
VNU Journal of Science, Mathematics - Physics 28 (2012) 1-10

 1

Some new combinatorial algorithms

with appropriate representations of solutions

Hoang Chi Thanh1,*, Nguyen Quang Thanh1

1
Department of Computer Science, VNU University of Science,

334-Nguyen Trai Street, Thanh Xuan, Hanoi

Received 01 September 2011, received in revised form 30 March 2012

Abstract. Combinatorial problems are those problems, whose requirements are an association of

some conditions. The construction of efficient algorithms to find solutions of the combinatorial

problems is still an interesting matter. In this paper, we choose appropriate representations for

desirable solutions of the permutation problem and the partition problem. Then we sort the

representations of a problem's solutions in the alphabetical order. Owing to it we construct two

new algorithms for quickly finding all solutions of these problems.

1 Introduction
∗∗∗∗s

Permutations and partitions of a finite set are applied in many areas of sciences and technologies,

e.g. scheduling problem, control problem and path finding problem... So modifying an exciting

algorithm or constructing a new algorithm to generate permutations or partitions are attracted many

researches [1-6,8]. There are some algorithms to generate a set's permutations, e.g. a reverse

alphabetical order algorithm, an algorithm based on adjacent transpositions…[2-6] and some

algorithms to generate a set's partitions, e.g. an algorithm based on integer pointers [5,6], an algorithm

based on matrix [1]... Recently, J. Ginsburg constructed a method determining a permutation from its

set of reductions [2], M. Monks reconstructed permutations from cycle minors [4] and T. Kuo

proposed a new method for generating permutations based on factorial digits [3]. But the above

algorithms are rather long and complicated.

When designing an algorithm to a problem, one of the first steps is a solution representation. An

appropriate representation can make the algorithm simpler and faster. Based on the notion of inversion

of a permutation [5], we propose a notion of inversion vector and show that the inversion vector

becomes a good representation of permutations. We construct a novel algorithm generating a set's

permutations by inversion vectors. Using indices of the blocks in a partition we can represent the

∗
 Corresponding author. Tel.: +84 91 2011 765

 Email: thanhhc@vnu.vn

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10

2

partition by a sequence of indices and construct a new efficient algorithm to generate a set's all

partitions. The algorithms are short, simple and easy to implement.

The remainder of this paper is organized as follows. In section 2 we present permutations

generation by inversion vectors. The section 3 is devoted to partition problem. The last section

contains conclusion.

2. Permutations generation by inversion vectors

Let X be a finite set. A permutation of the set X is a checklist of its all elements. It is easy to see

that each permutation of the set X is a bijection from X to itself.

2.1 Permutation problem

Given an n-element set X. Find all permutations of the set X.

It is easy to show that the number of permutations is n!. The number of elements n is as big as

great the time to find all permutations.

 Identify X ≡ {1, 2, …, n}. Let denote Sn the set of all permutations of the n-element set X. A

permutation f ∈ Sn can be represented by a positive integer sequence of the length n as follows:

f = < f(1) f(2) … f(n) >, where f(i) ∈ X and f(i) ≠ f(j), 1 ≤ i ≠ j ≤ n.

For simplicity, the above sequence can be written as:

f = < a1 a2 ... an >, where ai = f(i) , i = 1, 2, ..., n.

In the sequence there is a pair of integers, the preceding is greater than following one. Such a pair

is an inversion of the permutation.

Definition 2.1: A pair (ai, aj) with i < j is called an inversion of the permutation < a1 a2 ... an >

iff ai > aj.

The notion of inversion is used to determine the sign of a permutation [5,6]. We use it to generate

all permutations.

2.2 Inversion vector of a permutation

An inversion vector of a permutation is defined as follows:

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10 3

Definition 2.2: The n-dimension vector (d1, d2, ..., dn) is called an inversion vector of the

permutation < a1 a2 ... an > iff dj = |{ i | i < j , ai > aj }| , j = 1, 2, ..., n.

By definition, the coordinator dj is indeed the number of components of the permutation, greater

than aj and to its left. The coordinator dj is called the number of inversions created by the component

aj. Note that following components do not effect the number of inversions of preceding ones.

Example 2.3: The sequences of permutations and inversion vectors of an 3-element set.

No Permutations Inversion vectors

1 1 2 3 0 0 0

2 1 3 2 0 0 1

3 2 3 1 0 0 2

4 2 1 3 0 1 0

5 3 1 2 0 1 1

6 3 2 1 0 1 2

By Definition 2.2, the first coordinator d1 of an inversion vector of any permutation always equals

0 (one choice), the second coordinator d2 equals 0 or 1 (two choices)... So:

 0 ≤ dj ≤ j - 1 , where j = 1, 2, ..., n. (2.1)

 Let denote N the set of all positive integers. Set:

Vn = { (d1, d2, ..., dn) | dj ∈ N , 0 ≤ dj ≤ j - 1 , j = 1, 2, ..., n }.

This is the set of all n-dimension integer vectors satisfying (2.1). Of course:

| Vn | = n!

 The relationship between the set of permutations Sn and the set of vectors Vn is pointed

out by the following theorem.

Theorem 2.1: Two sets Sn and Vn are isomorphic.

Proof: Construct a mapping H : Sn → Vn as follows:

∀f = < a1 a2 ... an > ∈ Sn , H(f) = (d1, d2, ..., dn),

where (d1, d2, ..., dn) is the inversion vector of the permutation < a1 a2 ... an >.

We show that the mapping H is a bijection. Because two sets Sn and Vn are finite and have the

same cardinality, so we show only that the mapping H is injective.

Assume that two following permutations have the same inversion vector:

∃< a1 a2 ... an >, < b1 b2 ... bn > ∈ Sn : (d1
a
, d2

a
, ..., dn

a
) = (d1

b
, d2

b
, ..., dn

b
).

Due to dn
a
 = dn

b
 so both an and bn are less than dn

a
 elements in X. So, an = bn (= n - dn

a
).

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10

4

Remove an and bn

in the above permutations, we get two permutations < a1 a2 ... an-1 > , < b1 b2 ...

bn-1 > of the n-1 element set X \ {an} that have the same inversion vector (d1
a, d2

a, ..., dn-1
a). Repeat the

above reasoning we have: an-1 = bn-1.

Analogously, we show that: < a1 a2 ... an > = < b1 b2 ... bn >. The two permutations are identical. So

the mapping H is an injection. This proves the theorem.

Thus, the number of inversion vectors of permutations of a set is equal to the number of the

permutations. In other words, each vector belonging to Vn is indeed an inversion vector of some

permutation in Sn.

One used to represent a permutation of an n-element set by a matrix of 2 rows and n columns or an

integer sequence with the length of n or a directed graph of n nodes [5,6]. Theorem 2.1 points out that

inversion vector is a good representation of permutations.

2.3 Using inversion vectors to generate permutations

Based on Theorem 2.1 we construct a new two step algorithm to generate all permutations of an n-

element set as follows:

1) Consequently generating inversion vectors in the set Vn.

2) Determining a permutation corresponding to the just found inversion vector.

2.3.1 Generating inversion vectors

To perform the step 1 we consider each inversion vector (d1, d2, ..., dn) in Vn as a word d1 d2 ... dn

on the alphabet N. We sort these words in ascending by the alphabetical order (see Example 2.3). So,

- The first inversion vector (the least) is 0 0 0 ... 0 0, corresponding to the identical permutation < 1

2 3 ... n-1 n >.

- The last inversion vector (the most) is 0 1 2 ... n-2 n-1, corresponding to the permutation < n n-1

n-2 ... 2 1 >, that is the reverse of the identical permutation.

Assume that d = (d1, d2, ..., dn) is an inversion vector. We have to find an inversion vector d' = (d'1,

d'2, ..., d'n) next to the above inversion vector in the sorted sequence.

By the alphabetical order, the vector d' is inherited a left part as long as possible of the vector d

from the coordinator indexed 1 to the coordinator indexed k-1, where:

k = max{ j dj < j - 1 }.

Then the coordinators indexed from 1 to k-1 are unchanged:

d'i = di , i = 1, 2, ..., k-1;

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10 5

The coordinators indexed from k to the last are determined as follows:

d'k = dk + 1,

and d'i = 0 , i = k+1, k+2, ..., n.

The step 1 terminates when all inversion vectors in Vn have been generated. It means, when the last

inversion vector 0 1 2 ... n-2 n-1 was generated. At that time, the variable: k = 0 .

This is a termination condition of this algorithm.

2.3.2 Determining permutation from inversion vector

Let (d1, d2, ... , dn) be an inversion vector. We have to find a permutation < a1 a2 ... an >, whose

inversion vector is the above vector. All components ai (i = 1, 2, ..., n) of the permutation belong to the

set X = {1, 2, …, n}. To determine the components, we use a list LX represented by an integer array,

that contains remaining elements of the set X after each component selection. Elements in the list XS

are sorted in ascending. First,

LX[i] = i , i = 1, 2, ..., n.

As an is less than dn elements in the list LX so an = LX[n - dn].

Remove an from LX and gather the list, we get a new n-1 element list. Then, an-1 = LX[n-1-dn-1].

Repeat the above process until the list LX becomes empty, we find all components of the

permutation < a1 a2 ... an >.

2.3.3 New algorithm generating permutation from inversion vector

Use an integer array D[1..n] to contain inversion vectors, an integer array F[1..n] for permutations

and an integer variable l for the current length of the list LX.

As the above analysis we construct a detail algorithm to generate permutations from inversion

vectors as follows.

Algorithm 2.1 (Generating permutation from inversion vector):

Input: A positive integer n.

Output: A sequence of all permutations of the set {1, 2, …, n}, their inversion vectors are sorted

by ascending in the alphabetical order.

1 Begin

2 D[1..n] ← 0 ;

3 repeat

4 FIND_PER();

5 k ← n ;

6 while D[k] = k-1 do { D[k] ← 0 ; k ← k-1 } ;

7 if k ≥ 2 then D[k] ← D[k]+1 ;

8 until k = 0 ;

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10

6

9 End.

10 Procedure FIND_PER() ;

11 begin

12 for i ← 1 to n do LX[i]← i ;

13 l ← n ;

14 for i ← n downto 1 do

15 { j ← l-D[i] ; F[i] ← LX[j] ; l ← l-1 ;

16 for i ← j to l do LX[i] ← LX[i+1] ; }

17 print F[1..n] ;

18 end ;

Complexity of the algorithm:

To generate a permutation, the algorithm executes two following steps:

- Instructions 5-7 determine a changing position k and generates an inversion vector with the

complexity of O(n).

 - The procedure FIND_PER() in instructions 10-18) determines and prints the corresponding

permutation by the procedure call 4) with the complexity of O(n.ln n).

So the complexity of a permutation generation is O(n.ln n). The total complexity of the algorithm

2.1 is O(n. n!.ln n).

The complexities of the algorithm 2.1, the reverse alphabetical order algorithm and the algorithm

based on adjacent transpositions presented in [5,6] are the same. But the algorithm 2.1 is more simpler.

3. Generating set partitions by indices

3.1 Set partition problem

 Let X be a finite set.

Definition 3.1: A partition of the set X is a family {A1, A2, …, Ak} of subsets of X, satisfying the

following properties:

1) Ai ≠ ∅ , 1 ≤ i ≤ k ;

2) Ai ∩ Aj = ∅ , 1 ≤ i < j ≤ k ;

3) A1 ∪ A2 ∪ … ∪ Ak = X .

Problem: Given a set X. Find all partitions of the set X.

The number of all partitions of an n-element set is denoted by Bell number Bn , calculated by the

following recursive formula [5,6]:

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10 7

i

n

i

n B
i

n
B ∑

−

=

 −
=

1

0

1
 , where B0 = 1.

The number of all partitions of an n-element set grows up as quickly as the factorial function does.

For example,

n Bn

1 1

3 5

5 52

8 4.140

10 115.975

15 1.382.958.545

20 51.724.158.235.372

Given an n-element set X. Let identify the set X ≡ {1, 2, 3, ..., n}.

To ensure the uniqueness of representation, we sort subsets in a partition on their least element and

enumerate these subsets starting with 1.

Let π = {A1, A2, …, Ak} be a partition of the set X. Each subset Ai is called a block of the partition

π. In the partition, the block Ai (i = 1, 2, 3, ...) has the index i. Each element j ∈ X, belonging to some

block Ai has also the index i. It means, every element of X can be represented by the index of a block

where this element resides.

Of course, the index of element j is not greater than j. Each partition can be represented by a

sequence of n indices. The sequence can be considered as a word with the length of n on the alphabet

X. We sort these words in the ascending order. Then,

- The smallest word is 1 1 1 ... 1. It corresponds to the partition {{1,2,3, ... , n}}. This partition

consists of one block only.

- The greatest word is 1 2 3 ... n. It corresponds to the partition {{1}, {2}, {3}, ... , {n}}. This

partition consists of n blocks, each block has only one element. This is an unique partition that has a

block with the index n.

Theorem 3.1: For n ≥ 0, Bn ≤ n!.

It means, the number of an n element set's all partitions is not greater than the number of all

permutations on the same set.

Proof: Follow from the index sequence representation of partitions.

We use an integer array IA[1..n] to represent a partition, where IA[i] stores the index of the block

that includes element i. Element 1 always belongs to the first block, element 2 may belong to the first

or the second block. If element 2 belongs to the first block then element 3 may belong to the first or

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10

8

the second block only. And if the element 2 belongs to the second block then element 3 may belong to

the first, the second or the third block.

Hence, the element i may only belong to the following blocks:

1, 2, 3, …, max (IA[1], IA[2], …, IA[i-1]) + 1.

It means, for every partition:

1 ≤ IA[i] ≤ max (IA[1], IA[2], …, IA[i-1]) + 1 ≤ i , where i = 2, 3, …, n.

This is an invariant for all partitions of a set. We use it to find partitions.

Example 3.2: The partitions of a three-element set and the sequence of their index representations.

No Partitions IA[1..3]

1 {{1, 2, 3}} 1 1 1

2 {{1, 2}, {3}} 1 1 2

3 {{1, 3}, {2}} 1 2 1

4 {{1}, {2, 3}} 1 2 2

5 {{1}, {2}, {3}} 1 2 3

3.2 A new algorithm for partitions generation

It is easy to determine a partition from its index array representation. So, instead of generating all

partitions of the set X we find all index arrays IA[1..n], each of them can represent a partition of X.

These index arrays will be sorted in the ascending order.

The first index array is 1 1 1 ... 1 1 and the last index array is 1 2 3 ... n-1 n. So the termination

condition of the algorithm is:

IA[n] = n

Let IA[1..n] be an index array representing some partition of X and let IA' [1..n] denote the index

array next to IA in the ascending order.

To find the index array IA' we use an integer array Imax[1..n], where Imax[i] stores max(IA[1],

IA[2], …, IA[i-1]). The array Imax gives us possibilities to increase indexes of the array IA. Of course,

Imax[1] = 0 and Imax[i] = max (Imax[i-1] , IA[i-1]) , i = 2, 3, …, n.

Then,

IA' [i] = IA [i] , i = 1, 2, …, p-1, where p = max{ j IA[j] ≤ Imax[j] };

IA' [p] = IA[p] + 1 and IA' [j] = 1 , j = p+1, p+2, …, n.

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10 9

Basing on the above properties of the index arrays, we construct the following algorithm for

generating all partitions of a set.

Algorithm 3.2 (Generation of a set's all partitions)

Input: A positive integer n.

Output: A sequence of an n-element set's all partitions, whose index representations are sorted by

ascending.

1 Begin

2 for i ← 1 to n-1 do IA[i] ← 1 ;

3 IA[n] ← Imax[1] ← 0 ;

4 repeat

5 for i ← 2 to n do

6 if Imax[i-1] < IA[i-1] then Imax[i] ← IA[i-1]

 else Imax[i] ← Imax[i-1] ;

7 p ← n ;

8 while IA[p] = Imax[p]+1 do

9 { IA[p] ← 1 ; p ← p-1 } ;

10 IA[p] ← IA[p]+1 ;

11 Print the corresponding partition ;

12 until IA[n] = n ;

13 End.

The algorithm’s complexity:

The algorithm finds an index array and prints the corresponding partition with the complexity of

O(n). Therefore, the total complexity of the algorithm is O(Bn.n). .

The algorithm 3.2 is much simpler and faster than the pointer-based algorithm 1.19 presented in

[5].

The algorithm is short, simple and easy to implement.

4. Conclusion

 In this paper, we propose two new efficient algorithms to generate all permutations and all

partitions of a finite set. Permutations are represented by inversion vectors whilst partitions by

sequences of indices. The alphabetical order is used to sort representations of the problem's solutions

in both algorithms. The obtained results point out that choosing appropriate representations for

desirable solutions takes a great part in algorithm design. It makes an algorithm simpler, shorter and

faster.

H.C. Thanh and N.Q. Thanh / VNU Journal of Science, Mathematics-Physics 28 (2012) 1-10

10

Acknowledgment

The author would like to acknowledge the Asia Research Center and the Korea Foundation for

Advanced Studies as the sponsors for the research project.

References

[1] K. Cameron, E.M. Eschen, C.T. Hoang and R. Sritharan, The list partition problem for graphs, Proceedings of

the fifteenth annual ACM-SIAM symposium on Discrete algorithms, New Orleans 2004, pp. 391-399.

[2] J. Ginsburg, Determining a permutation from its set of reductions, Ars Combinatoria, No. 82, 2007, pp. 55-57.

[3] T. Kuo, A new method for generating permutations in lexicographic order, Journal of Science and Engineering

Technology, Vol. 5, No. 4, 2009, pp. 21-20.

[4] M. Monks, Reconstructing permutations from cycle minors, The Electronic Journal of Combinatorics, No. 16,

2009, #R19.

[5] W. Lipski, Kombinatoryka dla programistów, WNT, Warszawa, 1982.

[6] H.C. Thanh, Combinatorics, VNUH Press, 1999 (in Vietnamese).

[7] H.C. Thanh, Bounded sequence problem and some its applications, Proceedings of Japan-Vietnam Workshop on

Software Engineering, Hanoi - 2010, pp. 74-83.

[8] H.C. Thanh, N.T.T. Loan, N.D. Ham,

From Permutations to Iterative Permutations, International Journal of

Computer Science Engineering and Technology, Vol. 2, Issue 7, 2012, pp. 1310-1315.

