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Abstract.  Combinatorial problems are those problems, whose requirements are an association of  

some conditions. The construction of efficient algorithms to find solutions of the combinatorial 

problems is still an interesting matter. In this paper, we choose appropriate representations for 

desirable solutions of the permutation problem and the partition problem. Then we sort the 

representations of a problem's solutions in the alphabetical order. Owing to it we construct two 

new algorithms for quickly finding all solutions of these problems.  

1  Introduction
∗∗∗∗s 

Permutations and partitions of a finite set are applied in many areas of sciences and technologies, 

e.g. scheduling problem, control problem and path finding problem... So modifying an exciting 

algorithm or constructing a new algorithm to generate permutations or partitions are attracted many 

researches [1-6,8]. There are some algorithms to generate a set's permutations, e.g. a reverse 

alphabetical order algorithm, an algorithm based on adjacent transpositions…[2-6] and some 

algorithms to generate a set's partitions, e.g. an algorithm based on integer pointers [5,6], an algorithm 

based on matrix [1]... Recently, J. Ginsburg constructed a method determining a permutation from its 

set of reductions [2], M. Monks reconstructed permutations from cycle minors [4] and T. Kuo 

proposed a new method for generating permutations based on factorial digits [3]. But the above 

algorithms are rather long and complicated.   

When designing an algorithm to a problem, one of the first steps is a solution representation. An 

appropriate representation can make the algorithm simpler and faster. Based on the notion of inversion 

of a permutation [5], we propose a notion of inversion vector and show that the inversion vector 

becomes a good representation of permutations. We construct a novel algorithm generating a set's 

permutations by inversion vectors. Using indices of the blocks in a partition we can represent the 
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partition by a sequence of indices and construct a new efficient algorithm to generate a set's all 

partitions. The algorithms are short, simple and easy to implement. 

The remainder of this paper is organized as follows. In section 2 we present permutations 

generation by inversion vectors. The section 3 is devoted to partition problem. The last section 

contains conclusion. 

2. Permutations generation by inversion vectors 

 

Let X be a finite set. A permutation of the set X is a checklist of its all elements. It is easy to see 

that each permutation of the set X is a bijection from X to itself.  

2.1  Permutation problem 

Given an n-element set X. Find all permutations of the set X.  

 

It is easy to show that the number of permutations is n!. The number of elements n is as big as 

great the time to find all permutations.  

 Identify X ≡ {1, 2, …, n}. Let denote Sn the set of all permutations of the n-element set X. A 

permutation f ∈ Sn can be represented by a positive integer sequence of the length n as follows: 

 

f  =  < f(1)  f(2) … f(n) >, where  f(i) ∈ X  and  f(i) ≠ f(j), 1 ≤ i ≠ j ≤ n. 
 

For simplicity, the above sequence can be written as: 

 

f  =  < a1 a2 ... an >, where ai = f(i) , i = 1, 2, ..., n. 
 

In the sequence there is a pair of integers, the preceding is greater than following one. Such a pair 

is an inversion of the permutation.  

 

Definition 2.1: A pair (ai, aj) with i < j is called an inversion of the permutation     < a1 a2 ... an > 

iff ai > aj.  

 

The notion of inversion is used to determine the sign of a permutation [5,6]. We use it to generate 

all permutations.  

 

2.2  Inversion vector of a permutation  

An inversion vector of a permutation is defined as follows:  
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Definition 2.2: The n-dimension vector (d1, d2, ..., dn) is called an inversion vector of the 

permutation < a1 a2 ... an > iff dj = |{ i  | i < j , ai > aj }| , j = 1, 2, ..., n.  

By definition, the coordinator dj is indeed the number of components of the permutation, greater 

than aj and to its left. The coordinator dj is called the number of inversions created by the component 

aj. Note that following components do not effect the number of inversions of preceding ones. 

Example 2.3: The sequences of permutations and inversion vectors of an 3-element set. 

                                  
No Permutations Inversion vectors 

1 1 2 3 0 0 0 

2 1 3 2 0 0 1 

3 2 3 1 0 0 2 

4 2 1 3 0 1 0 

5 3 1 2 0 1 1 

6 3 2 1 0 1 2 

 

By Definition 2.2, the first coordinator d1 of an inversion vector of any permutation always equals 

0 (one choice), the second coordinator d2 equals 0 or 1 (two choices)... So: 

  0  ≤  dj  ≤  j - 1 , where j = 1, 2, ..., n.                                      (2.1) 

  Let denote N the set of all positive integers. Set:  
 

Vn = { (d1, d2, ..., dn)  |  dj ∈ N , 0  ≤  dj  ≤  j - 1 ,  j = 1, 2, ..., n }. 

This is the set of all n-dimension integer vectors satisfying (2.1). Of course: 

 

| Vn |  =  n! 

 The relationship between the set of permutations Sn and the set of vectors Vn is pointed 

out by the following theorem.  
 

Theorem 2.1: Two sets Sn and Vn are isomorphic. 

Proof: Construct a mapping H  :  Sn  →  Vn as follows: 

 

∀f = < a1 a2 ... an > ∈ Sn ,  H(f) = (d1, d2, ..., dn), 

where (d1, d2, ..., dn) is the inversion vector of the permutation < a1 a2 ... an >. 

We show that the mapping H is a bijection. Because two sets Sn and Vn are finite and have the 

same cardinality, so we show only that the mapping H is injective.    

Assume that two following permutations have the same inversion vector:  

 

∃< a1 a2 ... an >, < b1 b2 ... bn > ∈ Sn :  (d1
a
, d2

a
, ..., dn

a
)  =  (d1

b
, d2

b
, ..., dn

b
). 

 

Due to dn
a
  =  dn

b
 so both an and bn are less than dn

a
 elements in X. So, an = bn (= n - dn

a
).  
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Remove an and bn
 
in the above permutations, we get two permutations < a1 a2 ... an-1 > , < b1 b2 ... 

bn-1 > of the n-1 element set X \ {an} that have the same inversion vector (d1
a, d2

a, ..., dn-1
a). Repeat the 

above reasoning we have: an-1 = bn-1.    

Analogously, we show that: < a1 a2 ... an > = < b1 b2 ... bn >. The two permutations are identical. So 

the mapping H is an injection. This proves the theorem.                                                                                                          

Thus, the number of inversion vectors of permutations of a set is equal to the number of the 

permutations. In other words, each vector belonging to Vn is indeed an inversion vector of some 

permutation in Sn.  

One used to represent a permutation of an n-element set by a matrix of 2 rows and n columns or an 

integer sequence with the length of n or a directed graph of n nodes [5,6]. Theorem 2.1 points out that 

inversion vector is a good  representation of permutations. 

 

2.3  Using inversion vectors to generate permutations  

 

Based on Theorem 2.1 we construct a new two step algorithm to generate all permutations of an n-

element set as follows: 

 

1)  Consequently generating inversion vectors in the set Vn. 

2)  Determining a permutation corresponding to the just found inversion vector. 

 

2.3.1  Generating inversion vectors 

 

To perform the step 1 we consider each inversion vector (d1, d2, ..., dn) in Vn as a word d1 d2 ... dn 

on the alphabet N. We sort these words in ascending by the alphabetical order (see Example 2.3). So, 

- The first inversion vector (the least) is 0 0 0 ... 0 0, corresponding to the identical permutation < 1 

2 3 ... n-1 n >. 

- The last inversion vector (the most) is 0 1 2 ... n-2 n-1, corresponding to the permutation < n n-1 

n-2 ... 2 1 >, that is the reverse of the identical permutation. 

Assume that d = (d1, d2, ..., dn) is an inversion vector. We have to find an inversion vector d' = (d'1, 

d'2, ..., d'n) next to the above inversion vector in the sorted sequence.  

By the alphabetical order, the vector d' is inherited a left part as long as possible of the vector d 

from the coordinator indexed 1 to the coordinator indexed k-1, where: 

k = max{ j  dj  < j - 1 }. 
 

Then the coordinators indexed from 1 to k-1 are unchanged:  

 

d'i = di , i = 1, 2, ..., k-1; 
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The coordinators indexed from k to the last are determined as follows:  

 

d'k = dk + 1,  

and  d'i = 0 , i = k+1, k+2, ..., n. 
 

The step 1 terminates when all inversion vectors in Vn have been generated. It means, when the last 

inversion vector 0 1 2 ... n-2 n-1 was generated. At that time, the variable:    k = 0 . 

This is a termination condition of this algorithm. 

2.3.2  Determining permutation from inversion vector 

Let (d1, d2, ... , dn) be an inversion vector. We have to find a permutation      < a1 a2 ... an >, whose 

inversion vector is the above vector. All components ai (i = 1, 2, ..., n) of the permutation belong to the 

set X = {1, 2, …, n}. To determine the components, we use a list LX represented by an integer array, 

that contains remaining elements of the set X after each component selection. Elements in the list XS 

are sorted in ascending. First,  

 

LX[i] = i ,  i = 1, 2, ..., n. 
 

As an is less than dn elements in the list LX so an = LX[n - dn].  

Remove an from LX and gather the list, we get a new n-1 element list. Then, an-1 = LX[n-1-dn-1]. 

Repeat the above process until the list LX becomes empty, we find all components of the 

permutation < a1 a2 ... an >. 

2.3.3  New algorithm generating permutation from inversion vector  

Use an integer array D[1..n] to contain inversion vectors, an integer array F[1..n] for permutations 

and an integer variable l for the current length of the list LX.  

As the above analysis we construct a detail algorithm to generate permutations from inversion 

vectors as follows. 

 

Algorithm 2.1 (Generating permutation from inversion vector): 

Input:  A positive integer n. 

Output: A sequence of all permutations of the set {1, 2, …, n}, their inversion vectors are sorted 

by ascending in the alphabetical order.  

 

1 Begin 

2   D[1..n] ← 0 ;                                                                   

3   repeat 

4     FIND_PER();                                     

5     k ← n ; 

6     while D[k] = k-1 do { D[k] ← 0 ; k ← k-1 } ;                 

7     if k ≥ 2 then D[k] ← D[k]+1 ;               

8   until k = 0 ;  
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9 End. 

 

10 Procedure FIND_PER() ; 

11  begin 

12    for i ← 1 to n do LX[i]← i ; 

13    l ← n ; 

14    for i ← n downto 1 do  

15       { j ← l-D[i] ; F[i] ← LX[j] ; l  ← l-1 ; 

16         for i ← j to l do LX[i] ← LX[i+1] ; }        

17    print F[1..n] ; 

18 end ; 

 

Complexity of the algorithm:  

To generate a permutation, the algorithm executes two following steps: 

- Instructions 5-7 determine a changing position k and generates an inversion vector with the 

complexity of  O(n). 

 - The procedure FIND_PER() in instructions 10-18) determines and prints the corresponding 

permutation by the procedure call 4) with the complexity of O(n.ln n).  

So the complexity of a permutation generation is O(n.ln n). The total complexity of the algorithm 

2.1 is O(n. n!.ln n). 

The complexities of the algorithm 2.1, the reverse alphabetical order algorithm and the algorithm 

based on adjacent transpositions presented in [5,6] are the same. But the algorithm 2.1 is more simpler.  

3. Generating set partitions by indices 

3.1  Set partition problem 

 Let X be a finite set.   

Definition 3.1: A partition of the set X is a family {A1, A2, …, Ak} of subsets of X, satisfying the 

following properties: 

 

1) Ai  ≠ ∅  , 1 ≤ i ≤ k ; 

2) Ai ∩ Aj = ∅ ,  1 ≤ i < j ≤ k  ; 

3) A1 ∪ A2 ∪ … ∪ Ak = X . 
 

Problem:  Given a set X. Find all partitions of the set X. 

 

The number of all partitions of an n-element set is denoted by Bell number Bn , calculated by the 

following recursive formula [5,6]: 
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The number of all partitions of an n-element set grows up as quickly as the factorial function does. 

For example,  

 

 

n Bn 

1 1 

3 5 

5 52 

8 4.140 

10 115.975 

15 1.382.958.545 

20 51.724.158.235.372 

 

Given an n-element set X. Let identify the set X ≡ {1, 2, 3, ..., n}.  

To ensure the uniqueness of representation, we sort subsets in a partition on their least element and 

enumerate these subsets starting with 1.  

Let π = {A1, A2, …, Ak} be a partition of the set X. Each subset Ai is called a block of the partition 

π. In the partition, the block Ai (i = 1, 2, 3, ...) has the index i. Each element j ∈ X, belonging to some 

block Ai has also the index i. It means, every element of X can be represented by the index of a block 

where this element resides.  

Of course, the index of element j is not greater than j. Each partition can be represented by a 

sequence of n indices. The sequence can be considered as a word with the length of n on the alphabet 

X. We sort these words in the ascending order. Then,        

- The smallest word is 1 1 1 ... 1. It corresponds to the partition {{1,2,3, ... , n}}. This partition 

consists of one block only.  

- The greatest word is 1 2 3 ... n. It corresponds to the partition {{1}, {2}, {3}, ... , {n}}. This 

partition consists of n blocks, each block has only one element. This is an unique partition that has a 

block with the index n.   

 

Theorem 3.1:  For n ≥ 0,    Bn   ≤   n!. 

It means, the number of an n element set's all partitions is not greater than the number of all 

permutations on the same set. 

Proof:  Follow from the index sequence representation of partitions.  

We use an integer array IA[1..n] to represent a partition, where IA[i] stores the index of the block 

that includes element i. Element 1 always belongs to the first block, element 2 may belong to the first 

or the second block. If element 2 belongs to the first block then element 3 may belong to the first or 
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the second block only. And if the element 2 belongs to the second block then element 3 may belong to 

the first, the second or the third block.  

Hence, the element i may only belong to the following blocks: 

 

1, 2, 3, …, max (IA[1], IA[2], …, IA[i-1]) + 1. 

It means, for every partition: 

 

1  ≤  IA[i]  ≤  max (IA[1], IA[2], …, IA[i-1]) + 1  ≤   i , where i = 2, 3, …, n. 

 

This is an invariant for all partitions of a set. We use it to find partitions. 

 

Example 3.2: The partitions of a three-element set and the sequence of their index representations.   

 

  
No Partitions IA[1..3] 

1 {{1, 2, 3}} 1 1 1 

2 {{1, 2}, {3}} 1 1 2 

3 {{1, 3}, {2}} 1 2 1 

4 {{1}, {2, 3}} 1 2 2 

5 {{1}, {2}, {3}} 1 2 3 

 

3.2  A new algorithm for partitions generation 

It is easy to determine a partition from its index array representation. So, instead of generating all 

partitions of the set X we find all index arrays IA[1..n], each of them can represent a partition of X. 

These index arrays will be sorted in the ascending order.  

The first index array is 1 1 1 ... 1 1 and the last index array is 1 2 3 ... n-1 n. So the termination 

condition of the algorithm is:   

IA[n]  =  n  

Let IA[1..n] be an index array representing some partition of X and let IA' [1..n] denote the index 

array next to IA in the ascending order.  

To find the index array IA' we use an integer array Imax[1..n], where Imax[i] stores max(IA[1], 

IA[2], …, IA[i-1]). The array Imax gives us possibilities to increase indexes of the array IA. Of course,  

 

Imax[1] = 0  and  Imax[i] = max (Imax[i-1] , IA[i-1]) , i = 2, 3, …, n. 

Then,  

IA' [i] = IA [i] , i = 1, 2, …, p-1, where p = max{  j IA[j] ≤  Imax[j] }; 
 

IA' [p] = IA[p] + 1  and  IA' [j] = 1 ,  j = p+1, p+2, …, n. 
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Basing on the above properties of the index arrays, we construct the following algorithm for 

generating all partitions of a set. 

Algorithm 3.2 (Generation of a set's all partitions) 

Input: A positive integer n. 

Output: A sequence of an n-element set's all partitions, whose index representations are sorted by 

ascending.  

1  Begin 

2   for i ← 1 to n-1 do IA[i] ← 1 ; 

3   IA[n] ← Imax[1] ← 0 ; 

4   repeat 

5     for i ← 2 to n do 

6      if Imax[i-1] < IA[i-1] then Imax[i] ← IA[i-1]   

                           else Imax[i] ← Imax[i-1] ; 

7     p  ← n ; 

8     while IA[p] = Imax[p]+1 do  

9            { IA[p] ← 1 ; p ← p-1 } ; 

10    IA[p] ← IA[p]+1 ; 

11    Print the corresponding partition ; 

12  until IA[n] = n ;  

13 End. 
 

The algorithm’s complexity:  

The algorithm finds an index array and prints the corresponding partition with the complexity of 

O(n). Therefore, the total complexity of the algorithm is O(Bn.n). .    

The algorithm 3.2 is much simpler and faster than the pointer-based algorithm 1.19 presented in 

[5].  

The algorithm is short, simple and easy to implement. 

4. Conclusion 

 In this paper, we propose two new efficient algorithms to generate all permutations and all 

partitions of a finite set. Permutations are represented by inversion vectors whilst partitions by 

sequences of indices. The alphabetical order is used to sort representations of the problem's solutions 

in both algorithms. The obtained results point out that choosing appropriate representations for 

desirable solutions takes a great part in algorithm design. It makes an algorithm simpler, shorter and 

faster.  
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