in thermal environments under 

lateral pressure by using the classical shell theory with the geometrical nonlinearity in von Karman–

Donnell sense. By using higher order shear deformation theory; this author [2] continued to investigate 

the postbuckling of FGM hybrid cylindrical shells in thermal environments under axial loading. Bahtui 

and Eslami [3] investigated the coupled thermo-elasticity of FGM cylindrical shells. Huang and Han 

[4-7] studied the buckling and postbuckling of un-stiffened FGM cylindrical shells under axial 

_______ 
∗
 Corresponding author. Tel.: 84-1674829686  

   E-mail: nguyenthiphuong@utt.edu.vn 



N.T. Phuong, D.H. Bich  / VNU Journal of Mathematics-Physics, Vol. 29, No. 2 (2013) 55-72 

 

56 

compression, radial pressure and combined axial compression and radial pressure based on the 

Donnell shell theory and the nonlinear strain-displacement relations of large deformation. The 

postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium was 

studied by Shen [8]. Sofiyev [9] analyzed the buckling of FGM circular shells under combined loads 

and resting on the Pasternak type elastic foundation. Zozulya and Zhang [10] studied the behavior of 

functionally graded axisymmetric cylindrical shells based on the high order theory. 

For dynamic analysis of FGM cylindrical shells, Ng et al. [11] and Darabi et al. [12] presented 

respectively linear and nonlinear parametric resonance analyses for un-stiffened FGM cylindrical 

shells. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells was 

investigated by Chen et al. [13]. Sofiyev and Schnack [14] and Sofiyev [15] obtained critical 

parameters for un-stiffened cylindrical thin shells under linearly increasing dynamic torsional loading 

and under a periodic axial impulsive loading by using the Galerkin technique together with Ritz type 

variation method. Shariyat [16] and [17] investigated the nonlinear dynamic buckling problems of 

axially and laterally preloaded FGM cylindrical shells under transient thermal shocks and dynamic 

buckling analysis for un-stiffened FGM cylindrical shells under complex combinations of thermo–

electro-mechanical loads. Geometrical imperfection effects were also included in his research. Li et al. 

[18] studied the free vibration of three-layer circular cylindrical shells with functionally graded middle 

layer. Huang and Han [19] presented the nonlinear dynamic buckling problems of un-stiffened 

functionally graded cylindrical shells subjected to time-dependent axial load by using the Budiansky–

Roth dynamic buckling criterion [20]. Various effects of the inhomogeneous parameter, loading speed, 

dimension parameters; environmental temperature rise and initial geometrical imperfection on 

nonlinear dynamic buckling were discussed. Shariyat [21] analyzed the nonlinear transient stress and 

wave propagation analyses of the FGM thick cylinders, employing a unified generalized thermo-

elasticity theory 

Recently, idea of eccentrically stiffened FGM structures has been proposed by Najafizadeh et al. 

[22] and Bich et al. [23 and 24]. Najafizadeh et al. [22] have studied linear static buckling of FGM 

axially loaded cylindrical shell reinforced by ring and stringer FGM stiffeners. In order to provide 

material continuity and easily to manufacture, the FGM shells are reinforced by an eccentrically 

homogeneous stiffener system; Bich et al. have investigated the nonlinear static postbuckling of 

functionally graded plates and shallow shells [23] and nonlinear dynamic buckling of functionally 

graded cylindrical panels [24]. 

This paper presented an analytical approach to investigated the linear buckling of eccentrically 

stiffened FGM cylindrical shell subjected to axial compression, external pressure and tosional load. 

Effects of stiffeners and input factors on the static buckling behavior of these structures are also 

considered. 

2. Governing equations 

2.1. Functionally graded material (FGM) 

FGMs are microscopically inhomogeneous materials, in which material properties vary smoothly 

and continuously from one surface of the material to the other surface. These materials are made from 
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a mixture of ceramic and metal, or a combination of different materials. A such mixture of ceramic 

and metal with a continuously varying volume fraction can be manufactured. Especially FGM thin – 

walled structures with ceramic in inner surface and metal in outer surface are widely used in practice. 

Assume that the modulus of elasticity E  changes in the thickness direction z , while the Poisson ratio 

ν  is assumed to be constant. Denote 
mV  and cV  being volume – fractions of metal and ceramic 

phases respectively, which are related by 1m cV V+ =  and cV  is expressed as 2

2
( )

k

c

z h
V z

h

+ 
=  
 

, 

where h is the thickness of thin-walled structure, k  is the volume – fraction exponent ( 0k ≥ ). Then 

the elasticity modulus and the Poisson ratio of functionally graded material can be evaluated as 

following 

( )
2

2

k

m m c c m c m

z h
E z E V E V E E E

h

+ 
= + = + −  

 
( ) ,  

z constν = ν =( ) .  

The values with subscripts m  and c  belong to metal and ceramic respectively. 

2.2. Eccentrically stiffened functionally graded cylindrical shells. 

Consider a cylindrical shell of thickness h, length L, radius R and reinforced by internal and 

external stiffeners. The shell is referred to a coordinate system (x, y, z), in which x and y are in the 

axial and circumferential directions of the shell and z is in the direction of the inward normal to the 

middle surface.  

In the present study, the classical shell theory and the Lekhnitsky smeared stiffeners technique are 

used to obtain the equilibrium and compatibility equations as well as expressions of buckling loads 

and nonlinear load – deflection curves of eccentrically stiffened FGM cylindrical shells. 

 

 

Fig.1. Configuration of an eccentrically stiffened cylindrical shells. 
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The strains across the shell thickness at a distance z  from the mid-surface are 

0 0 0 2x x x y y y xy xy xyz z zε = ε − χ ε = ε − χ γ = γ − χ, , ,  (1) 

where 
0
xε  and 

0
yε  are normal strains, 

0
xyγ  is the shear strain at the middle surface of the shell and 

ijχ  are the curvatures. 

According to the classical shell theory the strains at the middle surface and curvatures are related 

to the displacement components , ,u v w  in the x y z, , coordinate directions as [25]. 

2 2
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2 2
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2
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1

2
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2
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u w w
, ,
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∂ ∂ ∂ 
= + = ∂ ∂ ∂ 
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∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂

 (2) 

From Eqs.(2) the strain must be satify in the deformation compatibility equation 

2 0 2 02 0 2

2 2 2

1y xyx w

x y Ry x x

∂ ε ∂ γ∂ ε ∂
+ − = −

∂ ∂∂ ∂ ∂
.  (3) 

The constitutive stress – strain equations by Hooke law for the shell material are omitted here for 

brevity. The contribution of stiffeners can be accounted for using the Lekhnitsky smeared stiffeners 

technique. Then integrating the stress – strain equations and their moments through the thickness of 

the shell, the expressions for force and moment resultants of an eccentrically stiffened FGM 

cylindrical shell are obtained. 
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where ( )1 2 6=, , , , ,ij ij ijA B D i j  are extensional, coupling and bending stiffenesses of the shell 

without stiffeners. 

( )

( )

( )

1 1 1
11 22 12 662 2

2 2 2
11 22 12 662 2

3 3 3
11 22 12 662 2

2 11 1

2 11 1

2 11 1

ν
= = = =

+ ν− ν − ν

ν
= = = =

+ ν− ν − ν

ν
= = = =

+ ν− ν − ν

, , ,

, , ,

, , ,

E E E
A A A A

E E E
B B B B

E E E
D D D D

 
(6) 
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(7) 

In above relations (4), (5) and (7) E  is the elasticity modulus of the corresponding stiffener which 

is assumed identical for both types of stiffeners. The spacings of the longitudinal and transversal 

stiffeners are denoted by 1s  and 2s  respectively. The quantities s rA A,  are the cross section areas of 

the stiffeners and s r s rI I z z, , ,  are the second moments of cross section areas and eccentricities of 

the stiffeners with respect to the middle surface of the shell respectively. The sign plus or minus of 

s rC C,  dependent on internal or external stiffeners. 

Important remark. In order to provide continuity between the shell and stiffeners, thus stiffeners 

are made of full metal if putting them at the metal – rich side of the shell and conversely full ceramic 

stiffeners at the ceramic-rich side of the shell, consequently mE E=  for full metal stiffeners and 

cE E=  for full ceramic ones. 

The nonlinear equilibrium equations of a cylindrical shell based on the classical shell theory are 

given by 
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Stability equations of eccentrically stiffened functionally graded shell may be established by the 

adjacent equilibrium criterion. It is assumed that equilibrium state of the eccentrically stiffened 

functionally graded shell under applied load is presented by displacement component 0 0 0u v w, , .  

The state of adjacent equilibrium differs that of stable eauilibrium by  1 1u v, ,  and 1w ,  and the total 

displacement component of a neighboring configuration are 

0 1 0 1 0 1u u u v v v w w w= + = + = +, , .  (9) 

Similar, the force and moment resultants of a neighboring state are represented by 

0 1 0 1 0 1
x x x y y y xy xy xyN N N N N N N N N= + = + = +, , ,  

0 1 0 1 0 1= + = + = +, , ,x x x y y y xy xy xyM M M M M M M M M  
(10) 

where terms 0 subscripts correspond to the 0 0 0u v w, ,  displacements and those with 1 

subscription represents the portions of the increments of force and moment resultants that are linear in 

1 1 1u v w, , . Subsequently, introduction of Eqs. (9) and Eq.(10) into (8) and subtracting from the 

resulting equations term relating to stable equilibrium state, neglecting nonlinear term in 1 1 1u v w, ,  

or their counterparts in the form of  
1 1 1
x y xyN N N, , ,  etc… and prebuckling rotations yeild stability 

equations. 
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Considering the first two of Eqs.(11), a stress function may be defined as 

2 2 2
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2 2
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For using later, the reverse relations are obtained from Eqs.(4) 

0 1 1
22 12 11 12

0 1 1
11 12 21 22

0
66 662

* * * *
x x y x y

* * * *
y y x x y

* *
xy xy

A N A N B B ,

A N A N B B ,

A B ,

ε χ χ

ε χ χ

γ χ

= − + +

= − + +

= +

 (13) 

 

 



N.T. Phuong, D.H. Bich / VNU Journal of Mathematics-Physics, No. 29, No. 2 (2013) 55-72 61 

where 
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Substituting Eqs. (13) into Eqs.(5) yields 

1 1 1
11 21 11 12

1 1 1
12 22 21 22

1 1
66 662

x x y x y

y x y x y

xy xy xy

M B N B N D D

M B N B N D D

M B N D

= + − χ − χ

= + − χ − χ

= − χ

* * * *

* * * *

* *

,

,

,

 (14) 

where 

( )

( )

( )

( )

1
11 11 11 1 11 12 21

1

2
22 22 12 12 22 2 22

2

12 12 11 1 12 12 22

21 12 12 11 22 2 21

66 66 66 66

* * *

* * *

* * *

* * *

* *

,

,

,

,

.

EI
D D B C B B B

s

EI
D D B B B C B

s

D D B C B B B

D D B B B C B

D D B B

= + − + −

= + − − +

= − + −

= − − +

= −

 

The substitution of Eqs.(13) into the compatibility Eqs.(3) and Eqs.(14) into the third of Eqs.(11), 

taking into account expressions (2) and (12), yields a system of equations 
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Eqs.(15) and (16) are the basic equations used to investigate the stability of eccentrically stiffened 

functionally graded cylindrical shells. They are linear equations in terms of two dependent unknowns 

1w  and ϕ . 

2.3. Buckling analysis of eccentrically stiffened functionally graded cylindrical shells subjected to 

axial compressive load and external pressure. 

In the present study, the eccentrically stiffened FGM shell to be free simply supported at all edges 

and subjected to axial compression load p uniformly distributed on the two end edges of the shell and 

external pressure q uniform distributed on the surface . By solving the membrane form of equilibrium 

eqauations, prebuckling force resultants are determined 

0 0 0 0x y xyN ph N qR N= − = − =, , .  (17) 

The boundary conditions considered in the current study are 

2
1 11

1 2
0 0 0 0 0ax xy

w
w , , N , N , t x ; L.

x

∂
= = = = =

∂
 (18) 

where L are the lengths of in-plane edges of the cylindrical shell. 

The mentioned conditions (18) can be satisfied if the buckling mode shape is represented by 

1 mn

m n

m x ny
w W sin sin ,

L R

π
=∑∑  

(19) 

where mnW  is a maximum deflection, m is the number of axis half waves and n is the number of 

circumferential waves. Substituting Eq.(19) into Eq.(15) and solving obtained equation for unknown 

ϕ  leads to 
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ϕ φ=∑∑  

(20) 
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Introduction of expressions (19) and (20) into Eqs.(16) leads to 
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Eq.(22) satisfies for all x, y  if 
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Now investigate the linear buckling of reinforced FGM cylindrical shells in some cases of active 

load. 

Consider the cylindrical shell subjected the axial compression (q = 0), Eq. (23) becomes: 

2
2 2 2 0+ − π =

B
D phm L
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 (24) 
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= = =, , . ,
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from Eq.(24) the compressive buckling load can be obtained 
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p D
Am L

 (26) 

The critical axial compression load of eccentrically stiffened FGM cylindrical shell is determined 

by condition crp p=min  vs. (m, n). 

Consider the cylindrical shell subjected the external pressure (p = 0), the Eq. (23) becomes: 

2
2 2 2 0+ − λ =

B
D qRn L
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The pressure buckling load can be determined :  
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(27) 

The critical external pressure of eccentrically stiffened FGM cylindrical shell are determined by 

condition =mincrq q  vs. (m, n). 
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2.4. Buckling analysis of eccentrically stiffened functionally graded cylindrical shells subjected to 

torsional load 

The eccentrically stiffened FGM shell to be free simply supported at all edges and subjected to 

torsional load τ . By solving the membrane form of equilibrium equations, prebuckling force 

resultants are determined  

0 0 0

2
0 0

2

s
x y xy

M
N N N h

R
= = = τ =

π
, , .  (28) 

The buckling mode shape is represented in the form 

( )
1

γπ −
=

n y xx
w W sin sin ,

L R
 (29) 

where W  is a maximum deflection. At the edges 0x x L= =,  the simple supported condition of 

shell is satisfied. The deflection is vanished along the straight lines y x= γ repeated n times at each 

shell cross-section, where γ  is tangent of slope angle between these lines and the shell genetic. 

Substituting (29) into Eq.(15) and solving obtained equation for unknown ϕ  leads to 
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          = − + + +        
          

       
+ + − + +      

       

* * *

*

* * * *

n n n n
H A A A ,

L R L R L R R

n n
M B

L L R R

n n n
B B B B

L R R R

4 2 2
1 π γ        − +      

       

n
,

R L R

 

( )
3 3 2

21 11 22 66

1
4 2 2 2

π γ π γ π γ π γ          = − + + + − −       
          

* * * *n n n n n
N B B B B ,

L R L R L R R R L R
 

Introduction of expressions (29) and (30) into Eqs.(16)  leads to 
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( )

( )

0
1 1 2

0
2 1 2

2

2 0

γγ π
φ φ

γγ π
φ φ

− 
+ + − + 

 

− 
+ + + − = 
 

xy

xy

n y xn n x
DW M N N W sin sin

R R L R

n y xn n x
D W N M N W cos cos .

R R L R

 (31) 

where 

( )

( )

4 2 2 4

1 11

2 2 2 4

12 21 66 22

3 3

2 11 12 21 66

6

4

4 2 4

π π γ γ

π γ

π γ π γ π γ

         
= + + +        

         

         
+ + + + +        

         

      
= + + + +     

      

*

* * * *

* * * *

n n
D D

L L R R

n n n
D D D D ,

L R R R

n n n
D D D D D

L R L R L R

2
 
 
 

n
.

R

 

Application of Garlerkin method for the Eq.(31) yields 

2
0

2
2 0

  γ π 
+ − + =  

    
. . ,xy

n n
U P V Q P Q N W

L RR
 (32) 

where 

( )

1 1 2

2 1 2

2 2 2
2 2

2 2 2 2 2 2

3
2 2

2 2 2 2 2

1 4 2 2
2 4

4

4 2 2
4

4

W

W

φ φ

φ φ

γ π γ π γ
π

π γ γ

π π γ π γ

π γ

= + +

= + +

   
= − + +  

−    

 
= + 

 −

U D M N ,

V D N M ,

R L R n n L n n L
P L sin sin sin sin ,

R R R RR n L n

R L n n L n n L
Q sin sin sin sin .

R R R Rn R n L

 

By subtitution 0 = τxyN h  into Eq.(32), the buckling torsional load is obtained as 

2

2

2

2

2

τ π τ
γ π

+
= =

  
+ 

  

s

U.P V .Q
, M R h .

n n
h P Q

L RR

 

(33) 

The critical torsion load of eccentrically stiffened FGM cylindrical shell are determined by 

condition τ τ=cr min  vs.  ( )γn, . 

3. Numerical examples 

To validate the present formulation in buckling of stiffened FGM cylindrical shells under 

mechanical loads, the linear response of un-stiffened and stiffened FGM cylindrical shell under 
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mechanical load are analyzed. The results shown in the Table 1- 4. As can be seen, the very good 

agreements are obtained. 

Table 1. Comparison of the present critical buckling load crp  (MPa) with theoritical results  

reported by Huang and Han [19] ( )0
0 300 2T K L R= =,  

  
Huang and Han 

( scr dcr crσ = σ τ ) 
Present Difference (%) 

Critical load versus k  

500R h =      

 k =0.2 189.262 (2, 11) 189.324 (2, 11) 0.033 

 k= 1.0 164.352 (2, 11) 164.386 (2, 11) 0.021 

 k= 5.0 144.471 (2, 11) 144.504 (2, 11) 0.023 

Critical load versus R/h  

k=0.2     

 400R h =  236.578 (5, 15) 236.464 (5, 15) -0.048 

 600R h =  157.984 (3, 14) 158.022 (3, 14) 0.024 

 800R h =  118.849 (2, 12) 118.898 (2, 12) 0.041 

Table 2. Comparisons of critical buckling load of internal stiffened isotropic cylindrical  

shells under external pressure (Psi) 

 Barush and Singer [27] Shen [28] Present 

Un-stiffened 102 100.7 (1, 4) 103.327 (1, 4) 

Stringer stiffened 103 102.2 (1, 4) 104.494 (1, 4) 

Ring stiffened 370 368.3 (1, 3) 379.694 (1, 3) 

Orthogonal stiffened 377 374.1 (1, 3) 387.192 (1, 3) 

Table 3. Comparisons of critical torsion load crτ  (psi) of un-stiffened isotropic cylindrical shell (
629 10E = ×  

Psi, 19,85L =  in, 3R =  in, 0,0075h =  in, 0,3ν = ) 

Eksrom [30] 

Experiment Theory 
Shen [29] Present 

4800 5500 4997 (1, 3) 4831.57 (7, 0.14) 

Table 4: Comparisons of critical buckling load per unit length ( )610=cr crp p .h N m of stiffened  

homogeneous cylindrical shell under axial compression 

 Present Brush and Almorth [25] Difference ( )%  

50 rings, 50 stringers, L=1m, R=0.5m, ( )9 2
70 10E N m= × , 0 3.ν = , 0 0025r sd d . m,= =  0 01r sh h . m,= =  

Internal stiffeners    

100R h =  3.0725 (6, 7) 3.0906 (6, 7) 0.59 

200R h =  1.4147 (6, 7) 1.4328 (6, 7) 1.28 

500R h =  0.6924 (5, 6) 0.7057 (5, 6) 1.92 
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External stiffeners    

100R h =  3.9529 (9,3) 3.9551 (9, 2) 0.06 

200R h =  2.1410 (9, 4) 2.1369 (9,4) 0.28 

500R h =  1.2764 (6, 6) 1.2897 (6, 6) 1.04 

To illustrate the proposed approach of eccentrically stiffened FGM cylindrical shells, the stiffened 

and un-stiffened FGM cylindrical shells are made by the combination of materials consists of 

Aluminum 107 10mE = ×= ×= ×= × N/m2 and Alumina 10
38 10cE = ×= ×= ×= × N/m2. The Poisson’s ratio ν  is chosen to be 

0.3 for simplicity. The height of stiffeners is equal to 0 005. m, its width 0 002. m. The material 

properties are 
s cE E====  and 

r cE E====  with internal stringer stiffeners and internal ring stiffeners; 

s mE E==== , 
r mE E====  with external stringer stiffeners and external ring stiffeners, respectively. The 

stiffener system includes 10 ring stiffeners and 10 stringer stiffeners distributed regularly in the axial 

and circumferential directions, respectively. 

Table 5: Critical buckling load of stiffened FGM cylindrical shell under axial and pressure load 

( 2=L R , 0 002=h . m , 0 002= =r sd d . m,  0 005 10= = = =r s r sh h . m, n n ). 

 ( )acrp GP  ( )acrq MP  

R h

 

k 
Un-stiffened 

External 

stiffeners 

Internal 

stiffeners 
Un-stiffened 

External 

stiffeners 

Internal 

stiffeners 

100        

 
0.

2 
1.936 (7, 9) 2.245 (10, 5) 2.740 (6, 7) 1.548 (1, 6) 2.658 (1, 6) 5.848 (1, 5) 

 1 1.249 (8, 9) 1.584 (10, 5) 1.961 (6, 7) 0.970 (1, 6) 2.064 (1, 5) 4.729 (1, 5) 

 5 0.746 (6, 9) 1.051 (9, 5) 1.280 (5, 6) 0.610 (1, 6) 1.561 (1, 5) 3.623 (1, 4) 

 10 0.640 (11, 2) 0.921 (9, 4) 1.120 (5, 6) 0.541 (1, 6) 1.420 (1, 5) 3.293 (1, 4) 

200        

 
0.

2 
0.968 (8, 13) 1.047 (13, 10) 1.197 (10,11) 0.270 (1, 7) 0.364 (1, 7) 0.712 (1, 6) 

 1 0.625 (17, 2) 0.712 (14, 9) 0.837 (10,11) 0.170 (1, 7) 0.272 (1, 7) 0.559 (1, 6) 

 5 0.373 (4, 11) 0.454 (14, 8) 0.537 (9,10) 0.106 (1, 7) 0.203 (1, 6) 0.438 (1, 6) 

 10 0.320 (6, 12) 0.394 (13, 7) 0.471 (8, 9) 0.093 (1, 7) 0.182 (1, 6) 0.420 (1, 6) 

300        

 
0.

2 
0.645 (15,14) 0.681 (17, 11) 0.753 (13,13) 0.097 (1, 8) 0.121 (1, 8)  0.211 (1, 7) 

 1 0.416 (16,14) 0.456 (17, 12) 0.517 (13,13) 0.060 (1, 8) 0.087 (1, 8) 0.164 (1, 7) 

 5 0.249 (17,11) 0.285 (16,11) 0.329 (11,12) 0.038 (1, 8) 0.062 (1, 7) 0.128 (1, 7) 

 10 0.213 (19, 4) 0.247 (16, 9) 0.287 (11,12) 0.034 (1, 8) 0.056 (1, 7) 0.121 (1, 6) 

a
The numbers in brackets indicate the buckling mode (m, n) . 
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Table 6: Critical buckling load ( )aτcr GP  of stiffened FGM cylindrical shell under torsion load 

( 2=L R , 0 002=h . m , 0 002= =r sd d . m,  0 005 10= = = =r s r sh h . m, n n ) 

R h  k Un-stiffened External stiffeners Internal stiffeners 

100     

 0.2 0.548 (8, 0.367)b 0.784 (8, 0.646) 1.128 (7, 0.925) 

 1 0.348 (8, 0.349) 0.577 (8, 0.873) 0.825 (6, 1.047) 

 5 0.213 (8, 0.384) 0.407 (7, 0.873) 0.566 (6, 0.925) 

 10 0.186 (8, 0.401) 0.363 (7, 0.873) 0.516 (6, 0.908) 

150     

 0.2 0.329 (9, 0.332) 0.434 (9, 0.436) 0.599 (8, 0.995) 

 1 0.209 (9, 0.314) 0.317 (9, 0.960) 0.436 (8, 0.995) 

 5 0.128 (9, 0.332) 0.216 (8, 1.117) 0.299 (7, 1.012) 

 10 0.112 (9, 0.349) 0.191 (8, 1.065) 0.269 (7, 0.960) 

200     

 0.2 0.229 (10, 0.314) 0.288 (10, 0.384) 0.392 (9, 1.030) 

 1 0.146 (10, 0.297) 0.208 (10, 0.436) 0.280 (9, 1.030) 

 5 0.089 (10, 0.332) 0.141 (10, 0.873) 0.192 (8, 1.065) 

 10 0.078 (10, 0.349) 0.125 (10, 0.855) 0.172 (8, 0.995) 

bThe numbers in brackets indicate the buckling mode (n, γ ) . 

Critical buckling load of FGM cylindrical shell under axial compression, external pressure and 

torsion load are considered in table 5 and 6. The results show that the critical buckling load of 

stiffened shells is larger than one of un-stiffened shells. Table 5 and 6 also show effects of R/h ratio 

and k index to the critical buckling load of shells. Clearly, the critical buckling load of shell increases 

when R/h ratio or k index decreases. It seems that, effect of stiffeners on the external pressure case is 

the greatest than one of axial compression. Effects of stiffeners increase when R/h ratio or k index 

increases. 

 

Fig.2. Effect of ratio R h  on the buckling load of internal stiffened FGM cylindrical 

 shells under axial compression. 
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Fig.3. Effect of ratio R h  on the buckling load of internal stiffened FGM cylindrical  

shells under exteral pressure. 

 

Fig.4. Effect of ratio R h  on the buckling load of internal stiffened FGM cylindrical 

 shells under torsional load. 

Effects of ratio R h  on the buckling load of internal stiffened FGM cylindrical shells under axial 

compression, external pressure and torsion load are investigated in Figs. 2-4, respectively. The 

obtained results show that for various values of k index, decreasing tendency of axial and torsion 

buckling loads versus R/h ratio is quite similar (Figs. 2 and 4). Conversely, the unsimilar tendency is 

obtained for external pressure case. A considerable difference between buckling loads curve as R/h is 

small and this difference becomes small when R/h ratio to be larger. 
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Fig.5. Effect of ratio L R  on the buckling load of internal stiffened FGM cylindrical  

shells under exteral pressure. 

 

Fig.6. Effect of ratio L R  on the buckling load of internal stiffened FGM cylindrical  

shells under torsional load. 

Finally, the variation of external pressure buckling and torsion buckling versus L/R ratio is 

separately illustrated in Figs. 5 and 6. As can be observed, there is a large difference between buckling 

loads curves as L/R is small. In contrast, this difference becomes larger when L/R ratio to be larger. 
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5. Conclusion 

A formulation of governing equations of eccentrically stiffened functionally graded circular 

cylindrical thin shells subjected to axial compression, external pressure and torsion load based upon 

the classical shell theory and the smeared stiffeners technique is presented in this paper. By using the 

Galerkin method the explicit expressions of buckling torsion load. The obtained results show that 

stiffeners enhance the static stability and load-carrying capacity of FGM circular cylindrical shells. 

Effects of R/h ratio, L/R ratio and k index to the buckling curve and critical buckling load of shells 

were considered. 
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