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Abstract: An analytical approach is presented to investigate the buckling of functionally graded 

annular spherical segments subjected to compressive load and radial pressure. Based on the 

classical thin shell theory, the governing equations of functionally graded annular spherical 

segments are derived. Approximate solutions are assumed to satisfy the simply supported 

boundary condition of segments and Galerkin method is applied to obtain closed-form relations of 

bifurcation type of buckling loads. Numerical results are given to evaluate effects of 

inhomogeneous and dimensional parameters to the buckling of structure. 
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1. Introduction
*
 

The static and dynamic behavior of spherical shaped structures made of different materials 

attracted special attention of many researchers in long time. Budiansky and Roth [1] studied 

axisymmetrical dynamic buckling of clamped shallow isotropic spherical shells. Their well-known 

results have received considerable attention in the literature. Huang [2] considered the unsymmetrical 

buckling of thin shallow spherical shells under external pressure. He pointed out that unsymmetrical 

deformation may be the source of discrepancy in critical pressures between axisymmetrical buckling 

theory and experiment. The static buckling behavior of shallow spherical caps under uniform pressure 

loads was analyzed by Tillman [3]. Results on the dynamic buckling of clamped shallow spherical 

shells subjected to axisymmetric and nearly axisymmetric step-pressure loads using a digital computer 

program were given by Ball and Burt [4]. Kao and Perrone [5] reported the dynamic buckling of 

isotropic axisymmetrical spherical caps with initial imperfection. Two types of loading are considered, 

in this paper, namely, step loading with infinite duration and right triangular pulse. Based on an 

assumed two-term mode shape for the lateral displacement, Ganapathi and Varadan [6] investigated 

_______ 
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the problem of dynamic buckling of orthotropic shallow spherical shells under instantaneously applied 

uniform step-pressure load of infinite duration. Nonlinear free vibration response, static response 

under uniformly distributed load, and the maximum transient response under uniformly distributed 

step load of orthotropic thin spherical caps on elastic foundations were obtained by Dumir [7]. Static 

and dynamic snap through buckling of orthotropic spherical caps based on the classical thin shell 

theory and Reissener’s shallow shell assumptions were considered by Chao and Lin [8] using finite 

difference method. Buckling and postbuckling behaviors of laminated spherical caps subjected to 

uniform external pressure were analyzed by Xu [9] and Muc [10]. The former employed non-linear 

shear deformation theory and a Fourier-Bessel series solution to determine load – deflection curves of 

spherical shell under axisymmetric deformation, whereas the latter applied the classical shell theory 

and Rayleigh–Ritz procedure to obtain upper and lower pressures and postbuckling equilibrium paths 

without considering axisymmetry. Ganapathi and Varadan analyzed the dynamical buckling of 

laminated anisotropic spherical caps using the finite element method [11]. A static and dynamic non-

linear axisymmetric analysis of thick shallow spherical and conical orthotropic caps was reported by 

Dube et al. [12] employing Galerkin method and the first order shear deformation theory. Also, Nie 

[13] proposed the asymptotic iteration method to treat non-linear buckling of externally pressurized 

isotropic shallow spherical shells with various boundary conditions incorporating the effects of 

imperfection, edge elastic restraint and elastic foundation. There were several investigations on the 

buckling of spherical shells under mechanical or thermal load taking into account initial imperfection 

such as studies by Eslami et al. [14] and Shahsiah and Eslami [15]. Wunderlich and Albertin [16] also 

studied the static buckling behavior of isotropic imperfect spherical shells. New design rules in their 

work for these shells were developed, which take into account relevant details like boundary 

conditions, material properties and imperfections.  Li et al. [17] adopted the modified iteration method 

to solve nonlinear stability problem of shear deformable isotropic shallow spherical shells under 

uniform external pressure.  

In recent years, many authors have focused on the mechanic and thermal behavior of functionally 

graded (FGM) spherical panels and shells. Shahsiah et al. [18] presented an analytical approach to 

study the instability of FGM shallow spherical shells under three types of thermal loading including 

uniform temperature rise, linear radial temperature, and nonlinear radial temperature. Prakash et al. 

[19] obtained results on the nonlinear axisymmetric dynamic buckling behavior of clamped FGM 

spherical caps. Also, the dynamic stability characteristics of FGM shallow spherical shells were 

considered by Ganapathi [20] using the finite element method. In his study, the geometric nonlinearity 

is assumed only in the meridional direction in strain– displacement relations. Bich [21] studied the 

nonlinear buckling of FGM shallow spherical shells using an analytical approach and the geometrical 

nonlinearity was considered in all strain–displacement relations. By using Galerkin procedure and 

Runge–Kutta method, Bich and Hoa [22] analyzed the nonlinear vibration of FGM shallow spherical 

shells subjected to harmonic uniform external pressures. Recently, Bich and Tung [23] reported an 

analytical investigation on the nonlinear axisymmetrical response of FGM shallow spherical shells 

under uniform external pressure taking the effects of temperature conditions into consideration. 

Shahsiah et al. [24] used an analytical approach to investigate thermal linear instability of FGM deep 

spherical shells under three types of thermal loads using the first order shell theory based on Sander 
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nonlinear kinematic relations. Bich et al. [25] investigated nonlinear static and dynamic buckling 

analysis of functionally graded shallow spherical shells including temperature effects. 

Other special structural FGM panels are also interested by some authors in recent years. Aghdam 

et al.[26] investigated bending of moderately thick clamped FG conical panels subjected to uniform 

and nonuniform distributed loadings. First-order shear deformation theory (FSDT) is applied to drive 

the governing equations of the problem and solved its by using the Extended Kantorovich Method 

(EKM). Bich et al. [27] proposed an analytical approach to investigate the linear buckling of FGM 

conical panels subjected to axial compression, external pressure and the combination of these loads. 

Base on the classical thin shell theory, the equilibrium and linear stability equations in terms of 

displacement components are derived and the approximate analytical solutions are assumed to satisfy 

simply supported boundary conditions and Galerkin method. 

Annular spherical segments become popularly in engineering designs. However, the special 

geometrical shape of this structure is a big difficulty to find the explicit solution form of buckling 

loads. This paper presents an analytical approach to investigate buckling of functionally graded 

annular spherical segments subjected to compressive load and radial pressure. An approximate 

solution form is presented and the explicit solution form is obtained for critical buckling loads of 

segments. 

2. Functionally graded annular spherical segment 

Consider a FGM annular spherical segment or a FGM open annular spherical shell limited by two 

meridians and two parallels of a spherical shell, with thickness h, open angle of two meridional 

planes β , curvature radius R, rise H, radii of upper and lower bases 0r  and 1r  respectively, as shown 

in Fig. 1. It is defined in coordinate system ( ), , zϕ θ , where ϕ
 
and θ

 
are in the medional and 

circumferential directions of the 
 
shell respectively and z is perpendicular to the middle surface 

positive in- ward. Particularly, the segment with 2β π=
 
becomes an annular spherical shell.

  

Assume that the shell is made from a mixture of ceramic and metal constituents and the effective 

material properties vary continuously along the thickness by the power law distribution. 

2

2

+
=
 

=  
 

( )

k

c c

z h
V V z

h
, 1= = −( ) ( ),m m cV V z V z  (1) 

where 0k ≥  
is the volume-fraction index; the subscripts m and c refer to the metal and ceramic 

constituents respectively. 

According to the mentioned law, the Young modulus can be expressed in the form 

( )
2

2

+ 
= + = + −  

 
( ) ,

k

m m c c m c m

z h
E z E V E V E E E

h
 (2) 

and the Poisson ratio ν  is assumed to be constant. 
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Fig. 1. Configuration of an annular spherical segment. 

3. Formulation of the problem 

For a shallow annular spherical shell it is convenient to introduce an additional variable r defined 

by the 

 

relation ϕ= sinr R , where r is the radius of the parallel circle with the base of shell. If the 

rise H of shell is much smaller than the lower base radius 1r  we can take 1ϕ ≈cos  and ϕ =Rd dr , 

such that points of the middle surface may be referred to coordinates r and θ .

 

 

The strains across the shell thickness at a distance z from the mid-surface are: 

2θ θ θ θ θ θε ε χ ε ε χ γ γ χ= − = − = −, , ,r rm r m r r m rz z z  (3) 

where 
εrm  and θε m  are the normal strains,

 

θγ r m  is the shear strain at the middle surface of the 

annular spherical segment, whereas θχ χ,r  and θχr  are the change of curvatures and twist that are 

related to the displacement components 
,u v

 and w

 

of the middle surface points along meridional, 

circumferential and radial direction,

 

respectively, as 

2 2

2

1 1 1

2 2

1 1

θ

θ

ε ε
θ θ

γ
θ θ

∂ ∂ ∂ ∂     
= − + = + − +     ∂ ∂ ∂ ∂     

∂ ∂ ∂ ∂ 
= + + ∂ ∂ ∂ ∂ 

, ,

.

rm m

r m

u w w v w w
u

r R r r R r

v u w w
r
r r r r r

 (4) 

2 2 2

2 2 2

1 1 1 1
θ θχ χ χ

θθ

∂ ∂ ∂ ∂ ∂
= = + = −

∂ ∂ ∂ ∂∂ ∂
, , .r r

w w w w w

r r r r r rr r

 

(5) 

The stress – strain relationships for an annular spherical segment are defined by the Hooke law 
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( )
( )

( ) ( )
( )

( )2 2 11
θ θ θ θ θσ σ ε ε υ ε ε σ γ

υυ
 = + =  +−

, , , , ,r x x r r

E z E z
 (6) 

The force and moment resultants of an FGM annular spherical segment are expressed in terms of 

the stress components through the thickness as 

( ) ( ){ } { }( )
2

2

1θ θ θ θ θ θσ σ σ

−

= ∫, , , , , , , ,

h

r r r r r r

h

N N N M M M z dz  (7) 

Introduction of Eqs. (2), (3) and (6) in Eq.(7) gives the constitutive relations as 

( )
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(8) 

where 

( ) ( )
( )

( )( )
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 The nonlinear equilibrium equations of a perfect annular spherical segment according to the 

classical shell theory are [28] 
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(9) 
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Stability equations of FGM annular spherical segment may be established by the adjacent 

equilibrium criterion [28]. It is assumed that equilibrium state of the FGM annular spherical segment 

under applied load is represented by displacement components 0 0,u v
 
and 0w . The state of adjacent 

equilibrium differs that of stable equilibrium by 1 1,u v  and 1w , and the total displacement 

component of a neighboring configuration are 

0 1 0 1 0 1= + = + = +, , .u u u v v v w w w  (10) 

Similarly, the force and moment resultants of a neighboring state are represented by 

0 1 0 1 0 1θ θ θ θ θ θ= + = + = +, , .r r r r r rN N N N N N N N N  (11) 

0 1 0 1 0 1θ θ θ θ θ θ= + = + = +, , .r r r r r rM M M M M M M M M  (12) 

where terms with 0 subscripts derive the force and moment resultants corresponding to 

0 0 0, ,u v w  displacements and those with 1 subscripts represent the portions of increments 

corresponding to 1 1 1, ,u v w  .  

Introduction of Eqs. (10), (11) and (12) into Eq.(9) and subtracting from the resulting equations 

terms relating to stable equilibrium state, neglecting nonlinear terms in 1 1 1, ,u v w
 

or their 

counterparts in the form of  1 0,r rN N  etc yield 

( )
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2 22
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∂ ∂
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N N N Nw w w w w
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r r r rr r r

 
(13) 

where the force and moment resultants relating to stability state are 

( )
( )

( )
( )

( )1 2 2 3
1 1 1 1 1 12 2

etc
1 1

θ θε νε χ νχ
ν ν

= + − +
− −

, ,
, , .r r r r

E E E E
N M

 
 (14) 

in which 

1 1 1 1 1 1
1 1 1 1

w w1 1
θ θε ε γ

θ θ

∂ ∂ ∂∂   
= − = + − = +   ∂ ∂ ∂ ∂   

, , ,r r

u v v u
u r

r R r R r r r
 (15) 

2 2 2
1 1 1 1 1

1 1 12 2 2

1 1 1 1
θ θχ χ χ

θθ

∂ ∂ ∂ ∂ ∂
= = + = −

∂ ∂ ∂ ∂∂ ∂
, , .r r

w w w w w

r r r r r rr r
 (16) 

The considered FGM annular spherical segment or the open annular spherical shell is assumed to 

be subjected to combination of external pressure q (Pascal) uniformly distributed on the outer surface 
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and uniformly compressive load P (where P=ph, p (Pascal)) acting on the two end edges in the 

tangential direction to meridian of the segment. Therefore the prebuckling state will be symmetric and 

determined by membrane forces 0 0θrN N,
 

and 0 0θ =rN .  

Similarly with the approach to open conical shells [27, 30] projecting all external and internal 

force acting on an element of the annular segment onto the symmetry of the annular spherical shell 

yields 

0

0 0 0

0

0

β ϕ

ϕ

β ϕ + β ϕ + ϕ ϕ θ ϕ =∫ ∫sin sin cos sin ,rr ph r N q R d Rd  

and onto the z-direction of the shell 

0 0

1 2

0θ+ + = ,rN N
q

R R
 

where 0 0 1 2= ϕ = ϕ = =sin , sin , .r R r R R R R  

Establishing some calculation leads to 

2
0 0 0

0 2 2

2
0 0 0

0 0 2 2

1
2

1
2

θ

 ϕ ϕ
 = − − −
 ϕ ϕ 

 ϕ ϕ
 = − − = − + +
 ϕ ϕ 

sin sin
,

sin sin

sin sin
,

sin sin

r

r

rqR
N ph

R

rqR
N N Rq ph

R

 

and replacing 0 1
0ϕ = ϕ =sin , sin ,
r r

R R
 yields  

( ) ( )2 2 2 22 2
0 00 0

0 0 02 2 2 2
0

2 2
θ θ

− +
= − − = − + =, , .r r

r r r rr r
N qR ph N qR ph N

r r r r
 (17) 

Substitution of Eqs. (14)-(17) into Eq.(13) gives stability equations in terms of displacement 

increments as  

( ) ( ) ( )11 1 12 1 13 1 0,+ + =l u l v l w  (18) 

( ) ( ) ( )21 1 22 1 23 1 0,l u l v l w+ + =

 

(19) 

( ) ( ) ( ) ( ) ( )31 1 32 1 33 1 34 1 35 1 0.l u l v l w ql w pl w+ + + + =

 

(20) 

where the detail of operators ijl
 

are displayed in Appendix A. 

The edges of annular spherical segment are assumed to be free simply supported and associated 

boundary conditions are 
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1 1 1 1 0 1

1 1 1 1

0 w 0 0 N 0

0 w 0 0 N 0 0θ θ θ θ β

= = = = = =

= = = = = =

, , , , ,

, , , , ,

r rv M at r r r r

u M at

 

(21) 

From boundary conditions (21) approximate solutions for Eqs.(18) –(20) are assumed as 

( )

( )

( )

0
1

1 0

0
1

1 0

0
1

1 0

V

w W

π − πθ
=

− β

π − πθ
=

− β

π − πθ
=

− β

cos sin ,

sin cos ,

sin sin .

m r r n
u U

r r

m r r n
v

r r

m r r n

r r

 (22) 

where m, n are numbers of half waves in meridional and circumferential direction, respectively. 

With the chosen expression of displacement increments (22) the condition at 0 1r r r= ; : 1 0v = ,
 

1 0w =
 
are satisfied identically but 1 0=rN  and 1 0=rM

 

are satisfied approximately in average 

sense. 

Otherwise, as in Ref.[18] instead of conditions 1 0=rN  and 1 0=rM  at 0 1=r r r;

 

one can use 

approximated conditions 1 0
∂

=
∂

u

r

 

and 

2
1

2
0

∂
=

∂

w

r
 at 0 1r r r= ;

 

which are satisfied identically with the 

chosen displacement increments (22). About boundary conditions at 0;θ β=  all conditions are 

satisfied identically with the chosen expressions (22).  

Due to 0 1≤ ≤r r r
 

and for sake of convenience in integration, Eqs. (18, 19) are multiplied by r
2
 

and Eq. (20) by r
3. 

Subsequently, introduction of solutions (22) into obtained equations and applying Galerkin method  

for the resulting, that are 

( )

( )

( )

1

0

1

0

1

0

0
1

1 0
0

0
2

1 0
0

0
3

1 0
0

0

0

0

β

β

β

π − πθ
θ =

− β

π − πθ
θ =

− β

π − πθ
θ =

− β

∫ ∫

∫ ∫

∫ ∫

cos sin ,

sin cos ,

sin sin .

r

r

r

r

r

r

m r r n
R rdrd

r r

m r r n
R rdrd

r r

m r r n
R rdrd

r r

 (23) 

where R1, R2, R3 are the left hand sides of Eqs. (18)-(20) after theses equations are multiplied by r2
, 

r
2 and r3, respectively, and substituted into by solutions (22), we obtain the following equations 
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( )

11 12 13

21 22 23

* *
31 32 33 34 35

W 0,

W 0,

+a q +a p W 0.

a U a V a

a U a V a

a U a V a

+ + =

+ + =

+ + =

  (24) 

where the detail of coefficient  aij  and 
* *p , q notation may be found in Appendix B: 

Because the solutions (22) are nontrivial, the determinant of coefficient matrix of Eq. (24) must be 

zero 

11 12 13

21 22 23

* *

31 32 33 34 35

0

+a q +a p

a a a

a a a

a a a

=   (25) 

Solving Eq. (25) for 
*p  and 

*q  yields 

( ) ( ) ( )
( )

31 12 23 13 22 32 13 21 11 23 33 11 22 12 21* *

34 35

12 21 11 22

a q +a p =
a a a a a a a a a a a a a a a

a a a a

− + − + −

−
  (26) 

Eq. (26) is used for determining the buckling loads of FGM annular spherical segment under 

uniform compressive load, external pressure and combined loads. For given values of the material and 

geometrical properties of the FGM segment, critical buckling loads are determined by minimizing 

loads with respect to values of m, n. 

By introducing parameter 

*

*

p

q
=γ , Eq. (26) becomes  

 
( ) ( ) ( )

( )( )
31 12 23 13 22 32 13 21 11 23 33 11 22 12 21*

12 21 11 22 34 35

q =
a +a

a a a a a a a a a a a a a a a

a a a a γ

− + − + −

−
  (27) 

4. Results and discussion 

To validate the present study, the present critical buckling loads of shallow spherical caps are 

compared with other results. 

Table 1 shows the present results in comparison with those presented by Timoshenko and Gere 

[29]. In this comparison, the critical buckling loads of the homogeneous shallow spherical caps with 

simply supported movable edges under radial pressure. The Young modulus of Aluminum is 

( )70=E GPa . The Poisson’s ratio is chosen to be 0.3.  
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The comparison of critical buckling loads of FGM shallow spherical caps under radial pressure 

with the results of Bich [21] is shown in table 2. The combination of materials consists of aluminum 

( )70=mE GPa  and alumina ( )380=cE GPa . The Poisson’s ratio is chosen to be 0.3 for simplicity.  

As can be seen in table 1 and 2, the very good agreements are obtained in these comparison 

studies. 

Table 1. Comparison of critical buckling loads ( crq x10
1
) (Mpa) for homogeneous shallow spherical caps under 

radial pressure 

( )

2

2 2

2

3 1
cr

Eh
q

R ν
=

−
 

R h

 

800 1000 1200 1500 2000 

Timoshenko and Gere[29] 1.9065 0.8473 0.5884 0.3766 0.2118 

Present 1.9054  

(15, 1) 

0.8474  

(18, 1) 

0.5882  

(20, 1) 

0.3767 

 (22, 1) 

0.2118  

(26, 1) 

Table 2. Comparison of critical buckling loads ( crq x10) (Mpa) with Bich [21] for FGM shallow spherical caps 

under radial pressure 
( )22

1 3 2

2
4

1
cr

E E Eh
q

R ν

− 
=  

−   

R h

 

k Bich [21] Present 

400    

 0 2.8748 2.8808 (12, 1) 

 1 1.5618 1.5617 (12, 1) 

 2 1.2109 1.2111 (12, 1) 

600    

 0 1.2777 1.2771 (7, 1) 

 1 0.6941 0.6944 (15, 1) 

 2 0.5382 0.5386 (15, 1) 

800    

 0 0.7187 0.7190 (16, 1) 

 1 0.3904 0.3904 (17, 1) 

 2 0.3027 0.3027 (17, 1) 

 

To illustrate the proposed approach to annular spherical segment s, the segment s considered here 

are simply supported at all its edges. The FG material consists of aluminum ( )70=mE GPa  and 

alumina ( )380=cE GPa ,the Poisson’s ratio is chosen to be 0.3.  
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Table 3. Effects of open angle β , volume fraction index k and ratio R/h on the critical buckling loads crp  

(GPa) of annular spherical segment s under compressive load 

( )oβ
 

15 30 45 60 75 90 360  

R h
 k ( )10.2, 0.5= =or R r R

 
 

800         

 0 2.3476 b 1.3859 a 1.2404 a 1.1942 a 1.1736 a 1.1625 a 1.1395 a 

 1 1.2117 
c

 
0.7485 

a
 0.6726 

a
 0.6485 

a
 0.6378 

a
 0.6320 

a
 0.6200 

a
 

 5 0.7671 
b
 0.4508 

a
 0.4035 

a
 0.3885 

a
 0.3818 

a
 0.3783 

a
 0.3708 

a
 

 10 0.6810 
b
 0.3903 

a
 0.3484 

a
 0.3351 

a
 0.3292 

a
 0.3260 

a
 0.3194 

a
 

1000         

 0 1.6423 
c

 
1.0678 

b
 0.9857

 b
 0.9588

 b
 0.9467

 b
 0.9402

 b
 0.9252 

a
 

 1 0.8518 
c
 0.5709 

b
 0.5285

 b
 0.5146

 b
 0.5083

 b
 0.5050

 b
 0.4979

 b
 

 5 0.5367 
c
 0.3478 

b
 0.3211

 b
 0.3123

 b
 0.3083 

a
 0.3057 

a
 0.3002 

a
 

 10 0.4771 c 0.3031 b 0.2762 a 0.2666 a 0.2623 a 0.2600 a 0.2551 a 

1200         

 0 1.2497 
c
 0.8668

 b
 0.8044

 b
 0.7839

 b
 0.7746

 b
 0.7697

 b
 0.7592

 b
 

 1 0.6562 
c
 0.4699 

c
 0.4380

 b
 0.4273

 b
 0.4225

 b
 0.4199

 b
 0.4144

 b
 

 5 0.4077 c 0.2817 c 0.2614 b 0.2548 b 0.2518 b 0.2501 b 0.2468 b 

 10 0.3596 
c
 0.2429 

c
 0.2250

 b
 0.2191

 b
 0.2165

 b
 0.2150

 b
 0.2121

 b
 

1500         

 0 0.9122 
d 

0.6739 
c
 0.6370 

c
 0.6247 

c
 0.6191 

c
 0.6161 

c
 0.6097 

c
 

 1 0.4786 d 0.3637 c 0.3445 c 0.3381 c 0.3352 c 0.3336 c 0.3303 c 

 5 0.2976 
d
 0.2192 

c
 0.2072 

c
 0.2032 

c
 0.2014 

c
 0.2004 

c
 0.1983 

c
 

 10 0.2626 
d
 0.1898 

d
 0.1792 

c
 0.1756 

c
 0.1740 

c
 0.1731 

c
 0.1710

 b
 

The buckling mode shape: 
 a
=(5, 1)     

b
=(6, 1)     

c
=(7, 1)     

d
=(8, 1) 

Effects of angle of two meridian planes β , volume fraction index k and ratio R/h on the critical 

buckling loads of annular spherical segment s under compressive load are shown in Table 3. The 

results show that critical buckling loads decrease when the value of these parameters increases.  

Table 4 shows the effects of ratio or R

 

and 1r R
 
on the critical buckling load crp  (GPa) of 

annular spherical segment under compressive load. The critical load of annular spherical segment 

increases when the ratio of 1r R
 
increases, conversely, it decreases when the ratio 0r R

 
increase. 

Table 4. Effects of ratio or R

 

and 1r R
 
on the critical buckling load crp  (GPa) of annular spherical segment 

under compressive load ( )1, 1000, 45o
k R h β= = =

 

1r R

 

    
0r R

 
0.3 0.35 0.4 0.45 0.5 

0.1 0.8395 (4, 1) 1.0812 (5, 1) 1.3615 (6, 1) 1.6802 (7, 1) 2.0368 (8, 1) 

0.15 0.3893 (3, 1) 0.4949  (4, 1) 0.6180  (5, 1) 0.7584 (6, 1) 0.9159 (7, 1) 

0.2 0.2384 (2, 1) 0.2959 (3, 1) 0.3635 (4, 1) 0.4411 (5, 1) 0.5285 (6, 1) 

0.25 0.1720 (1, 1) 0.2072 (2, 1) 0.2490  (3, 1) 0.2974 (4, 1) 0.3523 (5, 1) 
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Table 5 shows the effects of angle of two median planes β , volume fraction index k and ratio R/h 

on the critical buckling loads of annular spherical segments under radial pressure. It is evident that 

critical buckling loads decrease when the volume of these parameter increases, similarly in the case of 

segments under compressive load. 

Table 5. Effects of open angle β , volume fraction index k and ratio R/h on the critical buckling loads crq x 10
4 

(GPa) of annular spherical segments under radial pressure 

( )oβ
 

15 30 45 60 90 360  

R h
 k ( )10.2, 0.5= =or R r R

 
800        

 0 
6.6609(1, 

2) 
5.9334(1, 3) 5.9807(1, 5) 5.9334(1, 6) 5.9334(1, 9) 8.8174 (4, 15) 

 1 
3.5206(1, 

2) 
3.2771(1, 3) 3.2494(1, 5) 3.2771(1, 6) 

3.2494(1, 

10) 
4.8485 (5, 15) 

 5 
2.1979(1, 

2) 
1.9422(1, 3) 1.9648(1, 5) 1.9422(1, 6) 1.9422(1, 9) 2.8554 (4, 15) 

 10 
1.9358(1, 

2) 
1.6596(1, 3) 1.6951(1, 4) 1.6596(1, 6) 1.6596(1, 9) 2.4217 (4, 15) 

1000        

 0 
3.9291(1, 

2) 
3.9291(1, 4) 3.8012(1, 5) 3.7887(1, 7) 

3.8012(1, 

10) 
5.7058 (5, 15) 

 1 
2.1137(1, 

2) 
2.1137(1, 4) 2.1049(1, 5) 2.0820(1, 7) 

2.0773(1, 

11) 
3.1296 (5, 15) 

 5 
1.2943(1, 

2) 
1.2865(1, 3) 1.2451(1, 5) 1.2432(1, 7) 

1.2451(1, 

10) 
1.8510 (5, 15) 

 10 
1.1270(1, 

2) 
1.0850(1, 3) 1.0623(1, 5) 1.0665(1, 7) 

1.0623(1, 

10) 
1.5850 (5, 15) 

1200        

 0 
2.6407(1, 

2) 
2.6407(1, 4) 2.6407(1, 6) 2.6407(1, 8) 

2.6385(1, 

11) 
4.0515 (6, 15) 

 1 
1.4428(1, 

2) 
1.4428(1, 4) 1.4428(1, 6) 1.4428(1, 8) 

1.4428(1, 

12) 
2.1942 (6, 15) 

 5 
0.8682(1, 

2) 
0.8682(1, 4) 0.8682(1, 6) 0.8682(1, 8) 

0.8650(1, 

11) 
1.3167 (6, 15) 

 10 
0.7480(1, 

2) 
0.7480(1, 4) 0.7480(1, 6) 0.7411(1, 7) 

0.7379(1, 

11) 
1.1169 (5, 15) 

1500        

 0 
1.6978(1, 

2) 
1.6978(1, 4) 1.6978(1, 6) 1.6908(1, 9) 

1.6833(1, 

12) 
2.6098 (6, 15) 

 1 
0.9453(1, 

2) 
0.9453(1, 4) 0.9269(1, 7) 0.9237(1, 9) 

0.9253(1, 

12) 
1.4259 (7, 15) 

 5 
0.5565(1, 

2) 
0.5565(1, 4) 0.5565(1, 6) 0.5563(1, 9) 

0.5532(1, 

12) 
0.8457 (6, 15) 

 10 
0.4732(1, 

2) 
0.4732(1, 4) 0.4732(1, 6) 0.4732(1, 8) 

0.4732(1, 

13) 
0.7208 (6, 15) 
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The critical buckling loads crq  (MPa) increases when the ratio 1r R
 
increases but there is no 

definite trend of variation of critical loads versus various values of 0r R . When 0r R increases, the 

critical buckling load decreases, the abnormal trend occurs when the ratio 0r R  nearly approaches the 

ratio 1r R . In this case, the width annular spherical segments  is narrow.  These results are presented 

in the Table 6. 

Table 6. Effects of ratios or R

 

and 1r R on the critical buckling loads crq x10
1
 (MPa) of annular spherical 

segments under radial pressure ( )1, 1000, 45
o

k R h β= = =

 

1r R

 

    
0r R

 
0.3 0.35 0.4 0.45 0.5 

0.1 2.2266 (1, 3) 2.4355 (1, 4) 2.5012 (1, 4) 2.6685 (1, 5) 2.6561 (7, 2) 

0.15 1.9484 (1, 3) 2.0236 (1, 4) 2.1506 (1, 4) 2.2643 (1, 5) 2.3620 (1, 5) 

0.2 1.9003 (1, 4) 1.8118 (1, 4) 1.9111 (1, 5) 1.9768 (1, 5) 2.1049 (1, 5) 

0.25 3.2849 (1, 5) 1.8708 (1, 4) 1.7447 (1, 5) 1.7971 (1, 5) 1.8738 (1, 6) 

The critical buckling loads for FGM annular spherical segments under simultaneous action of 

compressive load and radial pressure are displayed in Table 7 for different combinations of geometry 

parameters.  

Table 7. Critical buckling loads ( crq  x 10
4
, crp ) (GPa) of annular spherical segments under combination of 

compressive load and radial pressure ( )1, 1000, /= = = cr crk R h p qγ

 

( )0 1
,r R r R

 
  ( )oβ

 

γ
 

(0.1, 0.3) (0.15, 0.4) (0.2, 0.5) 

30     

 0 (2.2266, 0) (2.1465, 0) (2.1137, 0) 

 500 (2.5919, 0.1296) (2.5497, 0.1275) (2.5324, 0.1266) 

 2000 (1.9034, 0.3807) (1.6494, 0.3299) (1.5206, 0.3041) 

 +∞  (0, 1.0695) (0, 0.7006) (0, 0.5709) 

45     

 0 (2.2266, 0) (2.1506, 0) (2.1049, 0) 

 500 (2.5411, 0.1271) (2.5253, 0.1263) (2.5189, 0.1259) 

 2000 (1.7476, 0.3495) (1.5656, 0.3131) (1.4688, 0.2938) 

 +∞  (0, 0.8395) (0, 0.6180) (0, 0.5285) 

60     

 0 (2.2266, 0) (2.1465, 0) (2.0820, 0) 

 500 (2.5262, 0.1263) (2.5182, 0.1259) (2.5148, 0.1257) 

 2000 (1.6964, 0.3393) (1.5374, 0.3075) (1.4511, 0.2902) 

 +∞  (0, 0.7746) (0, 0.5921) (0, 0.5146) 



D.H. Bich, N.T. Phuong / VNU Journal of Mathematics-Physics, No. 29, No. 3 (2013) 14-31 

 

27 

 

Fig. 2. Effects of ratio R/h to the buckling loads of the annular spherical segments under compressive load 

 

Fig. 3. Effects of ratio R/h on the buckling loads of annular spherical segments under radial pressure 

Next, the variation of buckling compressive and pressure load versus R h
 
ratio is separately 

illustrated in Fig.2 and 3. As can be observed, there is a considerable difference between buckling 

loads with small R h  ratio. In contrast, this difference becomes small when R h
 
ratio to be larger.  

Finally, the variation trend of the buckling compressive loads versus 1r R  ratio is presented in 

Fig. 4. The results show that buckling curves to be lower with increasing values of open and these 

curves exits the minimal points when 1r R
 
ratio increases. 

 

Fig. 4. Effects of ratio 1r R
 
on the buckling loads of annular spherical segments under compressive load.  
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5. Conclusions 

The present paper aims to propose an analytical approach to investigate the linear buckling of 

simply supported FGM annular spherical segments subjected to mechanical loads. Formulation is 

based on the classical the shell theory and the adjacent equilibrium criterion. 

Approximate solutions are assumed to satisfy the simply supported boundary conditions and 

Galerkin method is applied to derive the closed form relations of buckling load. Buckling behavior of 

FGM annular spherical segments can be investigated. Some effects of material and dimensional 

parameters to the buckling of FGM annular spherical segments are observed, that illustrates specified 

characteristics of this structure. 

The study shows that 

+ There exist a definite trend of variations of critical compressive and pressure loads versus 

variation values of open angle β , volume fraction index k and ratio R h . 

+ Variation trend of the critical compression versus ratios 0r R  and 1r R  is stable but that of the 

critical pressure is not stable. 

+ Buckling behavior of FGM annular spherical segments is complex and very sensitive to 

variation of material and geometrical parameters. 
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